

A D V A N C E D T O O L S F O R D E V E L O P I N G
H I G H L Y R E A L I S T I C C O M P U T E R G A M E S

T E S T R E P O R T O N R E L E A S E P L U G -
I N S P R O T O T Y P E S

 Document
identifier:

GameTools-6-D6.2.1-02-0-1-
Project integration,
evaluation and test

 Date: (use “update field” Word
function, right mouse button) 30/11/2006

Work package:

WP06: Project Integration,
evaluation and test
(e.g.: WP6: Integration, Test)

 Partner(s): All

 Leading Partner: INFOWERK

 Document status: DRAFT

 Deliverable
identifier: D6.2.1

Abstract: The test report on release plug-ins prototypes covers the matching of the
requirements and the functionality, the performance of the plug-ins and the
assessment of the increase in realism of the resulting 3D – Applications.
Furthermore it gives some insight of the ease of integration of each work package.

IST-2-004363 RE 1 / 36

Doc. Identifier:
TGameTools-6-D6.2.1-02-0-

1-Project integration,
evaluation and testTTT

TEST REPORT ON RELEASE PLUG-INS
PROTOTYPES

Date: 30/11/2006

IST-2-004363 RE 2 / 36

Delivery Slip

 Name Partner Date Signature

From Martin Kolb Infowerk

Reviewed by Moderator and
reviewers

Approved by

Document Log

Issu
e

Date Comment Author

0-0 First draft Martin Kolb

0-1 GEDAS second draft David Gutiérrez

0-2 Third draft including results of
DLE Martin Kolb

0-3 Fourth draft including integration
work of GEDAS Martin Kolb

Document Change Record

Issu
e

Item Reason for Change

Files

Software Products User files / URL

Word
gametools-6-d6.2.1-02-2-0-project integration,
evaluation and test.doc
 (use “update field” Word function)

Doc. Identifier:
TGameTools-6-D6.2.1-02-0-

1-Project integration,
evaluation and testTTT

TEST REPORT ON RELEASE PLUG-INS
PROTOTYPES

Date: 30/11/2006

IST-2-004363 RE 3 / 36

CONTENT

DELIVERY SLIP... 2

DOCUMENT LOG .. 2

DOCUMENT CHANGE RECORD.. 2

FILES ... 2

1. INTRODUCTION .. 4
1.1. OBJECTIVES OF THIS DOCUMENT.. 4
1.2. APPLICATION AREA.. 4
1.3. TERMINOLOGY .. 5

2. EXECUTIVE SUMMARY:... 6

3. WP3: VISIBILITY ... 7
3.1. MATCHING BETWEEN REQUIREMENTS AND FUNCTIONALITY.. 7
3.2. PERFORMANCE ... 8
3.3. INCREASE OF REALISM... 9
3.4. EASE OF INTEGRATION... 10

4. WP4: GEOMETRY ... 11
4.1. MATCHING BETWEEN REQUIREMENTS AND FUNCTIONALITY.. 11
4.2. PERFORMANCE ... 11
4.3. INCREASE OF REALISM... 12
4.4. EASE OF INTEGRATION/USE .. 13

GeoTool ... 13
5. WP5: ILLUMINATION.. 15

5.1. MATCHING BETWEEN REQUIREMENTS AND FUNCTIONALITY.. 15
5.2. PERFORMANCE ... 16
5.3. INCREASE OF REALISM... 20
5.4. EASE OF INTEGRATION... 32

Doc. Identifier:
TGameTools-6-D6.2.1-02-0-

1-Project integration,
evaluation and testTTT

TEST REPORT ON RELEASE PLUG-INS
PROTOTYPES

Date: 30/11/2006

IST-2-004363 RE 4 / 36

1. INTRODUCTION

1.1. OBJECTIVES OF THIS DOCUMENT
This document is the second deliverable of the “Project integration, evaluation
and test” work package. Its aims are to summarize the results in requirement
fulfilling, performance, increase of realism and ease of integration. These results
were originated by each company partner in their own testing conditions, which
will be listed in particular.

1.2. APPLICATION AREA
The testing environment at InfoWerk GmbH has the following specifications:
Pentium D 3.2 GHz
GeForce 7900 GS with 256MB

The testing environment at GEDAS Iberia (a member T-Systems Iberia) has the
following specification
AMD X2 4800, 2 GB RAM
GeForce 7900GTX with 512Mb

The testing environment at DLE has the following specifications:
P4 3GHz, 2GB RAM
GeForce 7800GT 256Mb

Doc. Identifier:
TGameTools-6-D6.2.1-02-0-

1-Project integration,
evaluation and testTTT

TEST REPORT ON RELEASE PLUG-INS
PROTOTYPES

Date: 30/11/2006

IST-2-004363 RE 5 / 36

1.3. TERMINOLOGY
Glossary
WP Work package
OGRE Open Graphics Rendering Engine
DLL Dynamic Link Library
SVN Subversion, a version controlling system
HLSL High level shading language, a programming language to write

certain programs for the shader unit on a graphics card
GLSL OpenGL shading language, the open source pendant to HLSL
CHC Coherent hierarchical culling
HPS Hierarchical particle systems
FPS Frames per second
LOD Level of detail
NextGen Next generation, a catchphrase meaning hardware developed from

2006: Playstation 3, Xbox 360, PC graphics cards with at least
shader model 3 and other appropriate hardware

PVS Potentially visible sets
DLE Digital Legends Entertainment

Doc. Identifier:
TGameTools-6-D6.2.1-02-0-

1-Project integration,
evaluation and testTTT

TEST REPORT ON RELEASE PLUG-INS
PROTOTYPES

Date: 30/11/2006

IST-2-004363 RE 6 / 36

2. EXECUTIVE SUMMARY:
All work packages work quite well on their own concerning performance and/or
increase of realism. Therefore they can be very useful for the game developing
companies. At the other hand it is rather difficult to get the work packages written
for the same graphics API to run together. Referring to many conversations with
the work packages members this is not developed yet and is an important task for
the team, since it is obvious that the game developing companies surely would
use all the frameworks together. This requirement is hard recommended.
The next recommendation is connected to the unification of used languages.
In fact some of the packages are written using OpenGL and some of them are
written using Direct3D so is impossible to use all of them at once without translate
from one language to the other. GEDAS had to translate some effects to use them
inside its VRengine.

