source: GTP/trunk/App/Demos/Geom/OgreStuff/include/OgreSceneManager.h @ 1092

Revision 1092, 92.7 KB checked in by gumbau, 18 years ago (diff)

LodStrips? and LODTrees demos

Line 
1/*-------------------------------------------------------------------------
2This source file is a part of OGRE
3(Object-oriented Graphics Rendering Engine)
4
5For the latest info, see http://www.ogre3d.org/
6
7Copyright (c) 2000-2005 The OGRE Team
8Also see acknowledgements in Readme.html
9
10This library is free software; you can redistribute it and/or modify it
11under the terms of the GNU Lesser General Public License (LGPL) as
12published by the Free Software Foundation; either version 2.1 of the
13License, or (at your option) any later version.
14
15This library is distributed in the hope that it will be useful, but
16WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
18License for more details.
19
20You should have received a copy of the GNU Lesser General Public License
21along with this library; if not, write to the Free Software Foundation,
22Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA or go to
23http://www.gnu.org/copyleft/lesser.txt
24-------------------------------------------------------------------------*/
25#ifndef __SceneManager_H__
26#define __SceneManager_H__
27
28// Precompiler options
29#include "OgrePrerequisites.h"
30
31#include "OgreString.h"
32#include "OgreSceneNode.h"
33#include "OgrePlane.h"
34#include "OgreQuaternion.h"
35#include "OgreColourValue.h"
36#include "OgreCommon.h"
37#include "OgreRenderQueue.h"
38#include "OgreAnimationState.h"
39#include "OgreSceneQuery.h"
40#include "OgreAutoParamDataSource.h"
41#include "OgreAnimationState.h"
42#include "OgreRenderQueue.h"
43#include "OgreRenderQueueSortingGrouping.h"
44#include "OgreRectangle2D.h"
45
46namespace Ogre {
47
48    /** Structure for holding a position & orientation pair. */
49    struct ViewPoint
50    {
51        Vector3 position;
52        Quaternion orientation;
53    };
54
55        // Forward declarations
56        class DefaultIntersectionSceneQuery;
57        class DefaultRaySceneQuery;
58        class DefaultSphereSceneQuery;
59        class DefaultAxisAlignedBoxSceneQuery;
60
61    /** Manages the rendering of a 'scene' i.e. a collection of primitives.
62        @remarks
63            This class defines the basic behaviour of the 'Scene Manager' family. These classes will
64            organise the objects in the scene and send them to the rendering system, a subclass of
65            RenderSystem. This basic superclass does no sorting, culling or organising of any sort.
66        @par
67            Subclasses may use various techniques to organise the scene depending on how they are
68            designed (e.g. BSPs, octrees etc). As with other classes, methods preceded with '_' are
69            designed to be called by other classes in the Ogre system, not by user applications,
70            although this is not forbidden.
71        @author
72            Steve Streeting
73        @version
74            1.0
75     */
76    class _OgreExport SceneManager
77    {
78                friend class DefaultIntersectionSceneQuery;
79            friend class DefaultRaySceneQuery;
80            friend class DefaultSphereSceneQuery;
81            friend class DefaultAxisAlignedBoxSceneQuery;
82        friend class DefaultPlaneBoundedVolumeListSceneQuery;
83    public:
84        /// Query mask which will be used for world geometry @see SceneQuery
85        static unsigned long WORLD_GEOMETRY_QUERY_MASK;
86        /** Comparator for material map, for sorting materials into render order (e.g. transparent last).
