1 | /*
|
---|
2 | -----------------------------------------------------------------------------
|
---|
3 | This source file is part of OGRE
|
---|
4 | (Object-oriented Graphics Rendering Engine)
|
---|
5 | For the latest info, see http://www.ogre3d.org/
|
---|
6 |
|
---|
7 | Copyright (c) 2000-2005 The OGRE Team
|
---|
8 | Also see acknowledgements in Readme.html
|
---|
9 |
|
---|
10 | This program is free software; you can redistribute it and/or modify it under
|
---|
11 | the terms of the GNU Lesser General Public License as published by the Free Software
|
---|
12 | Foundation; either version 2 of the License, or (at your option) any later
|
---|
13 | version.
|
---|
14 |
|
---|
15 | This program is distributed in the hope that it will be useful, but WITHOUT
|
---|
16 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
---|
17 | FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
|
---|
18 |
|
---|
19 | You should have received a copy of the GNU Lesser General Public License along with
|
---|
20 | this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
---|
21 | Place - Suite 330, Boston, MA 02111-1307, USA, or go to
|
---|
22 | http://www.gnu.org/copyleft/lesser.txt.
|
---|
23 | -----------------------------------------------------------------------------
|
---|
24 | */
|
---|
25 | #ifndef __Matrix3_H__
|
---|
26 | #define __Matrix3_H__
|
---|
27 |
|
---|
28 | #include "OgrePrerequisites.h"
|
---|
29 |
|
---|
30 | #include "OgreVector3.h"
|
---|
31 |
|
---|
32 | // NB All code adapted from Wild Magic 0.2 Matrix math (free source code)
|
---|
33 | // http://www.magic-software.com
|
---|
34 |
|
---|
35 | // NOTE. The (x,y,z) coordinate system is assumed to be right-handed.
|
---|
36 | // Coordinate axis rotation matrices are of the form
|
---|
37 | // RX = 1 0 0
|
---|
38 | // 0 cos(t) -sin(t)
|
---|
39 | // 0 sin(t) cos(t)
|
---|
40 | // where t > 0 indicates a counterclockwise rotation in the yz-plane
|
---|
41 | // RY = cos(t) 0 sin(t)
|
---|
42 | // 0 1 0
|
---|
43 | // -sin(t) 0 cos(t)
|
---|
44 | // where t > 0 indicates a counterclockwise rotation in the zx-plane
|
---|
45 | // RZ = cos(t) -sin(t) 0
|
---|
46 | // sin(t) cos(t) 0
|
---|
47 | // 0 0 1
|
---|
48 | // where t > 0 indicates a counterclockwise rotation in the xy-plane.
|
---|
49 |
|
---|
50 | namespace Ogre
|
---|
51 | {
|
---|
52 | /** A 3x3 matrix which can represent rotations around axes.
|
---|
53 | @note
|
---|
54 | <b>All the code is adapted from the Wild Magic 0.2 Matrix
|
---|
55 | library (http://www.magic-software.com).</b>
|
---|
56 | @par
|
---|
57 | The coordinate system is assumed to be <b>right-handed</b>.
|
---|
58 | */
|
---|
59 | class _OgreExport Matrix3
|
---|
60 | {
|
---|
61 | public:
|
---|
62 | /** Default constructor.
|
---|
63 | @note
|
---|
64 | It does <b>NOT</b> initialize the matrix for efficiency.
