

A D V A N C E D T O O L S F O R D E V E L O P I N G
H I G H L Y R E A L I S T I C C O M P U T E R G A M E S

W O R K I N G M O D U L E S

F O R G E O M E T R Y

 Document identifier: GameTools-4-D4.3-03-1-1-
Working Modules for Geometry

 Date: 15/05/2006

 Work package: WP04: Geometry

 Partner(s): UJI, UPV

 Leading Partner: UJI

 Document status: DRAFT

 Deliverable identifier: D4.3

Abstract: This technical report describes the initially working modules of the geometry work
package.

IST-2-004363 CONFIDENTIAL 1 / 40

Doc. Identifier:

GameTools-4-D4.3-03-1-1-WORKING MODULES
Working Modules for

Geometry

FOR GEOMETRY

Date: 15/05/2006

Delivery Slip

 Name Partner Date Signature

From UJI

Reviewed by

Approved by

Document Log

Issue Date Comment Author

Document Change Record

Issue Item Reason for Change

Files

Software Products User files / URL

Word gametools-ist-2-004363-4-d4.3-03-1-1-working modules
for geometry.doc

IST-2-004363 CONFIDENTIAL 2 / 40

Doc. Identifier:

GameTools-4-D4.3-03-1-1-WORKING MODULES
Working Modules for

Geometry

FOR GEOMETRY

Date: 15/05/2006

CONTENT

1. INTRODUCTION... 4
OBJECTIVES OF THIS DOCUMENT ... 4
DOCUMENT AMENDMENT PROCEDURE .. 4
TERMINOLOGY .. 4

2. DESCRIPTION OF THE MODULES.. 5
2.1. STRIPIFICATION MODULE .. 5

2.1.1. Description ... 5
2.1.2. Module Structure.. 5

2.2. SIMPLIFICATION MODULE.. 7
2.2.1. Description ... 7
2.2.2. Module Structure.. 11
2.2.3. Using the Module ... 14

2.3. LODSTRIPS CONSTRUCTION MODULE .. 15
2.3.1. Description ... 15
2.3.2. Module Structure.. 15
2.3.3. Using the module.. 16

2.4. LODSTRIPS MODULE ... 17
2.4.1. Module Description.. 17
2.4.2. Module Structure.. 17
2.4.3. Using the Module ... 19
2.4.4. Working with Ogre ... 19

2.5. LODTREES CONSTRUCTION MODULE... 22
2.5.1. Description ... 22
2.5.2. Module Structure.. 22
2.5.3. Using the Module ... 23

2.6. LODTREES MODULE .. 26
2.6.1. Description ... 26
2.6.2. Module Structure.. 27
2.6.3. Using the Module ... 28
2.6.4. An Example in Ogre ... 28

2.7. GEOTOOL APPLICATION .. 31
2.7.1. Description ... 31
2.7.2. User Interface... 33
2.7.3. Using the Application... 36

IST-2-004363 CONFIDENTIAL 3 / 40

Doc. Identifier:

GameTools-4-D4.3-03-1-1-WORKING MODULES
Working Modules for

Geometry

FOR GEOMETRY

Date: 15/05/2006

1. INTRODUCTION

OBJECTIVES OF THIS DOCUMENT
This document describes the initially working modules for the Geometry Work Package. Its aim is to
describe the modules and explain how they work.

DOCUMENT AMENDMENT PROCEDURE
Any project partner may request amendments but each amendment must be analysed and approved by
the GameTools Project Coordinator or Project Manager.

TERMINOLOGY
Glossary
GTP GameTools Project
PC Project Coordinator
PM Project Manager
WP Work Package
LOD Level Of Detail

IST-2-004363 CONFIDENTIAL 4 / 40

Doc. Identifier:

GameTools-4-D4.3-03-1-1-WORKING MODULES
Working Modules for

Geometry

FOR GEOMETRY

Date: 15/05/2006

2. DESCRIPTION OF THE MODULES

2.1. STRIPIFICATION MODULE

2.1.1. Description
This module is a geometry tool that makes triangle strip models from a list of triangles. Drawing 3D
models using triangle strips has always been more efficient than just using a triangle list. This module
only affects the triangle indices, the vertices are not affected by stripification changes.

This module uses the tri-stripper algorithm to accomplish the task of making triangle strips. This
algorithm has been chosen because it is fast and it takes advantage of vertex caches found in most 3D
cards.

The module was designed to support easy integration of other stripification algorithms. A future
extension of this module is to implement different stripification algorithms that could be chosen from
the GUI.

2.1.2. Module Structure
The source code of the stripification module can be found in two files: a file header named
GeoMeshStripifer.h and a source file named GeoMeshStripifer.cpp. There is a parent class named
MeshStripifer that contains the basic structure developed for classes implementing particular
stripification methods. The tri-stripper method is implemented in the CustomStripifer class. Here
is a brief description of the stripification module (for more information read the GameTools Geometry
Modules Reference Manual 0.1):

class MeshStripifier

• MeshStripifier(): Constructor, initializes basic structures and gets the mesh to stripify.

• Stripify(): Make triangle strips of the mesh model.

• GetMesh (): Gets the stripified mesh model.

• setSubMeshLeaves(): Used to select the leaf sub-mesh of a mesh model representing a tree.

2.2.3. Using the Module
Using strips to describe the geometry of the models accelerates the graphics visualization of the
models. Representing a mesh model using triangle strips is more compact than representing the model
using triangle lists. The former requires less storage and bus bandwidth than the latter. A tri-stripper-
based algorithm has been implemented that exploits the vertex cache of the 3D cards and provides
more efficient triangle strips than a stripper algorithm that does not use the cache.

IST-2-004363 CONFIDENTIAL 5 / 40

Doc. Identifier:

GameTools-4-D4.3-03-1-1-WORKING MODULES
Working Modules for

Geometry

FOR GEOMETRY

Date: 15/05/2006

Figure 1: The mighty stripified robot Figure 2: The Athena statue stripified

Figure 3: The dwarf model stripified using the GeoTool

IST-2-004363 CONFIDENTIAL 6 / 40

Doc. Identifier:

GameTools-4-D4.3-03-1-1-WORKING MODULES
Working Modules for

Geometry

FOR GEOMETRY

Date: 15/05/2006

2.2. SIMPLIFICATION MODULE

The multiresolution representation of a mesh model has two main parts: the original geometry of the
object at its maximum level of detail, and the simplification sequence that supports the generation of
different levels of detail. This Section deals with the simplification methods we use to construct our
multiresolution models LODStrips and LODTrees.

First, we introduce the simplification methods we developed. Then, we present the structure of these
methods. Finally, we describe how to use the module.

2.2.1. Description

We have developed three different simplification methods. Depending on the purpose of the
simplification the user can apply any of the three methods. These methods are based on: geometric
simplification of meshes, viewpoint-driven simplification and geometric simplification of foliage.
In the following sub-sections, we explain each of these methods.

2.2.1.1. Geometric Simplification of Meshes

The method returns a simplified model given a high resolution model. Moreover, it also computes the
simplification sequence. The simplification sequence represents the steps needed to transform the
original mesh into its simplified form.