This table covers the application possibilities for each tested tool.

 Th
ird

 p
er

so
n

Fi
rs

t p
er

so
n

D
riv

in
g

S
po

rts

Fl
ig

ht
 s

im
ul

at
or

s

Fi
gh

tin
g

CHC
LodStrips
Depth of Field
Environment maps
Glow
Tone mapping
Reflection
Refraction
Caustics
Precomputed light
paths

Spherical billboards
Hierarchical particle
systems

 Essential
 Useful
 Not very useful
 Useless

Doc. Identifier:
TGameTools-6-D6.2.1-02-0-

1-Project integration,
evaluation and testTTT

TEST REPORT ON RELEASE PLUG-INS
PROTOTYPES

Date: 30/11/2006

IST-2-004363 RE 7 / 36

3. WP3: VISIBILITY

3.1. MATCHING BETWEEN REQUIREMENTS AND FUNCTIONALITY
Referring to the results created in Infowerk’s test environment given by the
DirectX™ tool PIX and the summary given by the OGRE the matching between
requirements and functionality is fulfilled.
The algorithm works properly and exposes its advantages in appropriate
environments. A suggestion would be a more flexible algorithm selection
mechanism reacting to the environment and the objects present in the view
frustum. However, the visibility work package was not working together with the
illumination package.
GEDAS has begun the integration of the offline visibility module into their engine.
They now export Alias/Wavefront .OBJ files from their editor, and use these files
with the stand alone application provided by Vienna to generate the Visibility
Cells and the PVS.
GEDAS has not had any problem integrating the offline visibility module with the
other modules for the moment. The offline visibility part is very engine
independent, so GEDAS doesn’t expect to have any problems in the future.

Due to the characteristics of DLE’s demonstrator (character based engine in
limited environment) an integration of the visibility work package would not bring
any benefit.

Doc. Identifier:
TGameTools-6-D6.2.1-02-0-

1-Project integration,
evaluation and testTTT

TEST REPORT ON RELEASE PLUG-INS
PROTOTYPES

Date: 30/11/2006

IST-2-004363 RE 8 / 36

3.2. PERFORMANCE
Below some test results are mentioned:

Crosshavem

0

100.000

200.000

300.000

400.000

500.000

600.000

700.000

800.000

900.000

1.000.000

1 189 377 565 753 941 1129 1317 1505 1693 1881 2069

Frame

FP
S

Crosshaven with CHC
Crosshaven without CHC

PortoColom

0

100.000

200.000

300.000

400.000

500.000

600.000

700.000

800.000

900.000

1 116 231 346 461 576 691 806 921 1036 1151 1266 1381 1496 1611 1726

Frame

FP
S

PortoColom with CHC
PortoColom without CHC

Doc. Identifier:
TGameTools-6-D6.2.1-02-0-

1-Project integration,
evaluation and testTTT

TEST REPORT ON RELEASE PLUG-INS
PROTOTYPES

Date: 30/11/2006

IST-2-004363 RE 9 / 36

Szenario3

0

200.000

400.000

600.000

800.000

1.000.000

1.200.000

1 310 619 928 1237 1546 1855 2164 2473 2782 3091 3400 3709 4018 4327 4636

Frame

FP
S

Szenario3 with CHC
Szenario3 without CHC

Regarding the deliverable D9.1.1 the test results can be quantified in the
following way:
The view-space partitioning module remains untested. However, GEDAS has
started to integrate the module in their engine.
The same applies to the PVS computation module.
In the test application of the WP team which provided a sufficient amount of
occlusion the frame rate increased by over 50% versus VFC (view frustum
culling). In Infowerk’s scenes certain framerate drops could be handled more
smoothly.
Since none of the testing companies are in hold of a CAVE system there cannot
be made a statement about test results.

3.3. INCREASE OF REALISM
Since this WP is fully performance-related the increase of realism is out of the
business of this WP. This technique will also help, as any other advanced culling
techniques, to use bigger object count scenes. With this technique we will be
able to have more number of objects or polygons, so the realism of the scene will
increase.

Doc. Identifier:
TGameTools-6-D6.2.1-02-0-

1-Project integration,
evaluation and testTTT

TEST REPORT ON RELEASE PLUG-INS
PROTOTYPES

Date: 30/11/2006

IST-2-004363 RE 10 / 36

3.4. EASE OF INTEGRATION
Integration of WP3 is quite easy because of the very open SceneManager
system the OGRE provides. After compiling the OGRE solution file with the pre-
processor flag GTP_VISIBILITY_MODIFIED_OGRE and the changes made in
the OGRE rendering system you can go on with integration of the WP in your
project. You just have to register your SceneManager plugin per DLL and call
Ogre::Root::createSceneManager (const string & TypeName) to plug the
OcclusionCullingSceneManager into the OGRE rendering system. Configuring
the compilation by setting a pre-processor directive is a little bit inconvenient
since you have to recompile every other plug-in concerning vital parts of OGRE
since the change in object instance size would result in read-write exceptions in
run-time.