|
---|
65 | */
|
---|
66 | inline Matrix3 () {};
|
---|
67 | inline explicit Matrix3 (const Real arr[3][3])
|
---|
68 | {
|
---|
69 | memcpy(m,arr,9*sizeof(Real));
|
---|
70 | }
|
---|
71 | inline Matrix3 (const Matrix3& rkMatrix)
|
---|
72 | {
|
---|
73 | memcpy(m,rkMatrix.m,9*sizeof(Real));
|
---|
74 | }
|
---|
75 | Matrix3 (Real fEntry00, Real fEntry01, Real fEntry02,
|
---|
76 | Real fEntry10, Real fEntry11, Real fEntry12,
|
---|
77 | Real fEntry20, Real fEntry21, Real fEntry22)
|
---|
78 | {
|
---|
79 | m[0][0] = fEntry00;
|
---|
80 | m[0][1] = fEntry01;
|
---|
81 | m[0][2] = fEntry02;
|
---|
82 | m[1][0] = fEntry10;
|
---|
83 | m[1][1] = fEntry11;
|
---|
84 | m[1][2] = fEntry12;
|
---|
85 | m[2][0] = fEntry20;
|
---|
86 | m[2][1] = fEntry21;
|
---|
87 | m[2][2] = fEntry22;
|
---|
88 | }
|
---|
89 |
|
---|
90 | // member access, allows use of construct mat[r][c]
|
---|
91 | inline Real* operator[] (size_t iRow) const
|
---|
92 | {
|
---|
93 | return (Real*)m[iRow];
|
---|
94 | }
|
---|
95 | /*inline operator Real* ()
|
---|
96 | {
|
---|
97 | return (Real*)m[0];
|
---|
98 | }*/
|
---|
99 | Vector3 GetColumn (size_t iCol) const;
|
---|
100 | void SetColumn(size_t iCol, const Vector3& vec);
|
---|
101 | void FromAxes(const Vector3& xAxis, const Vector3& yAxis, const Vector3& zAxis);
|
---|
102 |
|
---|
103 | // assignment and comparison
|
---|
104 | inline Matrix3& operator= (const Matrix3& rkMatrix)
|
---|
105 | {
|
---|
106 | memcpy(m,rkMatrix.m,9*sizeof(Real));
|
---|
107 | return *this;
|
---|
108 | }
|
---|
109 | bool operator== (const Matrix3& rkMatrix) const;
|
---|
110 | inline bool operator!= (const Matrix3& rkMatrix) const
|
---|
111 | {
|
---|
112 | return !operator==(rkMatrix);
|
---|
113 | }
|
---|
114 |
|
---|
115 | // arithmetic operations
|
---|
116 | Matrix3 operator+ (const Matrix3& rkMatrix) const;
|
---|
117 | Matrix3 operator- (const Matrix3& rkMatrix) const;
|
---|
118 | Matrix3 operator* (const Matrix3& rkMatrix) const;
|
---|
119 | Matrix3 operator- () const;
|
---|
120 |
|
---|
121 | // matrix * vector [3x3 * 3x1 = 3x1]
|
---|
122 | Vector3 operator* (const Vector3& rkVector) const;
|
---|
123 |
|
---|
124 | // vector * matrix [1x3 * 3x3 = 1x3]
|
---|
125 | _OgreExport friend Vector3 operator* (const Vector3& rkVector,
|
---|
126 | const Matrix3& rkMatrix);
|
---|
127 |
|
---|
128 | // matrix * scalar
|
---|
129 | Matrix3 operator* (Real fScalar) const;
|
---|
130 |
|
---|
131 | // scalar * matrix
|
---|
132 | _OgreExport friend Matrix3 operator* (Real fScalar, const Matrix3& rkMatrix);
|
---|
133 |
|
---|
134 | // utilities
|
---|
135 | Matrix3 Transpose () const;
|
---|
136 | bool Inverse (Matrix3& rkInverse, Real fTolerance = 1e-06) const;
|
---|
137 | Matrix3 Inverse (Real fTolerance = 1e-06) const;
|
---|
138 | Real Determinant () const;
|
---|
139 |
|
---|
140 | // singular value decomposition
|
---|
141 | void SingularValueDecomposition (Matrix3& rkL, Vector3& rkS,
|
---|
142 | Matrix3& rkR) const;
|
---|
143 | void SingularValueComposition (const Matrix3& rkL,
|
---|
144 | const Vector3& rkS, const Matrix3& rkR);
|
---|
145 |
|
---|
146 | // Gram-Schmidt orthonormalization (applied to columns of rotation matrix)
|
---|
147 | void Orthonormalize ();
|
---|
148 |
|
---|
149 | // orthogonal Q, diagonal D, upper triangular U stored as (u01,u02,u12)
|
---|
150 | void QDUDecomposition (Matrix3& rkQ, Vector3& rkD,
|
---|
151 | Vector3& rkU) const;
|
---|
152 |
|
---|
153 | Real SpectralNorm () const;
|
---|
154 |
|
---|
155 | // matrix must be orthonormal
|
---|
156 | void ToAxisAngle (Vector3& rkAxis, Radian& rfAngle) const;
|
---|
157 | inline void ToAxisAngle (Vector3& rkAxis, Degree& rfAngle) const {
|
---|
158 | Radian r;
|
---|
159 | ToAxisAngle ( rkAxis, r );
|
---|
160 | rfAngle = r;
|
---|
161 | }
|
---|
162 | void FromAxisAngle (const Vector3& rkAxis, const Radian& fRadians);
|
---|
163 | #ifndef OGRE_FORCE_ANGLE_TYPES
|
---|
164 | inline void ToAxisAngle (Vector3& rkAxis, Real& rfRadians) const {
|
---|
165 | Radian r;
|
---|
166 | ToAxisAngle ( rkAxis, r );
|
---|
167 | rfRadians = r.valueRadians();
|
---|
168 | }
|
---|
169 | inline void FromAxisAngle (const Vector3& rkAxis, Real fRadians) {
|
---|
170 | FromAxisAngle ( rkAxis, Radian(fRadians) );
|
---|
171 | }
|
---|
172 | #endif//OGRE_FORCE_ANGLE_TYPES
|
---|
173 |
|
---|
174 | // The matrix must be orthonormal. The decomposition is yaw*pitch*roll
|
---|
175 | // where yaw is rotation about the Up vector, pitch is rotation about the
|
---|
176 | // Right axis, and roll is rotation about the Direction axis.