Our method is based on edge contractions, that is, it iteratively selects edges for removal. At each
step, a new edge (or vertex pair) is selected and removed. One of the vertices is also removed and the
indices of all affected faces are re-mapped to the other vertex. Faces that become degenerate during
this process are also removed.

The method runs as follows. First, we merge all the sub-meshes of the model into a unique virtual
mesh, storing all the information about the original connectivity of the meshes. The decision of
merging two vertices that belong to different sub-meshes is based on the distance between those
vertices. Moreover, if two neighbouring sub-meshes are composed of different materials, the edges
between them are marked as virtual boundaries, and the simplification step keeps the original shape.

Next, the virtual mesh is simplified. We assign a decimation cost to each edge using a quadric error
metric. This cost is used to sort the edges for simplification. The edge with the lowest decimation cost
is the first edge simplified and removed. Edges with higher costs follow.

IST-2-004363 CONFIDENTIAL 7 / 40

Doc. Identifier:

GameTools-4-D4.3-03-1-1-WORKING MODULES
Working Modules for

Geometry

FOR GEOMETRY

Date: 15/05/2006

(a) High resolution models (b) Low resolution models

(geometry at 30%)
Figure 4: Example of geometric mesh simplification

IST-2-004363 CONFIDENTIAL 8 / 40

Doc. Identifier:

GameTools-4-D4.3-03-1-1-WORKING MODULES
Working Modules for

Geometry

FOR GEOMETRY

Date: 15/05/2006

Finally, the method retrieves the simplified mesh and splits it into different sub-meshes using the
interconnectivity information stored before.

The method supports selecting edges to preserve mesh boundaries. This is done by assigning a higher
cost to the edges of the boundaries.

Figure 4 shows an example of our geometric mesh simplification method applied to various models.
8(a) and 8(b) respectively show the high resolution models and the simplified models at 30% of the
original geometry.

2.2.1.2. Mutual Information-Driven Simplification

We have developed a viewpoint-based simplification method to produce simplifications that minimize
the changes of the simplified model for a given human observer.

The method returns a simplified model of the original model, including the simplification sequence.
A set of cameras is uniformly placed on a sphere around the object that contains the object’s bounding
box. Each camera renders the object and computes the area of the rendered triangles. With this area
mutual information is performed. The mutual information is a metric that compares the error between
two probabilistic distributions. This is a very wide concept that is applied here to the relation between
the polygons and its projected areas. This method gives a good metric because it’s very sensitive to
visual changes from a point of view.

(a) High resolution models (b) Low resolution models

(geometry at 5%)
Figure 5: Example of mutual information-driven simplification

IST-2-004363 CONFIDENTIAL 9 / 40

Doc. Identifier:

GameTools-4-D4.3-03-1-1-WORKING MODULES
Working Modules for

Geometry

FOR GEOMETRY

Date: 15/05/2006

For each edge a contraction is done and the mutual information is recomputed assigning a decimation
cost. With this information, the edges are stored sorted by decimation cost.

Then, the contractions are computed. After each contraction, the contraction cost of the neighboring
edges (based on a threshold) is recalculated.

Figure 5 shows an example of this kind of simplification. In 9(a) the high resolution models can be
observed. 9(b) shows a simplified version with 5% of the original geometry. For this simplification we
used 42 cameras located around the object.

2.2.1.3. Geometric Simplification of Foliage

Given a tree model, we produce a simplified tree by generating an appropriate simplification sequence.

Simplification of a tree model is generated using two different simplification methods: one for the
trunk and branches and the other for the leaves. This is because of the incorrect leaf simplification one
gets when using geometric simplification of meshes for the leaves. So, the trunk and the branches are
simplified with the simplification method for meshes, and the leaves are simplified with another
method that works as follows.
The method assigns collapse costs to the leaves. This cost is based on a combination of distances and
planarity.
Leaf collapses are computed without generating new vertices. The original vertices of the leaves are
used instead.

(a) High resolution model (b) Low resolution model
(geometry at 50%)

Figure 6: Example of foliage simplification

IST-2-004363 CONFIDENTIAL 10 / 40

Doc. Identifier:

GameTools-4-D4.3-03-1-1-WORKING MODULES
Working Modules for

Geometry

FOR GEOMETRY

Date: 15/05/2006

2.2.2. Module Structure
The simplification methods are managed by classes. The base classes are:

class MeshSimplifier

This module is used by both types of models, general mesh models and plant and tree models. For
plant and tree models we use this module for the trunk and the branches. It contains functions that
generate simplified versions of 3D objects made out of triangles. Given a 3D object, this module
computes a sequence of geometric transformations that reduce the object’s geometric detail while
preserving its appearance. For each simplification step, it returns a simplification sequence containing
the edge to be collapse, the two triangles being removed and the new triangles remapped to the model.

Its input is a pointer to the Geometry::Mesh object containing the 3D model to be simplified. Its
outputs are the simplified model, contained in a Geometry::Mesh object, and the simplification
sequence, represented by a Geometry::MeshSimplificationSequence object.

The MeshSimplifier class is implemented as an abstract class that represents the interface of a
simplification method. Its functions are:

• MeshSimplifier(): constructor, takes a pointer to a valid Geometry::Mesh object to
simplify.

• Simplify (Geometry::Real): Starts the simplification process. Receives as parameter the

LOD factor in the range of [0,1]. This is a pure virtual method and must be overloaded in
derived classes implementing simplification algorithms.

• Simplify (Geometry::uint32): Starts the simplification process. Receives as parameter

the number of vertices of the resulting mesh. This is a pure virtual method and must be
overloaded in derived classes implementing simplification algorithms.

• GetMesh(): Returns the simplified mesh.

• GetSimplificationSequence(): Returns the simplification sequence for general meshes.

• setMeshLeaves(): Selects the mesh that stores the leaves.

class ViewPointDrivenSimplifier

This class implements a simplification algorithm based on a viewpoint evaluation technique. This
class inherit from MeshSimplifier class. Its functions are:

• ViewPointDrivenSimplifier(): Class constructor.

IST-2-004363 CONFIDENTIAL 11 / 40

Doc. Identifier:

GameTools-4-D4.3-03-1-1-WORKING MODULES
Working Modules for

Geometry

FOR GEOMETRY

Date: 15/05/2006

• Simplify (Geometry::Real): Starts the simplification process. Receives as a parameter
the LOD factor in the range of [0,1]. Implements the Simplifier::Simplify method to
perform an image-based simplification.

• Simplify (Geometry::uint32): Receives as parameter the number of vertices of the

resulting mesh. Implements the Simplifier::Simplify method to perform an image-
based simplification.

class GeometryBasedSimplifier

This class implements a simplification algorithm based on a classic geometry evaluation technique.
This class inherits from MeshSimplifier. Its functions are:

• GeometryBasedSimplifier: Class constructor.

• Simplify (Geometry::Real): Starts the simplification process. Receives as parameter the
LOD factor in the range of [0,1]. Implements the Simplifier::Simplify method to
perform geometry-based simplification.