Doc. Identifier:
TGameTools-6-D6.2.1-02-0-

1-Project integration,
evaluation and testTTT

TEST REPORT ON RELEASE PLUG-INS
PROTOTYPES

Date: 30/11/2006

IST-2-004363 RE 11 / 36

4. WP4: GEOMETRY

4.1. MATCHING BETWEEN REQUIREMENTS AND FUNCTIONALITY
Right now GEDAS is waiting for some final adjustments from UJI to the formula
used to calculate which the vertices that have to be simplified are. In the
beginning of the project the focus of this simplification was on vertex position, but
right now the main focus is on texture coordinates and normals. So in the
beginning the simplified objects had a very good simplified geometry but texture
coordinates and normals were a bit deformed. Right now textures and normals
are practically the same from the original model, but sometimes produce broken
objects when the simplification is done. UJI right now is trying to merge the good
things from the two formulas. GEDAS is waiting to this final adjustment to
generate some benchmarks.
GEDAS has not had any problem integrating this work package with the other
ones. As it is only geometry related it works perfectly well with all the other
modules.

4.2. PERFORMANCE
Unfortunately we here at InfoWerk weren’t able to test the performance in out
testing environments, since our meshes were inappropriate to simplify with the
GeoTool. The example application worked really well, especially in the LodStrips
demo the framerate never dropped below 150 fps.
GEDAS has just recently integrated this work package into their engine. They
have no benchmark yet because there have been some little problems with the
integration and it has worked just mere weeks ago of the writing of this
document. With only the first tests, we can say that for the moment it seems that
the raw number of polygons from our scenes will be incremented in more or less
60% without losing any performance.

When DLE analyzed the LodStrips, we observed an excellent frame rate higher
than 200 FPS in all tested cases. If DLE compares this performance with their
regular engine, they would expect it to bring an increment of the polygon count in
an average of 50% to 60%.

Doc. Identifier:
TGameTools-6-D6.2.1-02-0-

1-Project integration,
evaluation and testTTT

TEST REPORT ON RELEASE PLUG-INS
PROTOTYPES

Date: 30/11/2006

IST-2-004363 RE 12 / 36

Resolution Worst FPS Best FPS
1280x1024 175 325
1024x768 214 408
800x600 238 400

These results satisfy the indicators defined in the deliverable D9.1.1 concerning
the stripification module and management of about 75% of the whole mesh
vertices.
The resulting mesh size is nothing more than 3 times the original model file size,
illustrated in the following table:

Model Original file size File size after stripification
Athene.mesh 766kB 307kB
Cow.mesh 159kB 181kB
Bunny.mesh 1289kB 2196kB

4.3. INCREASE OF REALISM
Despite this tool is oriented to obtain a higher performance; its use also allows
increment the mesh complexity and therefore the level of detail/realism.
Moreover, in the demo DLE hasn’t recognized popping artefacts. It would be
interesting to test the tool with meshes with normal maps, to see if the
illumination remains equal when changing the LOD level.
The major difference from this technique to ordinary LOD techniques is, that the
popping effect with this LOD technique is not as a recognizable as in normal
techniques, so the use of LODs will be practically invisible for the user in GEDAS’
opinion.
This technique will also help, as any other LOD technique, to use bigger scenes
regarding polygon count. With this technique we will be able to have very big
geometric representations of the models when we are near these objects, so the
realism of the scene will be greater.

Doc. Identifier:
TGameTools-6-D6.2.1-02-0-

1-Project integration,
evaluation and testTTT

TEST REPORT ON RELEASE PLUG-INS
PROTOTYPES

Date: 30/11/2006

IST-2-004363 RE 13 / 36

4.4. EASE OF INTEGRATION/USE

GeoTool
The GeoTool is used to generate the triangle strips called LOD technique and to
save the thereby generated meshes. Although the GeoTool seemed to work with
most of the configurations tested, it sometimes crashed without any obvious
reason. Our meshes at InfoWerk were not usable at all, since it is a hard
requirement to use manifold meshes only to generate the triangle strips.
However, it worked quite smooth with the models deployed by the work package
team.
GEDAS has not used the GeoTool package. They have integrated the mesh
reduction generation directly into their own editor. It was very easy to integrate
into their engine since it was more a work of translation. All the work was about
communicating correctly with the library. It was necessary to translate the data to
the library structs and translate back the results of the library to the editor
classes.

There were many attempts to locate why InfoWerk’s meshes were not suitable
for triangle strips generation and where the concerning edges are. The test
uncovered that most of the meshes were not suitable, however the models which
the players drive in were suitable for the LOD generation tool but then not
suitable for the demonstrator. The LOD model would not make sense for the
player ships since distance to the mesh hardly changes.
Some models which didn’t work were sent to the WP team so they can
investigate what is wrong in particular with our meshes. In the moment the WP
team is working on this investigation.

The LodStrips integration in DLE’s engine is complex. At first, it needs porting the
GeoTool to their data pipeline. This involves translate their mesh format to
another format supported by the tool, and translate again to their proprietary
format.

GEDAS is using their own proprietary 3D engine to integrate the GTP libraries.
The following paragraph illustrates how the procedure of integrating was done.

For the integration of the library GEDAS included the library ‘GTGeometry.lib’.
GEDAS uses Visual Studio .NET, and they had to compile the library changing
the option under Code Generation -> Runtime Library to MD because they use
this option in their project, and if the option is different in the project where you
generate the library you can’t compile with it.