|
---|
177 | bool ToEulerAnglesXYZ (Radian& rfYAngle, Radian& rfPAngle,
|
---|
178 | Radian& rfRAngle) const;
|
---|
179 | bool ToEulerAnglesXZY (Radian& rfYAngle, Radian& rfPAngle,
|
---|
180 | Radian& rfRAngle) const;
|
---|
181 | bool ToEulerAnglesYXZ (Radian& rfYAngle, Radian& rfPAngle,
|
---|
182 | Radian& rfRAngle) const;
|
---|
183 | bool ToEulerAnglesYZX (Radian& rfYAngle, Radian& rfPAngle,
|
---|
184 | Radian& rfRAngle) const;
|
---|
185 | bool ToEulerAnglesZXY (Radian& rfYAngle, Radian& rfPAngle,
|
---|
186 | Radian& rfRAngle) const;
|
---|
187 | bool ToEulerAnglesZYX (Radian& rfYAngle, Radian& rfPAngle,
|
---|
188 | Radian& rfRAngle) const;
|
---|
189 | void FromEulerAnglesXYZ (const Radian& fYAngle, const Radian& fPAngle, const Radian& fRAngle);
|
---|
190 | void FromEulerAnglesXZY (const Radian& fYAngle, const Radian& fPAngle, const Radian& fRAngle);
|
---|
191 | void FromEulerAnglesYXZ (const Radian& fYAngle, const Radian& fPAngle, const Radian& fRAngle);
|
---|
192 | void FromEulerAnglesYZX (const Radian& fYAngle, const Radian& fPAngle, const Radian& fRAngle);
|
---|
193 | void FromEulerAnglesZXY (const Radian& fYAngle, const Radian& fPAngle, const Radian& fRAngle);
|
---|
194 | void FromEulerAnglesZYX (const Radian& fYAngle, const Radian& fPAngle, const Radian& fRAngle);
|
---|
195 | #ifndef OGRE_FORCE_ANGLE_TYPES
|
---|
196 | inline bool ToEulerAnglesXYZ (float& rfYAngle, float& rfPAngle,
|
---|
197 | float& rfRAngle) const {
|
---|
198 | Radian y, p, r;
|
---|
199 | bool b = ToEulerAnglesXYZ(y,p,r);
|
---|
200 | rfYAngle = y.valueRadians();
|
---|
201 | rfPAngle = p.valueRadians();
|
---|
202 | rfRAngle = r.valueRadians();
|
---|
203 | return b;
|
---|
204 | }
|
---|
205 | inline bool ToEulerAnglesXZY (float& rfYAngle, float& rfPAngle,
|
---|
206 | float& rfRAngle) const {
|
---|
207 | Radian y, p, r;
|
---|
208 | bool b = ToEulerAnglesXZY(y,p,r);
|
---|
209 | rfYAngle = y.valueRadians();
|
---|
210 | rfPAngle = p.valueRadians();
|
---|
211 | rfRAngle = r.valueRadians();
|
---|
212 | return b;
|
---|
213 | }
|
---|
214 | inline bool ToEulerAnglesYXZ (float& rfYAngle, float& rfPAngle,
|
---|
215 | float& rfRAngle) const {
|
---|
216 | Radian y, p, r;
|
---|
217 | bool b = ToEulerAnglesYXZ(y,p,r);
|
---|
218 | rfYAngle = y.valueRadians();
|
---|
219 | rfPAngle = p.valueRadians();
|
---|
220 | rfRAngle = r.valueRadians();
|
---|
221 | return b;
|
---|
222 | }
|
---|
223 | inline bool ToEulerAnglesYZX (float& rfYAngle, float& rfPAngle,
|
---|
224 | float& rfRAngle) const {
|
---|
225 | Radian y, p, r;
|
---|
226 | bool b = ToEulerAnglesYZX(y,p,r);
|
---|
227 | rfYAngle = y.valueRadians();
|
---|
228 | rfPAngle = p.valueRadians();
|
---|
229 | rfRAngle = r.valueRadians();
|
---|
230 | return b;
|
---|
231 | }
|
---|
232 | inline bool ToEulerAnglesZXY (float& rfYAngle, float& rfPAngle,
|
---|
233 | float& rfRAngle) const {
|
---|
234 | Radian y, p, r;
|
---|
235 | bool b = ToEulerAnglesZXY(y,p,r);
|
---|
236 | rfYAngle = y.valueRadians();