• Simplify (Geometry::uint32): Starts the simplification process. Receives as a

parameter the number of vertices of the resulting mesh. Implements the
Simplifier::Simplify method to perform geometry-based simplification.

class TreeSimplifier

This module is used by LODTree to simplify the leaves of a tree. It contains functions that generate
simplified versions of 3D objects made out of quads (represented as pairs of texture-mapped
triangles). Given a 3D object, this module computes a sequence of geometric transformations that
reduce the object’s geometric detail while preserving its appearance.

For each simplification step, the module returns a simplification sequence containing the leaf
collapsed, the two leaves being removed, and the leaf resulting from that contraction.

Its input is a pointer to the Geometry::Mesh object containing the tree to be simplified. Its outputs
are the simplified mesh, contained in a Geometry::Mesh object, and the simplification sequence,
represented by a Geometry::TreeSimplificationSequence object.
Its functions are:

• TreeSimplifier(): Class constructor. Retrieves a pointer to a valid mesh object to
simplify.

• Simplify(): Starts the simplification process. Receives as parameter the LOD factor in the

range of [0,1].

• GetMesh(): Returns the simplified mesh.
• GetSimplificationSequence(): Returns the simplification sequence for the leaves.

IST-2-004363 CONFIDENTIAL 12 / 40

Doc. Identifier:

GameTools-4-D4.3-03-1-1-WORKING MODULES
Working Modules for

Geometry

FOR GEOMETRY

Date: 15/05/2006

class MeshSimplificationSequence

This class stores the simplification sequence applied to a given mesh. It maintains information about
the simplification process. For each simplification step it gives the vertex that collapses, the vertex that
remains unchanged, the two triangles that disappear and the new triangles that come out.
It also offers a method to generate a file in mesh simplification sequence format. This file begins with
a line stating the name of the mesh file it refers to. The other lines contain the following information:

 Vertex that collapses.
 Vertex that remains unchanged.
 The triangles that disappear.
 & as a separator.
 The list of new triangles.

The functions of the MeshSimplificationSequence class are:

• MeshSimplificationSequence: Class constructor.
• Load(): Loads a simplification sequence from a Serializer.
• Save(): Saves the contents of the data structures.
• putMeshName(): Inserts the mesh name into the MeshSimplificationSequence.
• getMeshName(): Gets the mesh name.

The members of the MeshSimplificationSequence class are:
• Step: Represents a simplification step in the sequence.
• mSteps: Stores all the simplification steps.
• meshName: Mesh name.

class TreeSimplificationSequence

This class represents the simplification sequence applied to a given mesh representing the leaves of a
tree. It maintains information about the simplification process. For each simplification step it gives the
four triangles that compose the two leaves that will be collapsed and the two triangles of the new leaf.

It also offers a method to generate a file in tree simplification sequence format. This file begins with a
line stating the name of the mesh file it refers to.

The file containing the tree simplification data (.lodt) stores for each leaf collapse operation one line
with the following format:

 The four triangles that represent the two leaves that will be collapsed.
 & as a separator.
 The two triangles of the new collapsed leaf.

The functions of the TreeSimplificationSequence class are:

• TreeSimplificationSequence: Class constructor.
• Load(): Loads a simplification sequence from a Serializer.
• Save(): Saves the contents of the data structures.

IST-2-004363 CONFIDENTIAL 13 / 40

Doc. Identifier:

GameTools-4-D4.3-03-1-1-WORKING MODULES
Working Modules for

Geometry

FOR GEOMETRY

Date: 15/05/2006

• putMeshName(): Inserts the mesh name into the TreeSimplificationSequence.
• getMeshName(): Gets the mesh name.

The members of the TreeSimplificationSequence class are:

• Step: Represents a simplification step in the sequence.
• mSteps: Stores all the simplification steps.
• meshName: Mesh name.

2.2.3. Using the Module

With this module, simplified models can be generated from a high resolution one. The goal is to obtain
models that are quite similar to the original ones but use less storage and processing power.

The application offers three possible simplification options: mesh geometric simplification, viewpoint-
based simplification and foliage simplification.

If we want a fast and geometry-based simplification method for meshes we can use mesh geometric
simplification. If we want simplification that minimizes the differences between the simplified model
and the original one for a human observer, we can use viewpoint-based simplification. And finally, if
we want to simply a tree’s leaves, we can use foliage simplification.

Moreover, for each simplification our simplification methods generate a simplification sequence. So,
in each step of the simplification some information about the operation is stored. This way we can
easily change from one level of detail of the model to the next or another one. This is especially useful
for creating multiresolution models.

IST-2-004363 CONFIDENTIAL 14 / 40

Doc. Identifier:

GameTools-4-D4.3-03-1-1-WORKING MODULES
Working Modules for

Geometry

FOR GEOMETRY

Date: 15/05/2006

2.3. LODSTRIPS CONSTRUCTION MODULE

2.3.1. Description

LODStrips is a multi-strip-based continuous multiresolution model. The LODStrips construction
process takes as input a manifold mesh and extracts the simplification information needed to transform
the original mesh into the simplified one. This simplification sequence is provided by the
simplification module. Thus, the original mesh must be simplified first to a certain level of detail given
by the user. Once the model has been simplified, and the simplification steps extracted, the next step is
the stripification of the mesh. This process requires no user input and works with hard-coded fixed
options. The stripification process is needed because the LODStrips model works with stripified
meshes to minimize the number of vertices to be sent to the GPU. When the model has been stripified
the process of LODStrips construction starts, involving vertex sorting and other low-level processes
that will not be explained here because they are beyond the scope of this document.
The resulting multiresolution model is store in two files:

- One file represents the stripified geometry of the original model stored in a standard Ogre
.mesh file. As each sub-mesh in the stripified model contains a high number of triangle strips,
these strips are joined using degenerated triangles. Thus we transform a model composed of n
sub-meshes and m triangle strips per sub-mesh into a model formed by n sub-meshes and only
1 triangle strip for each sub-mesh. This makes the model faster to be drawn, because it’s
important for the renderer to minimize the number of render calls. Moreover, this is the only
way to provide a standard Ogre .mesh file with many strips per sub-mesh.

- The other file stores the multiresolution information needed to perform fast level of detail
switching in real time. This information is saved to a .lods file, a text file containing:

o The simplification order for each vertex, coded in the file with the format: “v
#vertexid”.

o The lines beginning with a ‘d’ character contain: the identifier of the triangle strip to
be modified, the number of collapses in this strip, the number of vertex and edge
repetitions, and a flag indicating if the current collapse forces the next one. This flag is
used to avoid holes in the mesh.

o Those lines beginning with a ‘p’ character contain the number of strips affected by
every LOD change.

o Lines beginning with a ‘b’ character contain all information needed to compute the
collapses and repetitions.

2.3.2. Module Structure
The LODStrips constructor is implemented in the LodStripsConstructor class. This class
encapsulates the processes needed to construct a LODStrips multiresolution model from a mesh
simplification sequence and the original mesh. This class inherits from the class Serializable
which provides the functionality needed to be saved to disk.

IST-2-004363 CONFIDENTIAL 15 / 40

Doc. Identifier:

GameTools-4-D4.3-03-1-1-WORKING MODULES
Working Modules for

Geometry

FOR GEOMETRY

Date: 15/05/2006

Constructor
LodStripsConstructor takes two class construction parameters: the original stripified mesh and a
MeshSimplificationSequence object representing the decimation sequence provided by the
geometry simplifier. Moreover, there are two optional parameters: one is used to discard any sub-mesh
from the construction process. This is useful to reuse the LodStripsConstruction module in the
LODTree construction process that will be described later. The other optional parameter is used to
provide feedback about the progress made so far by the construction process.