Doc. Identifier:
TGameTools-6-D6.2.1-02-0-

1-Project integration,
evaluation and testTTT

TEST REPORT ON RELEASE PLUG-INS
PROTOTYPES

Date: 30/11/2006

IST-2-004363 RE 14 / 36

GEDAS has two options for the simplification, you can generate one LOD with
the simplification you want, or you can generate a LOD chain with objects with
30%, 50% and 75% of the geometry of the original model.
In the first step of the simplification model GEDAS has to translate to the data
types of the library, so they have to convert all the data they have. They create
Geometry::Mesh, and fill Geometry::SubMesh with all the information. GEDAS
uses the type Geometry::GEO_TRIANGLE_LIST for the geometry, they don’t use
triangle strips. Once they filled the Geometry::VertexBuffer, they create the
simplifier class Geometry::GeometryBasedSimplifier with the geometry they just
filled and call the Simplify() function with the simplification percentage.
When the function ends, they call the GetSimplificationSequence of the
Geometry::GeometryBasedSimplifier class, and obtain
Geometry::MeshSimplificationSequence. Here we have all the steps needed to
achieve the simplification GEDAS desired for their geometry. This class has a
Geometry::MeshSimplificationSequence::Step member of the type std::vector.
GEDAS iterates through all the elements of the vector and for each of these
steps they search for the eliminated indices, and change these indices with the
new one got from the actual step. Once finished this process they search for
degenerated triangles, triangles with two or more indices with the same value,
and eliminate all these triangles.
All this process, search for the indices inside the array, will be changed once the
face indices of the struct (mFaces member) begin to work.
Once the LODs are generated GEDAS adds this geometry to their Object
geometry class. Their geometry and render class decides which geometry to
draw taking into account the size it will have on screen.

Doc. Identifier:
TGameTools-6-D6.2.1-02-0-

1-Project integration,
evaluation and testTTT

TEST REPORT ON RELEASE PLUG-INS
PROTOTYPES

Date: 30/11/2006

IST-2-004363 RE 15 / 36

5. WP5: ILLUMINATION

5.1. MATCHING BETWEEN REQUIREMENTS AND FUNCTIONALITY
Matching between requirements and functionality fulfilled many expectations. An
important improvement for the work of the WP team is to put the frameworks to
work together.

GEDAS has translated the Glow and Tone mapping effect to OpenGL.
GEDAS will not be able to use this environment mapping technique into their
engine, because the effect needs to use the alpha channel of the environment
mapping for the depth calculation, and GEDAS use this channel for other
purposes (alpha blending and more). Before discarding the effect because this
alpha channel issue, they disabled transparency, and translated the effect to
OpenGL and tried the effect inside their engine. The results were good, but not
good enough for the moment to use it above other cubemap techniques. The
framerate drop is too important right now (it will probably change with DX10).

Obscurances
This pre-processing tool developed by the UdG, have been very useful in the
ambient illumination pass for DLE, adding a important visual improvement in the
characters.

Environment Map
This tool allows to illuminate an object using its environment information, with
results seemed to the use of global illumination. Moreover, both diffuse and
specular components are computed with this tool. Due to the performance cost,
actually the tool is basically applicable to one or two objects. This allows use of
the tool in games with third person cameras or fighting games.
It would desirable for DLE to have the shaders as optimized as possible, to do a
best performance study of the demo. For example, in the most complex shader,
DLE reduced the complexity from 1010 assembler instructions to 523.

Glow/Tone mapping
As Depth of Field tool, this is a needed effect in the NextGen games, useful for all
type of games.

Doc. Identifier:
TGameTools-6-D6.2.1-02-0-

1-Project integration,
evaluation and testTTT

TEST REPORT ON RELEASE PLUG-INS
PROTOTYPES

Date: 30/11/2006

IST-2-004363 RE 16 / 36

Pre-computed light paths tool
This technique computes the global illumination term for the static objects in the
scene. Moreover, it is possible to translate and rotate the light, and use of
whatever type of light.
Is possible use this technique in different types of games, but probably the most
interesting types will be indoor games, like the biggest part of FPS or RPG
games.

Raytrace effects
This tool solves the problem of the reflection/refraction. It can be very useful for
example for racing videogames, since in this type of games the reflections of the
vehicles are very important in order to obtain a realistic result. Moreover, the
distances between the reflected object and the reflector can be small. (Two cars
together, the car with the track, etc…).

Hierarchical Particle Systems
The primary target of this tool is the volumetric cloud generation, which makes it
ideal for flight simulators. However, the algorithm also allows smoke generation,
which makes it useful for more game types.

5.2. PERFORMANCE

Glow
Since the glow effect is a post-processing effect, it is not such a big issue
concerning performance for regular PC/Console gaming resolutions.
With GEDAS experience it is possible to have some issues when you use very
big screen resolutions. In the GEDAS reality centre software has to render at
resolutions like 2560x1024, and then, effects like HDR and Glow need a lot of
pixel power, and usually produce some framerate drops. In fact with the Glow +
Tone mapping effect GEDAS has detected that framerate is 20-30% lower. With
only the Glow effect the framerate is only 5-10% lower, so GEDAS thinks that the
Glow effect has a far better quality/cost ratio than the Glow + Tone mapping
effect.

Environment mapping
Environment reflective and refractive mapping, especially in a dynamic manner,
is a really performance decreasing approach to put a realistic impression into
practice. However the work package team did a really good job in optimizing
performance of this render technique. But also the user can optimise
performance with reducing texture size of the cube maps and using material
LODs, a feature from the OGRE.

Doc. Identifier:
TGameTools-6-D6.2.1-02-0-

1-Project integration,
evaluation and testTTT

TEST REPORT ON RELEASE PLUG-INS
PROTOTYPES

Date: 30/11/2006

IST-2-004363 RE 17 / 36

GEDAS has also detected that if the cube maps are dynamic, the performance
drop is very important. In fact, they are practically unusable if the scene has more
than one reflection at a time. With static cube maps things change, but even in
this case memory consumption is important (you don’t need float cube maps with
standard cube map techniques, neither alpha channel).

Obscurances
Since the obscurances are generated as a pre-process, there is no big issue
concerning time generation. To use the obscurances when you draw you only
have to modify your draw function to use another texture. It could have some
performance drops if the scene use more textures than the RAM of the graphic
card, so the performance in this case is memory dependent.

Hierarchical Particle Systems
Hierarchical particle systems are quite fast approach to simulate a vast amount of
particles. After integrating the module there was hardly a frame rate drop
noticeable. Another concern could be implementation of a LOD technique where
distance determines parameters for the big and little particle systems.