87        */
88        struct materialLess
89        {
90            _OgreExport bool operator()(const Material* x, const Material* y) const;
91        };
92        /// Comparator for sorting lights relative to a point
93        struct lightLess
94        {
95            _OgreExport bool operator()(const Light* a, const Light* b) const;
96        };
97
98        /// Describes the stage of rendering when performing complex illumination
99        enum IlluminationRenderStage
100        {
101            /// No special illumination stage
102            IRS_NONE,
103            /// Ambient stage, when background light is added
104            IRS_AMBIENT,
105            /// Diffuse / specular stage, when individual light contributions are added
106            IRS_PER_LIGHT,
107            /// Decal stage, when texture detail is added to the lit base
108            IRS_DECAL,
109            /// Render to texture stage, used for texture based shadows
110            IRS_RENDER_TO_TEXTURE,
111            /// Modulative render from shadow texture stage
112            IRS_RENDER_MODULATIVE_PASS
113        };
114
115                /** Enumeration of the possible modes allowed for processing the special case
116                render queue list.
117                @see SceneManager::setSpecialCaseRenderQueueMode
118                */
119                enum SpecialCaseRenderQueueMode
120                {
121                        /// Render only the queues in the special case list
122                        SCRQM_INCLUDE,
123                        /// Render all except the queues in the special case list
124                        SCRQM_EXCLUDE
125                };
126    protected:
127
128        /// Queue of objects for rendering
129        RenderQueue* mRenderQueue;
130
131        /// Current ambient light, cached for RenderSystem
132        ColourValue mAmbientLight;
133
134        /// The rendering system to send the scene to
135        RenderSystem *mDestRenderSystem;
136
137        typedef std::map<String, Camera* > CameraList;
138
139        /** Central list of cameras - for easy memory management and lookup.
140        */
141        CameraList mCameras;
142
143        typedef std::map<String, Light* > SceneLightList;
144
145        /** Central list of lights - for easy memory management and lookup.
146        */
147        SceneLightList mLights;
148
149
150        typedef std::map<String, Entity* > EntityList;
151
152        /** Central list of entities - for easy memory management and lookup.
153        */
154        EntityList mEntities;
155
156        typedef std::map<String, BillboardSet* > BillboardSetList;
157
158        /** Central list of billboard sets - for easy memory management and lookup.
159        */
160        BillboardSetList mBillboardSets;
161
162                typedef std::map<String, StaticGeometry* > StaticGeometryList;
163                StaticGeometryList mStaticGeometryList;
164
165        typedef std::map<String, SceneNode*> SceneNodeList;
166
167        /** Central list of SceneNodes - for easy memory management.
168            @note
169                Note that this list is used only for memory management; the structure of the scene
170                is held using the hierarchy of SceneNodes starting with the root node. However you
171                can look up nodes this way.
172        */
173        SceneNodeList mSceneNodes;
174
175        /// Camera in progress
176        Camera* mCameraInProgress;
177        /// Current Viewport
178        Viewport* mCurrentViewport;
179
180        /// Root scene node
181        SceneNode* mSceneRoot;
182
183        /// Autotracking scene nodes
184        typedef std::set<SceneNode*> AutoTrackingSceneNodes;
185        AutoTrackingSceneNodes mAutoTrackingSceneNodes;
186
187        // Sky params
188        // Sky plane
189        Entity* mSkyPlaneEntity;
190        Entity* mSkyDomeEntity[5];
191        Entity* mSkyBoxEntity[6];
192
193        SceneNode* mSkyPlaneNode;
194        SceneNode* mSkyDomeNode;
195        SceneNode* mSkyBoxNode;
196
197        bool mSkyPlaneEnabled;
198        bool mSkyPlaneDrawFirst;
199        Plane mSkyPlane;
200        // Sky box
201        bool mSkyBoxEnabled;
202        bool mSkyBoxDrawFirst;
203        Quaternion mSkyBoxOrientation;
204        // Sky dome
205        bool mSkyDomeEnabled;
206        bool mSkyDomeDrawFirst;
207        Quaternion mSkyDomeOrientation;
208        // Fog
209        FogMode mFogMode;
210        ColourValue mFogColour;
211        Real mFogStart;
212        Real mFogEnd;
213        Real mFogDensity;
214
215                typedef std::set<RenderQueueGroupID> SpecialCaseRenderQueueList;
216                SpecialCaseRenderQueueList mSpecialCaseQueueList;
217                SpecialCaseRenderQueueMode mSpecialCaseQueueMode;
218                RenderQueueGroupID mWorldGeometryRenderQueue;
219
220        /** Internal method for initialising the render queue.