Methods
The main method of this class is Save(). It is used to construct and save the multiresolution model in
the .mesh and .lods files.
• GetMesh(): returns the current mesh of the constructed model, once stripified.
• SetSubMeshLeaves(): is used to give the identifier of the sub-mesh to be ignored, as in the

optional parameter of the constructor.

2.3.3. Using the module
Any client application (like the GeoTool) wanting to construct a LODStrips model with this class has
to:

1. Load a mesh into a Geometry::Mesh object.
2. Generate a Geometry::MeshSimplificationSequence given by any of the

simplification methods provided by the GTGeometry library.
3. Create a Geometry::LodStripsConstructor object from the two previously created

objects: the mesh and the simplification sequence.
4. Call the Save() method to construct the model and output the information into a

Serializer object (like a file). This method does the following:
o It writes the .lods file with the simplification sequence.
o It modifies a copy of the original mesh to reflect the changes occurred in the

construction process.

IST-2-004363 CONFIDENTIAL 16 / 40

Doc. Identifier:

GameTools-4-D4.3-03-1-1-WORKING MODULES
Working Modules for

Geometry

FOR GEOMETRY

Date: 15/05/2006

2.4. LODSTRIPS MODULE

2.4.1. Module Description
A common way to handle the problem of rendering large 3D scenes is to use multiresolution
modeling. Multiresolution models store different levels of detail of an object in order to optimize the
rendering cost for each view of the scene.
The LODStrips model represents a mesh as a set of multiresolution strips. For each level of detail a set
of indices is selected for rendering without changing the original geometry. LODstrips supports
continuous multiresolution because it stores each simplification change generated by each
simplification step.
So, this module supports generating a multiresolution model with its simplification information and its
corresponding simplification sequence. With this sequence it is possible to smoothly change between
levels of detail, just by performing the changes stored in the simplification sequence.

Figure 7. Example of many LODStrips models at different levels of detail

2.4.2. Module Structure
The base class of the module is the class LodStripsLibrary which represents a multiresolution
model managed by a LODStrips algorithm.

class LodStripsLibrary

This module contains functions that handle the levels of detail of the input multiresolution objects
made of polygonal meshes. For any given resolution and object, this module returns a set of triangle
strips representing the object at that resolution, that is, at the level of detail requested. These models
use triangle strips to reduce storage usage and to speed up realistic rendering.

Its input is a file describing a multiresolution object. And its output is a strip set that represents the
level of detail requested.

IST-2-004363 CONFIDENTIAL 17 / 40

Doc. Identifier:

GameTools-4-D4.3-03-1-1-WORKING MODULES
Working Modules for

Geometry

FOR GEOMETRY

Date: 15/05/2006

Its functions are:
• LodStripsLibrary: Constructor, receives as a parameter the name of the file containing the

multiresolution object.
• MaxLod(): Returns the highest LOD.

• MinLod(): Returns the lowest LOD.

• GoToLod(): Returns de current LOD and changes to the specified LOD.
• TrimByLod(): Establishes the new LOD range. Only the LODs in that range are stored and

used.
• MaxFaces(): Returns the number of triangles of the highest LOD.

• MinFaces(): Returns the number of triangles of the lowest LOD.

• MaxVertices(): Returns the number of vertices of the highest LOD.

• MinVertices(): Returns the number of vertices of the lowest LOD.

• GetStripCount(): Gets the number of strips.

• GetIndexCountByStrip(): Gets the number of indices by strip.

Its structures are:

• mStrips: Vector of strips.

Figure 8 shows an example of a model that fully exploits the LODStrips algorithm.

Figure 8. Example of a LODStrips model at different levels of detail

IST-2-004363 CONFIDENTIAL 18 / 40

Doc. Identifier:

GameTools-4-D4.3-03-1-1-WORKING MODULES
Working Modules for

Geometry

FOR GEOMETRY

Date: 15/05/2006

2.4.3. Using the Module

The usage of the LodStripsLibrary by a client application is quite straightforward. The client
needs to create an instance object of the LodStripsLibrary class, which is the class that manages
all the data and the multiresolution processes. Then, simply by calling the GoToLod() function, the
library updates the current state of the model and adapts it to the requested level of detail. Finally, to
render the state of the actual multiresolution model, the application can query these data from the
LodStripsLibrary class using the mStrips vector structure.

We are working on a new design of the data management used in the LODStrips library. This design
will improve performance and data storage. It will allow the client application to store the data in the
most efficient way. Here, the term efficient is a client-dependent quality because different applications
may need to store the data in completely different ways. For example, an OpenGL application stores
the information in a different way compared to a Direct3D application. Our new approach will allow
the application to be the container of the data, while the library just provides an algorithm that knows
how to use the data. This will also avoid the need to query data from the library, thus increasing the
overall performance.

2.4.3.1. LODStrips manager
Managing a single LODStrips model in a scene is quite straightforward. However, dealing with a
scene with a high number of LODStrips models may be a bit more complicated. Since extracting a
given level of detail is not a constant-time operation, it takes same time to change the level of detail of
an object. When there is only one LOD model in the scene this really doesn’t matter, but when a scene
is populated of multiresolution models of this type it would be a problem if a large number of LOD
models need to change its level of detail. This could cause frame rate droppings during the game play.
Thus, any sort of LODManager is needed to ensure that the LOD extraction only occurs in a separated
time space. The general process would be:

1- A given LODStrips model asks the LODStrips Manager to change its LOD.
2- The manager assigns a pripority to that request and stores it
3- When an X time has passed since the last LOD petition was served, the manager servers the

next priority-based petition.
That would ensure a constant frame rate with no droppings of the game play experience.

2.4.4. Working with Ogre

The integration of the LODStrips library within a game engine entails mainly one task: provide
support to access the data structure where the triangle strips are stored. This way, the rest of the
multiresolution tasks would be carried out by the main library, and we would only need an
intermediate library to access the triangle strips of the model in the most appropriate way. In the
LODStripsLibrary module, this data structure is called mStrips and contains the different triangle
strips that make up the polygonal mesh.

Now we need a method to initially fill this data structure with the original triangle strips. Then, the
library can apply the changes to the triangle strips. Once the data structure is filled, we can just use the

IST-2-004363 CONFIDENTIAL 19 / 40

Doc. Identifier:

GameTools-4-D4.3-03-1-1-WORKING MODULES
Working Modules for

Geometry

FOR GEOMETRY

Date: 15/05/2006

GoToLod() function and recover the new triangle strips from mStrips. Using those strips we can
then fill the game engine’s data structures.

The only problem we found when using the LodStripsLibrary in the Ogre game engine comes
from a limitation in the engine. This limitation forces us to use only one triangle strips per sub-mesh.
This way, we need to unify all the different triangle strips into a single one. We do that adding
degenerate triangles every time we update the level of detail. Due to this requirement we experimented
a slight decrease in the model performance. Still running time remained good on average.