Spherical Billboards
The spherical billboards worked very well concerning performance ignoring the
fact it didn’t work with the terrain scene manager of the OGRE. Reading the
depth buffer to get depth information of the terrain should not be a major
performance issue though.

Depth of Field
This will be a “must have” feature in the NextGen games in DLE’s opinion,
similarly as Normal Mapping or Shadows are for current games. This effect
allows blurring the image as and reproduces human eyes or video cameras
behaviour. Moreover, the use of this effect allows designers to focus player’s
attention in specific screen zones, as done in cinema industry.
This tool works in two phases:
On the first phase, in the render o ZFill pass, this technique adds an overhead of
3 instructions in the pixel shader, but with practically zero cost in the current
GPUs with 3.0 shaders.

Doc. Identifier:
TGameTools-6-D6.2.1-02-0-

1-Project integration,
evaluation and testTTT

TEST REPORT ON RELEASE PLUG-INS
PROTOTYPES

Date: 30/11/2006

IST-2-004363 RE 18 / 36

The second phase is a post process filter like blur. This is a cheap process for
current graphics cards and next gens, but difficult to use in older cards.

Resolution Worst FPS Best FPS
1280x1024 60 62
1024x768 90 95
800x600 140 150

Environment mapping
Despite of the incredible results of the tool, your cost is relatively high. For this
reason it is difficult to apply this technique with the current hardware. However,
with a good optimization of the shaders, or for the next graphics cards, this
technique will be very useful for main characters and objects.

 Classic

Method
Specular Specular

Texel only
Diffuse Fast

Diffuse
800x600 175 46 167 13 75
1024x768 175 35 168 9 60
1280x1024 175 30 168 7 45

Glow/Tone mapping
Due to the lower cost of this tools, is possible its use with graphics cards using
shaders 2.0. Probably, the only handicap is the requirement of use floating point
render targets. This is a performance problem with older graphics cards, but is
less important in current and next generation hardware.

 FPS
800x600 70
1024x768 43
1280x1024 28

Pre-computed light paths tool
Despite of the algorithm cost, it is possible to use in the current hardware
generation. In the demo application, the pixel shader is 128 instructions long.
This cost is a bit high for the first SM 3.0 cards, but more useful for currents.

Doc. Identifier:
TGameTools-6-D6.2.1-02-0-

1-Project integration,
evaluation and testTTT

TEST REPORT ON RELEASE PLUG-INS
PROTOTYPES

Date: 30/11/2006

IST-2-004363 RE 19 / 36

 FPS
800x600 58
1024x768 36
1280x1024 30

Raytrace effects
Despite of the complexity of this shader respecting the original algorithm, in our
test machine the frame rate applying reflections with 5 iterations never drops to
lower than 100PFS.

Hierarchical particle systems
Although in a first look the algorithm seems slow due by the necessity of sorting
the particles two times in each render, the use of depth impostors increases the
relation between the number of particles and performance.

Resolution Worst FPS Best FPS
1280x1024 5 60
1024x768 6 60
800x600 20 60

Relating to the deliverable D9.1.1 the following results can be outlined:

• Using less than 20000 surface elements the environment mapping
technique performs at real-time framerates.

• Using less than 20000 surface elements the obscurances module
performs at more than interactive framerates.

• Global illumination with stochastic iteration was not tested as it revealed
as inappropriate at current graphics cards. Maybe it can be used in the
oncoming generation of hardware.

• Photon map based global illumination or pre-computed light paths
performs at real-time frame rates with limited inter-object light transfer and
less than 20000 surface elements.

• The “Local illumination with physically plausible material models and direct
lighting and shadow computation for point and area light sources”
(spherical billboards) technique performs at real-time frame rates using
less than 20000 surface elements.

Doc. Identifier:
TGameTools-6-D6.2.1-02-0-

1-Project integration,
evaluation and testTTT

TEST REPORT ON RELEASE PLUG-INS
PROTOTYPES

Date: 30/11/2006

IST-2-004363 RE 20 / 36

• Shadow computation for point and area light sources performs at real-time
framerates using less than 20000 surface elements.

• The image based rendering techniques (hierarchical particle systems)
performs at above interactive frame rates for scenes with less than 20000
surface elements

5.3. INCREASE OF REALISM
Below there are a few screenshots of our demonstrator application using some of
the effects developed by this WP. By using approximate respectively physical
models for calculating the output textures the effects are convincing and the
increase of realism can be - depending on the artwork of course – very high.

Glow
The glow effect satisfies the demand for “simulating” the reaction of the eye
respectively its pupil to light. The effect in WP5 provides a convincing result
concerning realism and performance.

Screenshot

Ship scene (Infowerk)

Doc. Identifier:
TGameTools-6-D6.2.1-02-0-

1-Project integration,
evaluation and testTTT

TEST REPORT ON RELEASE PLUG-INS
PROTOTYPES

Date: 30/11/2006

IST-2-004363 RE 21 / 36

These scenes has glow, but no tonemapping (GEDAS)

Environment mapping
The Environment mapping technique increases realism for reflective and
refractive materials, like glass, plain metals and plastic. Since ships and boats in
the leisure sector are often made of plain and glossy plastics this technique was
quite appropriate for our uses. We had to modify the shader program a little to
blend it with the original colour texture. Also a specular map would be usable to
define the amount of reflection.

Doc. Identifier:
TGameTools-6-D6.2.1-02-0-

1-Project integration,
evaluation and testTTT

TEST REPORT ON RELEASE PLUG-INS
PROTOTYPES

Date: 30/11/2006

IST-2-004363 RE 22 / 36

Screenshots

After addressing the problem with the TerrainSceneManager of the OGRE which
also concerned depth impostors the look of the environment mapping technique
could be improved further.