|
---|
237 | rfPAngle = p.valueRadians();
|
---|
238 | rfRAngle = r.valueRadians();
|
---|
239 | return b;
|
---|
240 | }
|
---|
241 | inline bool ToEulerAnglesZYX (float& rfYAngle, float& rfPAngle,
|
---|
242 | float& rfRAngle) const {
|
---|
243 | Radian y, p, r;
|
---|
244 | bool b = ToEulerAnglesZYX(y,p,r);
|
---|
245 | rfYAngle = y.valueRadians();
|
---|
246 | rfPAngle = p.valueRadians();
|
---|
247 | rfRAngle = r.valueRadians();
|
---|
248 | return b;
|
---|
249 | }
|
---|
250 | inline void FromEulerAnglesXYZ (float fYAngle, float fPAngle, float fRAngle) {
|
---|
251 | FromEulerAnglesXYZ ( Radian(fYAngle), Radian(fPAngle), Radian(fRAngle) );
|
---|
252 | }
|
---|
253 | inline void FromEulerAnglesXZY (float fYAngle, float fPAngle, float fRAngle) {
|
---|
254 | FromEulerAnglesXZY ( Radian(fYAngle), Radian(fPAngle), Radian(fRAngle) );
|
---|
255 | }
|
---|
256 | inline void FromEulerAnglesYXZ (float fYAngle, float fPAngle, float fRAngle) {
|
---|
257 | FromEulerAnglesYXZ ( Radian(fYAngle), Radian(fPAngle), Radian(fRAngle) );
|
---|
258 | }
|
---|
259 | inline void FromEulerAnglesYZX (float fYAngle, float fPAngle, float fRAngle) {
|
---|
260 | FromEulerAnglesYZX ( Radian(fYAngle), Radian(fPAngle), Radian(fRAngle) );
|
---|
261 | }
|
---|
262 | inline void FromEulerAnglesZXY (float fYAngle, float fPAngle, float fRAngle) {
|
---|
263 | FromEulerAnglesZXY ( Radian(fYAngle), Radian(fPAngle), Radian(fRAngle) );
|
---|
264 | }
|
---|
265 | inline void FromEulerAnglesZYX (float fYAngle, float fPAngle, float fRAngle) {
|
---|
266 | FromEulerAnglesZYX ( Radian(fYAngle), Radian(fPAngle), Radian(fRAngle) );
|
---|
267 | }
|
---|
268 | #endif//OGRE_FORCE_ANGLE_TYPES
|
---|
269 | // eigensolver, matrix must be symmetric
|
---|
270 | void EigenSolveSymmetric (Real afEigenvalue[3],
|
---|
271 | Vector3 akEigenvector[3]) const;
|
---|
272 |
|
---|
273 | static void TensorProduct (const Vector3& rkU, const Vector3& rkV,
|
---|
274 | Matrix3& rkProduct);
|
---|
275 |
|
---|
276 | static const Real EPSILON;
|
---|
277 | static const Matrix3 ZERO;
|
---|
278 | static const Matrix3 IDENTITY;
|
---|
279 |
|
---|
280 | protected:
|
---|
281 | // support for eigensolver
|
---|
282 | void Tridiagonal (Real afDiag[3], Real afSubDiag[3]);
|
---|
283 | bool QLAlgorithm (Real afDiag[3], Real afSubDiag[3]);
|
---|
284 |
|
---|
285 | // support for singular value decomposition
|
---|
286 | static const Real ms_fSvdEpsilon;
|
---|
287 | static const unsigned int ms_iSvdMaxIterations;
|
---|
288 | static void Bidiagonalize (Matrix3& kA, Matrix3& kL,
|
---|
289 | Matrix3& kR);
|
---|
290 | static void GolubKahanStep (Matrix3& kA, Matrix3& kL,
|
---|
291 | Matrix3& kR);
|
---|
292 |
|
---|
293 | // support for spectral norm
|
---|
294 | static Real MaxCubicRoot (Real afCoeff[3]);
|
---|
295 |
|
---|
296 | Real m[3][3];
|
---|
297 |
|
---|
298 | // for faster access
|
---|
299 | friend class Matrix4;
|
---|
300 | };
|
---|
301 | }
|
---|
302 | #endif
|
---|