In the demo we have developed for the GameTools project, we have included an initial version of this
intermediate class, called OgreLodStripsLibrary. In this library we have maintained almost all of
the original functions. We had to modify the creation of the data structure to read the strips from the
original Ogre mesh. We also had to change the level-of-detail update routine, where we added code
necessary to change the IndexBuffers where the strips are stored.

Figure 9: A LODStrips-based model at a 35% level of detail

The demo application allows loading any desired model and adjusting the level of detail according to
the distance to the viewer criterion. We have also added a color-coded material to reflect the level of
detail. It is possible to modify the name of the model and the distances taken into account for selecting
the detail. Apart from the option of moving around the scene, the demo also offers:

- keys Z and X for scaling the model,
- keys W and S for modifying the position of the model, and
- keys A and D for rotating the model.

IST-2-004363 CONFIDENTIAL 20 / 40

Doc. Identifier:

GameTools-4-D4.3-03-1-1-WORKING MODULES
Working Modules for

Geometry

FOR GEOMETRY

Date: 15/05/2006

Figure 10: A textured LODStrips model in Ogre at a 50% level of detail

IST-2-004363 CONFIDENTIAL 21 / 40

Doc. Identifier:

GameTools-4-D4.3-03-1-1-WORKING MODULES
Working Modules for

Geometry

FOR GEOMETRY

Date: 15/05/2006

2.5. LODTREES CONSTRUCTION MODULE

2.5.1. Description
LODTrees combines a continuous multiresolution model designed exclusively to represent leaves and
a continuous multiresolution model conceived to manage manifold smooth meshes: LODStrips, which
is used for the trunk and branches of the tree.
As in the LODStrips construction module, the constructor starts from a mesh representing a tree.
There is one restriction: the tree can be made of any number of sub-meshes, but the leaves must fit into
just one sub-mesh. This sub-mesh must also be exclusively devoted to storing the leaves. This is so
because the leaves and the trunk are rendered using different types of rendering primitives and this
makes them exclusive.
The overall process is similar to the one described in the LODStrips construction section with some
additions. First, the user must select manually the sub-mesh containing the leaf geometry. After that,
the construction process begins by simplifying the initial tree to a certain level of detail given by the
user. Finally, the simplification sequence generated during the simplification process is saved. Since
the tree has two differentiated parts represented by two different multiresolution models, the result is
two different simplification sequences. The simplification methods for both types of geometry have
already been explained in detail in Section 2.2.

A LODTree model is stored in three files: a .mesh object file containing the geometry for both the
trunk and branches and the leaves, a .lods file containing the multiresolution model for the trunk and
branches, and a .lodt file containing the simplification sequence for the leaves. The latter is a text file
with the following format.
Each line in a .lodt file represents a leaf collapse containing the four triangles being collapsed (two
triangles per leaf) and the indices for the resulting collapsed leaf.

2.5.2. Module Structure

The LODTree constructor is implemented in the LodTreeConstructor class. Like the LODStrips
construction module, this class encapsulates the processes needed to construct and save a LODTree
multiresolution model. This class inherits from the class Serializable which provides the
functionality needed to be saved to disk..

class LodTreeConstructor

LodTreeConstructor takes two class construction parameters: the original stripified mesh and a
MeshSimplificationSequence object representing the decimation sequence provided by the
geometry simplifier. Moreover, there are two optional parameters: one is used to discard any sub-mesh
from the construction process. This is useful to reuse the LodStripsConstruction module in the
LODTree construction process that will be described later. The other optional parameter is used to
provide feedback about the progress made so far by the construction process.

IST-2-004363 CONFIDENTIAL 22 / 40

Doc. Identifier:

GameTools-4-D4.3-03-1-1-WORKING MODULES
Working Modules for

Geometry

FOR GEOMETRY

Date: 15/05/2006

The methods of LodTreeConstructor are:
• LodTreeConstructor(): class constructor. Takes two parameters: the original stripified

mesh and a MeshSimplificationSequence object.

• Save(): does all the computations and outputs the results to the corresponding .mesh, .lods
and .lodt files as explained above. This method receives a Serializer object to redirect the
output to the corresponding place.

2.5.3. Using the Module

This process is very similar to the LODStrips construction process. The only difference is the
requirement of manually selecting the sub-mesh of the model that represents the leaves. After that, the
process is the same for the client application:

1. Load a mesh into a Geometry::Mesh object.
2. Generate a Geometry::MeshSimplificationSequence given by any of the

simplification methods provided by the GTGeometry library. This generates and saves the
simplification sequence for the trunk and branches of the tree.

3. Generate a Geometry::TreeSimplificationSequence provided by a
Geometry::TreeSimplifier object to save the simplification sequence for the leaves.

4. Create a Geometry::LodTreeConstructor object from the three previously created
objects, the mesh and the two simplification sequences.

5. Call the Save() method to construct the model and output the information to a Serializer
object (like a file). This method does the following:

o Write the .lods file with the simplification sequence.
o It modifies a copy of the original mesh to reflect the changes occurred in the

construction process.

IST-2-004363 CONFIDENTIAL 23 / 40

Doc. Identifier:

GameTools-4-D4.3-03-1-1-WORKING MODULES
Working Modules for

Geometry

FOR GEOMETRY

Date: 15/05/2006

Figure 11: A tree about to be converted into a LODTree object. The tree is

rendered without textures to see the real geometry

a.1 a.2 a.3 a.4

a.5

Figure 12: Results of simplification of the Sorbus aucuparia. Models with 24.839 leaves (a1), 18.629
(s2), 12.419 (a3) and 6.209 leaves (a4). a.5) shows a composition of the models according to the

distance.

IST-2-004363 CONFIDENTIAL 24 / 40

Doc. Identifier:

GameTools-4-D4.3-03-1-1-WORKING MODULES
Working Modules for

Geometry

FOR GEOMETRY

Date: 15/05/2006

a.1 a.2 a.3 a.4

a.5

Figure 13: Results of simplification of the Aesculus hippocastanum. Figure a.1 shows the original
model with 29.534 leaves. The simplified models are formed by a.2) 22.150 leaves, a.3) 14.767 leaves

and a.4) 7.383 leaves. Figure a.5) shows a composition of the models according to the distance.

IST-2-004363 CONFIDENTIAL 25 / 40

Doc. Identifier:

GameTools-4-D4.3-03-1-1-WORKING MODULES
Working Modules for

Geometry

FOR GEOMETRY

Date: 15/05/2006

2.6. LODTREES MODULE

2.6.1. Description
A multiresolution model must provide an efficient framework for interactive applications to manage
levels of detail that maintain acceptable frame rates. To guarantee that, models usually take advantage
of the fact that polygonal models do not need the same polygonal complexity when they move away
from the camera.
LODStrips models provide an efficient way of changing the level of detail of an object by rendering it
with an efficient rendering primitive: triangle strips. However, the leaves of plants can not be treated
in the same manner as smooth and continuous surfaces. This is due to the spurious nature of
vegetation.
To solve this, the LODTree multiresolution model was developed. It can process leaf data using a
special simplification method based in leaf collapses. This method can be configured to use
interchangeable metrics such as leaf proximity and visual impact.
Given a target level of detail, the LODTrees library can extract a list of leaves to be drawn as well as
connectivity information and the vertices needed for each leaf. Like LODStrips, only the list of indices
is recomputed, not its vertex data.
While the leaves are handled using this leaf-collapse-based multiresolution method, the trunk and the
branches are handled using the previously described LODStrips model.