Obscurances
Obscurances fake the light reflection between all diffuse objects. We use this
texture as the ambient element of the scene. Then in a shader we add this
contribution to the diffuse component.

Doc. Identifier:
TGameTools-6-D6.2.1-02-0-

1-Project integration,
evaluation and testTTT

TEST REPORT ON RELEASE PLUG-INS
PROTOTYPES

Date: 30/11/2006

IST-2-004363 RE 23 / 36

In this screenshot we only see the obscurance with the diffuse texture, there isn’t
any light in the scene.

Doc. Identifier:
TGameTools-6-D6.2.1-02-0-

1-Project integration,
evaluation and testTTT

TEST REPORT ON RELEASE PLUG-INS
PROTOTYPES

Date: 30/11/2006

IST-2-004363 RE 24 / 36

This image has the same scene with some lights.

Hierarchical Particle Systems
Our first attempt for improving the visual appeal of the model used in our
demonstrator was integration of hierarchical particle systems since this came first
to our mind when investigating the appropriate technique for fog. Hierarchical
particle systems are a visual appealing way to simulate a massive amount of
particles.
Later we were suggested to use spherical billboards for fog.

Doc. Identifier:
TGameTools-6-D6.2.1-02-0-

1-Project integration,
evaluation and testTTT

TEST REPORT ON RELEASE PLUG-INS
PROTOTYPES

Date: 30/11/2006

IST-2-004363 RE 25 / 36

Screenshot

Rain
Because we want to provide a broad variety of situations and sight conditions we
tried to implement the rain technique in our application. Because of the issues
mentioned later we were not able to integrate it in our demonstrator until now.

Spherical Billboards
Due to the recommendation of the WP team we tried to implement the spherical
billboards system for simulating fog in our application. However we encountered
some problems concerning the terrain manager of the OGRE.

Doc. Identifier:
TGameTools-6-D6.2.1-02-0-

1-Project integration,
evaluation and testTTT

TEST REPORT ON RELEASE PLUG-INS
PROTOTYPES

Date: 30/11/2006

IST-2-004363 RE 26 / 36

Screenshot

(Note: We didn’t create the appropriate texture for fog until

now since the problem with terrain rendering occurred earlier
and creation wouldn’t make sense before proper integration of

this feature.)

After reporting the problem with depth information and the TerrainSceneManger
the module was changed to work with terrain, which resulted in a much better
look of the effect. The technique can be used in our demonstrator application to
generate local fog phenomena like sea fog, steam fog, valley fog and ground fog.

Doc. Identifier:
TGameTools-6-D6.2.1-02-0-

1-Project integration,
evaluation and testTTT

TEST REPORT ON RELEASE PLUG-INS
PROTOTYPES

Date: 30/11/2006

IST-2-004363 RE 27 / 36

Screenshot

(Spherical Billboards using depth information of the depth buffer)

Depth of field
As said previously by DLE, this effect may partially simulate human vision effects,
increasing player’s immersion. Crysis™, one of the next technology reference
games, use a similar technique.

Environment mapping
The results obtained with this tool provide an amazing result compared with the
current ambient illumination from our engine.

Glow
Using glows improves the brightness of the scene, as it affects to surrounding
zones.
On the other hand, the Tone Mapping tool allows to use higher bright levels in the
environments. This is needed to obtain realistic daylight results. Moreover, the
technique allows soft changes between bright and dark zones, simulating
behaviour of the human eye.

Doc. Identifier:
TGameTools-6-D6.2.1-02-0-

1-Project integration,
evaluation and testTTT

TEST REPORT ON RELEASE PLUG-INS
PROTOTYPES

Date: 30/11/2006

IST-2-004363 RE 28 / 36

Pre-computed light paths tool
Global illumination is one of the most important goals in the NextGen graphic
engines, as said by DLE. The use of this tool improves the quality of render being
unnecessary the ambient illumination pass.

Raytrace effects
In many types of materials (metals, polished surfaces, etc.), the reflections are
not an option if DLE wanted to reach a minimal degree of realism. This tool
provides results closed to work with ray tracing tools. Moreover, since it’s an
iterative algorithm, it is possible adjust the complexity based on the user’s
hardware.

Doc. Identifier:
TGameTools-6-D6.2.1-02-0-

1-Project integration,
evaluation and testTTT

TEST REPORT ON RELEASE PLUG-INS
PROTOTYPES

Date: 30/11/2006

IST-2-004363 RE 29 / 36

(Differences between surfaces without reflections and using the ray-trace effects:

DLE)

Hierarchical particle systems
In flight simulators, realistic clouds are something necessary to obtain a good
immersion of the player. Thanks to this tool, we can obtain volumetric clouds
probably as well as those used in games like Flight Simulator X®.

Doc. Identifier:
TGameTools-6-D6.2.1-02-0-

1-Project integration,
evaluation and testTTT

TEST REPORT ON RELEASE PLUG-INS
PROTOTYPES

Date: 30/11/2006

IST-2-004363 RE 30 / 36

Obscurances

Illumination of the same mesh without any lighting, with obscurances and with

obscurances combined with direct lighting (DLE)

The difference in quality when including this tool is very important, since it gives
meshes a sensation of greater volume. This is particularly useful in the
environmental illumination, where habitually is common to have very flat results.
The results improve when using more complex meshes.