To handle the required information, a multiresolution LODTree model must be represented using three
files: a .mesh file, a .lods file and a .lodt file. They store the geometric data and the simplification
sequences for the trunk and branches and the leaves, respectively.
Since using three different types of files to manage a single multiresolution tree can be tedious or
annoying, we are working on integrating all the required information into a single file called extended
.mesh file. This file is a file in standard Ogre mesh file format with additional special chunks of data
that represent the multiresolution data. Such a file format would be transparent for standard Ogre-
based loaders because the Ogre engine just ignores unknown chunk ids. In this case, software loading
a file would only load a ‘static’ tree file. On the other hand, a ‘prepared/modified’ Ogre-based loader
could load the entire simplification model from the extended file by reading the additional data chunks
labeled with the new chunk ids.
We are also planning on integrating bones to support skeletal animations of the tree which could be
useful to simulate wind effects or collisions between branches and leaves.

IST-2-004363 CONFIDENTIAL 26 / 40

Doc. Identifier:

GameTools-4-D4.3-03-1-1-WORKING MODULES
Working Modules for

Geometry

FOR GEOMETRY

Date: 15/05/2006

2.6.2. Module Structure
The base class that handles a LODTree model is LodTreeLibrary. This class builds a
multiresolution LODTree object from the parameters passed to the constructor.

Constructor
The class constructor takes as parameters the files needed to load the simplification sequences for the
trunk and branches and the leaves. It also takes a Geometry::Mesh object to handle the geometry and
an identifier to select the sub-mesh that represents the leaves.

Methods for Managing LODs
The following methods are used to specify the levels of detail of the two parts of the model: the trunk
and branches and the leaves.

• GoToTrunkLod(): Sets the trunk and branch target vertex count to newlod.
• GoToFoliageLod(): Sets the foliage target vertex count to newlod.

Methods to Retrieve LOD Data
These methods are useful to get information about the current LOD state of an object.

• MinTrunkLod(): Returns the lowest possible LOD for the trunk and branches.
• MaxTrunkLod(): Returns the highest possible LOD for the trunk and branches.
• MinFoliageLod(): Returns the lowest possible LOD for the foliage.
• MaxFoliageLod(): Returns the highest possible LOD for the foliage.

Methods to Retrieve Geometry Data
These methods are used to retrieve vertex data from the multiresolution model.

• CurrentLOD_Trunk_StripCount():Returns the active strip count for the current LOD of
the trunk and branches.

• CurrentLOD_Trunk_IndexCountByStrip(): Returns the number of active indices for a
given triangle strip of the trunk and branches.

• Get_Foliage_MaxIndexCount(): Returns the maximum number of active indices of the
foliage.

• CurrentLOD_Foliage_IndexCount(): Returns the current number of active indices of
the foliage.

• CurrentLOD_Foliage_Indices(): Returns the active indices of the foliage.

IST-2-004363 CONFIDENTIAL 27 / 40

Doc. Identifier:

GameTools-4-D4.3-03-1-1-WORKING MODULES
Working Modules for

Geometry

FOR GEOMETRY

Date: 15/05/2006

2.6.3. Using the Module
The usage of the LodTreeLibrary by a client application is very similar to the usage of the
LodStripsLibrary. The client needs to create an instance object of the LodTreeLibrary class,
which is the class that manages all the data and multiresolution processes, including the foliage and
the trunk and branches. Then, simply by calling the GoToTrunkLod() and GoToFoliageLod()
methods, the library updates the current state of each part of the model (trunk and branches, and
foliage) and adapts it to the requested level of detail.
Finally, to render the state of the actual multiresolution model, the application can query these data
from the LodStripsLibrary class using the appropriate methods explained above.

As described in the LODStrips module section, this may not be the most efficient way to do it. So we
use the same interface described for the LODStrips module. The interface has the following features:

- It avoids duplicity of the data: the data is kept by the client application; however the
LodStripsLibrary has the ability to change that data.

- It removes dumping times: since there are not duplicates of the data, it does not need to be
copied anywhere.

2.6.3.1. LODTree manager

As argued in the LODStrips section, a LODManager is needed for an entire forest populated with
LODTrees to perform well, with no droppings of the game play. The same approach could be also
used with the LODTrees. However, the spurious nature of the trees (the leaves) could inspire some
extensions to the latter approach. A valid extension would assign a priority not only based on the
distance of the model to the camera but also taking into account the percentage of the model not
occluded by other models. Moreover, this would help to assign not only a priority of a LOD petition
but also to perturb the LOD factor so that the visibility of the model is taken into account.

2.6.4. An Example in Ogre
The following images show examples of integration of the LODTree library with a client application,
in this case the Ogre engine. It consists of a LOD forest populated with some trees that change their
LODs independently.

IST-2-004363 CONFIDENTIAL 28 / 40

Doc. Identifier:

GameTools-4-D4.3-03-1-1-WORKING MODULES
Working Modules for

Geometry

FOR GEOMETRY

Date: 15/05/2006

Figure 14: An LOD forest. The further is the tree, the lower the level of detail

Figure 15: Our LOD forest seen from far away

Figure 16: Some examples of another type of trees using the LODTree library

IST-2-004363 CONFIDENTIAL 29 / 40

Doc. Identifier:

GameTools-4-D4.3-03-1-1-
Working Modules for

Geometry

WORKING MODULES
FOR GEOMETRY

Date: 15/05/2006

IST-2-004363 CONFIDENTIAL 30 / 40

Figure 17: A complete LOD scene: LODStrips models (ninjas)

in front of a LODTree-based forest

Doc. Identifier:

GameTools-4-D4.3-03-1-1-
Working Modules for

Geometry

WORKING MODULES
FOR GEOMETRY

Date: 15/05/2006

IST-2-004363 CONFIDENTIAL 31 / 40

2.7. GEOTOOL APPLICATION
This is a standalone application used both as a usage demonstrator of the GameTools Geometry
Library and a useful tool to quickly generate multiresolution models.

2.7.1. Description
GeoTool is a multiplatform, portable and engine independent tool useful to manipulate meshes and
build multiresolution models. It also allows more basic operations such as mesh simplification and
stripification. The application uses the FLTK toolkit to provide a portable graphical user interface, and
the OpenGL real-time rendering API to perform every rendering call.

Figure 18: A screenshot of the GeoTool application

The application uses the Ogre mesh file format to load and store geometry data. This file format
supports mesh models composed by any number of sub-meshes. Each sub-mesh can be represented by
any rendering primitive (a triangle list or a triangle strip). This is useful to store trees with the
LODTree model, because the trunk must be represented by triangle strips and the leaves by triangle
lists. Moreover, the Ogre file format supports bones and skeletal animations. In future versions the
application will also support them as well as texture coordinates.