The following screenshots illustrate how the concerning techniques of WP5 can
be combined to get realistic results:

Doc. Identifier:
TGameTools-6-D6.2.1-02-0-

1-Project integration,
evaluation and testTTT

TEST REPORT ON RELEASE PLUG-INS
PROTOTYPES

Date: 30/11/2006

IST-2-004363 RE 31 / 36

(Ambient light, Ambient & Obscurances: DLE)

(Direct lighting & Obscurances, Environment mapping & Direct lighting: DLE)

Doc. Identifier:
TGameTools-6-D6.2.1-02-0-

1-Project integration,
evaluation and testTTT

TEST REPORT ON RELEASE PLUG-INS
PROTOTYPES

Date: 30/11/2006

IST-2-004363 RE 32 / 36

(Environment mapping & Obscurances, Direct Lighting & Obscurances &

Environment mapping: DLE)

5.4. EASE OF INTEGRATION
Since the OGRE has a very flexible material and resource system, it is quite easy
to plug new effects into the engine. Compilation of the necessary source files
happens like in WP3 with conditional compilation and pre-processor directives.
The effects can be easily set up with the .material scripts the OGRE already
uses. The glow effect, for example, is a post-processing effect exploiting the
OGRE’s compositor framework, which are, like material scripts, a convenient
method to define effects like bloom, hdr rendering and various filters like an “old
tv” effect. The environment mapping technique was also quite ease to integrate
since it also uses the common material framework of the OGRE. The shader
program needed a few changes to blend the reflective colour with the base
texture colour. There was added an “IllumTechniques” section to the material
framework.
Unfortunately the illumination work package did not work together with the
visibility work package. It would be a hard request to get both work packages to
work together.

In the GEDAS engine we had to program a new post-process class to do the
glow effect, as the post-process effect file is not as good as the one from OGRE.
As we mentioned above we also translated the fx shader to glsl.

Doc. Identifier:
TGameTools-6-D6.2.1-02-0-

1-Project integration,
evaluation and testTTT

TEST REPORT ON RELEASE PLUG-INS
PROTOTYPES

Date: 30/11/2006

IST-2-004363 RE 33 / 36

The environment mapping technique has a few drawbacks though:
It isn’t possible to simulate self-reflection on the regarding surfaces since this
would raise the need for an extensive ray tracing model which is not doable
because of performance issues. Dividing the mesh in more sub-meshes would be
a reasonable solution but results in more depth cube maps which have to be
created. That decreases performance also. The solution best suited for us was
dividing the control panel of the motorboat (since this was the object which
should reflect the roof of the boat) and the motorboat in two separate sub-
meshes and applying material depending on point of view. In helicopter view the
ship hull reflects the environment and in cockpit view the control panel reflects
the ship hull.
Another issue was reflection of the terrain on the ship hull. Here the same
problem occurs like in spherical billboards. There cannot be applied a depth
material to the terrain since it would require a recreation of the terrain page(s)
which is quite slow. So depth information of the terrain cannot be gathered
through a depth program using the shader units on the GPU.

We mentioned a problem earlier regarding compatibility of the spherical
billboards effect and the terrain scene manager of the OGRE. The visual
feedback was that the billboards rendered behind the terrain. Digging through the
algorithm used by spherical billboards uncovered a problem concerning the
material system the OGRE uses with terrain. There are no frequent material
changes possible since certain circumstances in the terrain rendering API.
Because of this the terrain page(s) would have to be reloaded every time the
material changed. This would result in a heavy bottleneck in the application since
height information is read by a greyscale RAW image used to create the vertices
for the terrain. After requesting support by one of the OGRE community over
IRC, we came to the conclusion that using the depth buffer for this would also
provide the depth information needed for the spherical billboards technique. We
forwarded this information to the responsible developer of the WP team and were
told the development will continue in this direction.

Integration of the rain module was not possible at all. On one hand there is the
fact that it is not deployed in the SVN repository on the other hand it didn’t work
under quite common conditions. We were sent an archive file containing the
module with the promise to put it in the repository as soon as possible, but this
has not happened until now.
Testing the module was very difficult either since there was no Visual Studio
solution file, just a Makefile which is used normally on Linux based systems.
There isn’t an import feature for Makefiles either in Visual Studio. The only way to
go about it was to convert the makefile into a VS solution file by hand, which is
not convenient at all. Another thing is that most games are developed for AND in
Windows, so deploying a Makefile is not common at all.

Doc. Identifier:
TGameTools-6-D6.2.1-02-0-

1-Project integration,
evaluation and testTTT

TEST REPORT ON RELEASE PLUG-INS
PROTOTYPES

Date: 30/11/2006

IST-2-004363 RE 34 / 36

A second problem occurred with the demo application itself since it did not work
at once. After several testing attempts we concluded that the demo application
only worked the first run after changing the render systems from DirectX to
OpenGL. Later runs and starting with DirectX did not work at all. We reported
these issues to the WP team and were promised to investigate the problems.

For environment mapping integration GEDAS had to disable the alpha blending
of their engine, and added support for float cube maps. In the end this technique
was discarded because quality didn’t had enough added value from other cube
map techniques.

After reporting the problem with depth calculation and the TerrainSceneManager
the WP team changed some code in the OGRE to get the depth information of
the terrain pages. After recompiling both the OGRE and the illumination module
the spherical billboards and the environment mapping techniques worked well.

Depth of field
This is a post process tool, so the integration in the engine is quite simple.
Moreover, is easy adjusting performance’s cost in base to the user’s hardware.
This is a necessary characteristic to use the technique in a PC game due to the
wide rage of hardware to support.

Obscurances
DLE has integrated this tool easily, due to the great support of the UdG. They
gave them a GPU-driven and a software version of the tool.

Environment mapping
Integrate this tools is simple, due to most of the source code is HLSL, easily
portable to DLE’s engine.

Pre-computed light paths tool
The algorithm works in two phases, pre-process of the scene and the render
phase. The integration of the pre-process phase is the most complex, since it
requires integration with DLE’s pipeline data. Integrate the render phase is more
easy, since to port the DirectX source code and HLSL to our engine it would not
have to be a too complex process.

Doc. Identifier:
TGameTools-6-D6.2.1-02-0-

1-Project integration,
evaluation and testTTT

TEST REPORT ON RELEASE PLUG-INS
PROTOTYPES

Date: 30/11/2006

IST-2-004363 RE 35 / 36

Raytrace effects
The integration of the tool is simple; on the one hand it is necessary to modify the
generation of cube map to save de distance between the object and the scene,
and on the other hand modify the pixel shader in the render phase.