Doc. Identifier:

GameTools-4-D4.3-03-1-1-WORKING MODULES
Working Modules for

Geometry

FOR GEOMETRY

Date: 15/05/2006

The application also needs a place to store the simplification sequence needed to build and visualize
dels. These data is stored in separate files, associated with an Ogre the implemented multiresolution mo

mesh file, together with the multiresolution data. LODStrips use a single sequence, and LODTree uses
two sequences: one for the trunk and the other for the leaves. This will be explained in more detail in
the LODTree construction section.

GeoTool allows the user to perform three different types of operations:

- Visual operations: these operations do not affect the mesh itself but the way it is rendered. The
rendering primitive can be changed (wire mode, solid mode, triangle strips) as well as the
lighting surface parameters (flat and smooth). The rendering viewpoint can also be changed in
order to focus on the desired region of the model. Moreover, the application can load a
previously computed LODStrips or LODTree model and render it.

- Basic operations: basic operations involve mesh stripification and simplification. These are
catalogued as basic operations because they are done in a single step and return a transformed
standalone mesh. Two different simplification approaches are available (as introduced in the
following section): geometry-driven simplification and viewpoint-driven simplification. They
will be explained in more detail in section 2.3.

- Complex operations: these operations are LODStrip construction and LODTree construction.
Internally, these complex operations perform some basic operations such as stripification,
simplification and vertex reordering. They are much more time consuming than basic
operations. They take a mesh as input, construct a new mesh and an associated multiresolution
sequence, and save the result to disk. We explain this process in more detail in the following
sections.

Because the use of multiple files representing a single multiresolution model can be confusing, a new
approach has been developed: the Ogre file format is a binary format composed of chunks of data.
Each chunk contains info depending of its chunk type, so a new chunk type containing the
multiresolution data (simplification sequences) was included in the Ogre mesh file format. This is a
very transparent approach, because if a standard Ogre-based application tries to load an extended mesh
file, then it will ignore the extended chunk. However, an Ogre-based application which makes use of
the GTGeometry modules could successfully load the improved chunk in order to load the
multiresolution data.

Summarizing, GeoTool integrates all the Geometry WorkPackages providing:

• ‘HowTo’ sample code for using all the Geometry WP modules.
• A handy application that integrates multiresolution

model constructi

mesh simplification and stripification, and
on and rendering in a single compact tool.

IST-2-004363 CONFIDENTIAL 32 / 40

Doc. Identifier:

GameTools-4-D4.3-03-1-1-WORKING MODULES
Working Modules for

Geometry

FOR GEOMETRY

Date: 15/05/2006

Figure 19: Getting mesh information from the GeoTool

2.7.2. User Interface
The user interface of GeoTool has been designed to be easy to use. The menu bar across the top of
Figure 19 manages all the operations that can be performed on a mesh.
The main window in the center shows the current render state, which can be changed using the Render

enu. The panel on the right shows a more detailed view of the current selected action. For example,
nformation and options

abo th
The a
as i e

m
when the simplify option becomes selected, the panel on the right shows more i

ut e selected action.
 st tus bar on the bottom of the application shows some information about the loaded model, such
ts v rtex, strip and triangle counts.

IST-2-004363 CONFIDENTIAL 33 / 40

Doc. Identifier:

GameTools-4-D4.3-03-1-1-WORKING MODULES
Working Modules for

Geometry

FOR GEOMETRY

Date: 15/05/2006

2.7.2.1. GeoTool Menu System
This section will explain all menu options and panels, and how they are organized.

The File Menu

- Open: Shows a dialog to open an Ogre mesh file and load it into the application.
- Save (as): Saves the current mesh into an Ogre mesh file.
- Quit: Terminates the application.

The Edit Menu

- Undo: Gets the current mesh back to its previous state.
- Fit: Modifies the current view to fit the loaded mesh inside the screen.
- Rotate/Pan: Selects the action to be taken when the user drags the mouse pointer.
- Mesh info: Configures the right panel to show mesh information, such as its

vertex and triangle counts, the rendering primitive type and its sub-mesh count.
- Select leaves: Configures the right panel to show a sub-mesh selector. This

allows the user to select the sub-mesh that represents the leaves of a tree.

The Render Menu

- Wire / Solid: Selects the geometry rendering mode: wireframe or solid.
- Flat / Smooth: Selects the surface shading mode: flat or smooth (Gouraud).

IST-2-004363 CONFIDENTIAL 34 / 40

Doc. Identifier:

GameTools-4-D4.3-03-1-1-WORKING MODULES
Working Modules for

Geometry

FOR GEOMETRY

Date: 15/05/2006

The Stripification Menu

This menu has no popup menu associated. Instead, it immediately
opens the Stripification panel and begins the stripification process

nu:

(see figure on the left).
The progress bar will show the stripification status.

The Simplify Me

- Mesh simplification: Performs general geometric simp
these two methods:

lification using one of

s

• Geometry-based simplification
• Viewpoint-based simplification
The selection of the simplification method is done using the right panel shown in t
hown below under Simplification Panel.

he figure

- Leaves simplification: Shows the leaf simplification panel that allows leaf simplification.

he Simplification Panel:

This is the panel shown enu
is select lect the
simplification metric to be Geo e-based
(Viewpoint-based si
While geometry an the
image-based simp
simplified lification
algorithm.

lification
limits, which can be spec ge or a
number giving the target vertex count.

e progress

implification method.
However, it internally performs leaf-collapse simplification
instead of the edge-collapse simplification typically used for

eshes.

T

when the Mesh simplification m
ed. This panel allows the user to se

metry- or Imag
mplification).

-based simplification is much faster th
lification, the latter tends to produce better

meshes due to the nature of the simp

The panel also allows the user to select the simp
ified as either a percenta

During the simplification process, th
simplification status at any given tim

bar shows the
e.

This panel also works for the leaf s

m

IST-2-004363 CONFIDENTIAL 35 / 40

Doc. Identifier:

GameTools-4-D4.3-03-1-1-WORKING MODULES
Working Modules for

Geometry

FOR GEOMETRY

Date: 15/05/2006

The LODStrips Menu:
shows the LODStrips construction panel. - Generate:

- Visualize: loads a LODStrips model from disk. To do so it allows the user to search
Then it shows the LOD control panel. for the .mesh and .lods files.

El LODTree Menu:

- Generate: shows the LODTree construction panel.
- Visualize: loads a LODTree model from disk. To do so it allows the user to search for

.lodt files. Then it shows the LOD control panel.

LOD

figures show the multiresolution

 render the current model.

LODStrips models. The figure on the right shows the
r LODTree models.

e panel of the right has two slider controls because
the foliage and the trunk meshes can have different

il

2.7.3. Using the Application
This section describes the general proc
simplifying a mesh, and complex operati Tree model.

2.7.3.1. Basic Application Usage
The first thing we generally do is load a
the File menu. This action will bring up
we want to load. This dialog will search

the .mesh, .lods and

Control Panels:

These two
visualization panels. They allow the user to change the
level of detail used to
The figure on the left shows the panel used for

panel used fo
Th

. levels of deta

ess needed to perform operations such as loading a mesh,
ons like building and visualizing a LOD

 mesh from disk. This is done by selecting the Open option in
a file chooser dialog window where we can browse for the file
for files with .mesh extension, i.e. Ogre mesh files.

IST-2-004363 CONFIDENTIAL 36 / 40

Doc. Identifier:

GameTools-4-D4.3-03-1-1-WORKING MODULES
Working Modules for

Geometry

FOR GEOMETRY

Date: 15/05/2006

Figure 20: The ‘open mesh’ file browser

Once the mesh is loaded into the application we can apply some operations to
point of view, retrieve mesh information or change mesh rendering options us
explained above.

.7.3.2. Elemental Operations

sh as input and transform it to another output mesh so that this

ification.
y apply these operations to a mesh and use the mesh for other

e has the
following appearance compared to the original one:

 it. We can change the
ing the menu system

2

Elemental operations take a me
resulting mesh can be used as input to another elemental operation.
Two elemental operations are supported by GeoTool: mesh simplification and mesh strip
Geotool provides a handy way to easil
operations.
To simplify the mesh we select the Simplify option of the menu bar and select Simplify mesh. This will
bring up the simplification panel as shown in the previous section. There, we can introduce the
simplification factor. For example, the cow model simplified to 20% of its original siz

IST-2-004363 CONFIDENTIAL 37 / 40

Doc. Identifier:

GameTools-4-D4.3-03-1-1-WORKING MODULES
Working Modules for

Geometry

FOR GEOMETRY

Date: 15/05/2006

Figure 21: The cow model simplified with GeoTool

The stripification process is do t any further.

ons are more complex than basic ones because they involve several processes.
owever, GeoTool encapsulates them into a simple interface to make them easy to use. There are two

ultiresolution model construction: LODStrips model construction and

ions. The contents of each file will be described in detail in the LODStrips construction

tructor needs to simplify the mesh to a given level
f detail (which will be the minimum LOD) and save the simplification steps needed to take the
riginal mesh to its simplified form. This process is independent of the simplification method as well
s the metric used.
ow the application allows the user to select the simplification options that better suit his/her needs.
igure 22 shows the LODStrips control panel.
hen the user clicks on the Process button, the simplification step is performed and the resulting

simplified mesh shown on the screen.

ne in a similar way, so we do not explain i

2.7.3.3. Advanced Operations: Multiresolution Model Construction
Advanced operati
H
advanced operations related to m
LODTree model construction.

 LODStrips Model Construction
As will be explained later, a LODStrips model takes as input a single mesh and transforms it to
another mesh associated to a multiresolution sequence file. This file is used to perform the level of
detail operat
section.
Once a mesh has been opened in our application we build an LODStrips model as follows. Select the
Generate option under the LODStrips menu. This will bring up a panel similar to the simplification
panel. This is necessary because the LODStrips cons
o
o
a
N
F
W

IST-2-004363 CONFIDENTIAL 38 / 40

Doc. Identifier:

GameTools-4-D4.3-03-1-1-WORKING MODULES
Working Modules for

Geometry

FOR GEOMETRY

Date: 15/05/2006

The construction process stops here to give the user the

o see the resulting mesh at the minimum LOD of
lution model. Thus, if the simplification options

are wrong, the user can undo the simplification step (undo
 the Edit menu), and perform the simplification

Once the user agrees with the resulting simplified mesh, the
final step can be started by clicking on the Build button. First,
the application asks the user for the filename to be used to save
the results. These results are stored in two new files: one

e stripified original mesh and the other containing
ation sequence. These have extensions .mesh and

 respectively, with the file name that the user entered in the
og box.
nstruction process is quite slow at the time this

opportunity t
the multireso

option under
step again.

containing th
the simplific
.lods
previous dial
The LOD co
report is being written. So we are looking for optimizations to

igure 22: LODStrips generation panel

te a LODTree model without having the leaves selected, the program
will ask the user to perform such task. This is done using the Select leaves option under the Edit menu.

hen the option is selected, a control panel opens allowing the user to choose any sub-mesh of the
tree as the leaf sub-mesh. The rest of sub-meshes will be assumed to be part of the trunk.

nd it requires the same options as a LODStrips model to be generated. The leaves are

 more detail.

workaround this issue.

F

LODTree Model Construction

The LODTree model construction process is similar to the LODStrips construction process. However,
an extra step is required from the user: the selection of the leaves of the tree. This is a required step. In
fact, if the user tries to genera

W

Once the leaves are selected, the user can start the generation process by selecting the Generate option
under the LodTrees menu. A generation panel identical to the LodStrips one opens, showing the same
options like the LODStrips panel. This is because the trunk of the tree is encoded as a LODStrips
object, a
simplified using a special leaf-collapse method that requires no user input (except for the minimum
leaf count). So this is the only option for leaf simplification in the panel.
The process to generate the LODTree consists of the same steps described for LODStrips models.
First, the entire tree is simplified to the lowest possible level of detail. Then, if the user agrees with the
result, the process continues and generates the LODTree model, saving it to disk.
A LODTree model in disk is stored in 3 different files: a .mesh file containing the geometry, a .lods
file representing the simplification sequence for the trunk, and a .lodt file containing the simplification
sequence for the leaves. Later we explain this in

IST-2-004363 CONFIDENTIAL 39 / 40

Doc. Identifier:

GameTools-4-D4.3-03-1-1-WORKING MODULES
Working Modules for

Geometry

FOR GEOMETRY

Date: 15/05/2006

is
Once a multiresolution model is cons
option under the LODStrips and LODT
the files of the model: a .mesh, a .lods
for a LODStrips model). That will bring up panels for manipulating the level of detail of the model. In
the case of a LODTree model, the pan

ualization
tructed and saved to disk, we can display it using the visualize
rees menus. The application will ask the user to select and load

 and a .lodt file for a LODTree model, or a .mesh and a .lods file

2.7.3.4. Multiresolution Model V

el looks like the one in the following figure.

Figure 23: LODTree visualization panel in GeoTool

The panel contains two sliders: the left one allows changing the LOD of the trunk and the right one
allows changing the LOD of the leaves. The LODStrips LOD control panel is similar to this one but
has only one slider to manipulate de LOD of the mesh.

IST-2-004363 CONFIDENTIAL 40 / 40

	INTRODUCTION
	OBJECTIVES OF THIS DOCUMENT
	DOCUMENT AMENDMENT PROCEDURE
	TERMINOLOGY

	DESCRIPTION OF THE MODULES
	STRIPIFICATION MODULE
	Description
	Module Structure

	SIMPLIFICATION MODULE
	Description
	Geometric Simplification of Meshes
	Mutual Information-Driven Simplification
	Geometric Simplification of Foliage

	Module Structure
	Using the Module

	LODSTRIPS CONSTRUCTION MODULE
	Description
	Module Structure
	Using the module

	LODSTRIPS MODULE
	Module Description
	Module Structure
	Using the Module
	LODStrips manager

	Working with Ogre

	LODTREES CONSTRUCTION MODULE
	Description
	Module Structure
	Using the Module

	LODTREES MODULE
	Description
	Module Structure
	Using the Module
	LODTree manager

	An Example in Ogre

	GEOTOOL APPLICATION
	Description
	User Interface
	GeoTool Menu System

	Using the Application
	Basic Application Usage
	Elemental Operations
	Advanced Operations: Multiresolution Model Construction
	LODStrips Model Construction
	LODTree Model Construction
	Multiresolution Model Visualization