Hierarchical particle systems
The fact that the tool this developing in OpenGL, causes that integrating it in our
engine is more complex than other WP5 tools, but we have seen that the source
code to port is not too long, and the demo attaches documentation, which would
make the process more faster.

The following paragraphs illustrate how GEDAS uses their 3D engine for
integration of the GTP libraries.

Glow/Tone mapping
GEDAS translated the effect files from HLSL to GLSL to achieve this effect. In
their engine they have a PostprocessorManager similar to the one from Ogre, but
they also have inheritances for complex specific effects, and in this case
concluded it was best to create a specific derivate for this effect. So they use a
CShaderPostprocessGlowManager inside their render library, and hard-coded all
the steps they need for this effect.
This effect needs seven steps. In GEDAS’ engine you can do the Glow effect (3
steps) only or the Glow + Tonemapping effect (3 + 4 steps).

The steps are:

o SceneToSceneAvobeOne: Obtain a buffer with all the colour
information of the original buffer above one.
Shader: AboveOne

o BlurTheGlow: Blur the buffer with the above one information. This
Function is called two times.
Shader: GlowBlurH and GlowBlurV

o FinalGlowComposition: Mix the original texture with the blurred one.
Shader: GlowText

o GetLuminance: Calculate the average luminance of the scene.
Shader: Luminance

o Downsampling: Downsample the luminance texture.
Shader: ToneBlurV

Doc. Identifier:
TGameTools-6-D6.2.1-02-0-

1-Project integration,
evaluation and testTTT

TEST REPORT ON RELEASE PLUG-INS
PROTOTYPES

Date: 30/11/2006

IST-2-004363 RE 36 / 36

o ToneBlur: Remediate the down-sampled luminance texture.
Shader: ToneBlurH and ToneBlurV

o FinalCompostion: Use the blurred down-sampled luminance texture to
tone map the result from the FinalGlowComposition.
Shader: FinalTone

Ray-traced Environment mapping
To achieve this effect GEDAS had to use four channel float cube maps, so they
have to change the GL_UNSIGNED_BYTE format to GL_HALF_FLOAT_ARB
and GL_RGB to GL_RGBA16F_ARB. They have a CubeMapManager were they
create their cube maps, so it was easy to change the format.
The next step was to change the shader were GEDAS used that cube map, the
reflection shader, and most important, we had to change all our shaders,
because the effect needs to store all the depth information of the scene in the
alpha channel of the cube map when the cube map is created. This was one of
the big issues of the implementation of this effect.
GEDAS uses the same pipeline when they render a cube map and when they
render the final scene, so they use the same shaders. GEDAS has more than
fifty shaders in their engine, and in some of them they use the alpha channel, so
this was a very big problem.
To evaluate the quality of the effect, GEDAS first changed only two different
shaders. They also had to deactivate the Alpha test and the alpha blending, the
other big issue of this effect.

Obscurances
GEDAS included inside their editor the ObscuranceMap class of the effect. As a
prerequisite, all the geometry that is going to generate an obscurance map needs
two texture coordinate arrays, one for the diffuse, normal map, etc. texture and
one for the obscurance map. This second coordinate array has some restrictions,
all the coordinates have to be inside the 0, 1 range, and two different vertices
can’t share any texture coordinate.
In this effect GEDAS also had to translate their data types to the ones needed by
the class, this was done inside the InitRenderData and InitGeometry functions.
This effect has all the shaders hard-coded inside this class and in it is all
implemented with OpenGL, so they didn’t need to adapt anything regarding
shaders. In the end when the texture was generated they only had to convert it to
GL_UNSIGNED_BYTE format and assign it to their CMaterial class, and of
course save the texture to disk, to use it in their VRViewer.

	INTRODUCTION
	1.1. OBJECTIVES OF THIS DOCUMENT
	1.2. APPLICATION AREA
	1.3. TERMINOLOGY

	2. EXECUTIVE SUMMARY:
	3. WP3: VISIBILITY
	3.1. MATCHING BETWEEN REQUIREMENTS AND FUNCTIONALITY
	3.2. PERFORMANCE
	3.3. INCREASE OF REALISM
	3.4. EASE OF INTEGRATION

	4. WP4: GEOMETRY
	4.1. MATCHING BETWEEN REQUIREMENTS AND FUNCTIONALITY
	4.2. PERFORMANCE
	4.3. INCREASE OF REALISM
	4.4. EASE OF INTEGRATION/USE
	GeoTool

	5. WP5: ILLUMINATION
	5.1. MATCHING BETWEEN REQUIREMENTS AND FUNCTIONALITY
	Obscurances
	Environment Map
	Glow/Tone mapping
	Pre-computed light paths tool
	Raytrace effects
	Hierarchical Particle Systems

	5.2. PERFORMANCE
	Glow
	Environment mapping
	Obscurances
	Hierarchical Particle Systems
	Spherical Billboards
	Depth of Field
	Environment mapping
	Glow/Tone mapping
	Pre-computed light paths tool
	Raytrace effects
	Hierarchical particle systems

	5.3. INCREASE OF REALISM
	Glow
	Screenshot
	Environment mapping
	Screenshots
	Obscurances
	Hierarchical Particle Systems
	Screenshot
	Rain
	Spherical Billboards
	Screenshot
	Screenshot
	Depth of field
	Environment mapping
	Glow
	Pre-computed light paths tool
	Raytrace effects
	Hierarchical particle systems
	Obscurances

	5.4. EASE OF INTEGRATION
	Depth of field
	Obscurances
	Environment mapping
	Pre-computed light paths tool
	Raytrace effects
	Hierarchical particle systems
	Glow/Tone mapping
	Ray-traced Environment mapping
	Obscurances