221        @remarks
222            Subclasses can use this to install their own RenderQueue implementation.
223        */
224        virtual void initRenderQueue(void);
225        /** Internal method for setting up the renderstate for a rendering pass.
226            @param
227                pass The Pass details to set.
228            @returns
229                A Pass object that was used instead of the one passed in, can
230                happen when rendering shadow passes
231        */
232        virtual Pass* setPass(Pass* pass);
233        /// A pass designed to let us render shadow colour on white for texture shadows
234        Pass* mShadowCasterPlainBlackPass;
235        /// A pass designed to let us render shadow receivers for texture shadows
236        Pass* mShadowReceiverPass;
237        /** Internal method for turning a regular pass into a shadow caster pass.
238        @remarks
239            This is only used for texture shadows, basically we're trying to
240            ensure that objects are rendered solid black.
241            This method will usually return the standard solid black pass for
242            all fixed function passes, but will merge in a vertex program
243            and fudge the AutpoParamDataSource to set black lighting for
244            passes with vertex programs.
245        */
246        Pass* deriveShadowCasterPass(Pass* pass);
247        /** Internal method for turning a regular pass into a shadow receiver pass.
248        @remarks
249        This is only used for texture shadows, basically we're trying to
250        ensure that objects are rendered with a projective texture.
251        This method will usually return a standard single-texture pass for
252        all fixed function passes, but will merge in a vertex program
253        for passes with vertex programs.
254        */
255        Pass* deriveShadowReceiverPass(Pass* pass);
256   
257        /** Internal method to validate whether a Pass should be allowed to render.
258        @remarks
259            Called just before a pass is about to be used for rendering a group to
260            allow the SceneManager to omit it if required. A return value of false
261            skips this pass.
262        */
263        bool validatePassForRendering(Pass* pass);
264
265        /** Internal method to validate whether a Renderable should be allowed to render.
266        @remarks
267        Called just before a pass is about to be used for rendering a Renderable to
268        allow the SceneManager to omit it if required. A return value of false
269        skips it.
270        */
271        bool validateRenderableForRendering(Pass* pass, Renderable* rend);
272
273        enum BoxPlane
274        {
275            BP_FRONT = 0,
276            BP_BACK = 1,
277            BP_LEFT = 2,
278            BP_RIGHT = 3,
279            BP_UP = 4,
280            BP_DOWN = 5
281        };
282
283        /* Internal utility method for creating the planes of a skybox.
284        */
285        MeshPtr createSkyboxPlane(
286            BoxPlane bp,
287            Real distance,
288            const Quaternion& orientation,
289            const String& groupName);
290
291        /* Internal utility method for creating the planes of a skydome.
292        */
293        MeshPtr createSkydomePlane(
294            BoxPlane bp,
295            Real curvature, Real tiling, Real distance,
296            const Quaternion& orientation,
297            int xsegments, int ysegments, int ySegmentsToKeep,
298            const String& groupName);
299
300        // Flag indicating whether SceneNodes will be rendered as a set of 3 axes
301        bool mDisplayNodes;
302
303        /// Storage of animations, lookup by name
304        typedef std::map<String, Animation*> AnimationList;
305        AnimationList mAnimationsList;
306        AnimationStateSet mAnimationStates;
307
308        /** Internal method used by _renderVisibleObjects to deal with renderables
309            which override the camera's own view / projection materices. */
310        void useRenderableViewProjMode(Renderable* pRend);
311
312        /// Controller flag for determining if we need to set view/proj matrices
313        bool mCamChanged;
314
315        typedef std::vector<RenderQueueListener*> RenderQueueListenerList;
316        RenderQueueListenerList mRenderQueueListeners;
317
318        /// Internal method for firing the queue start event, returns true if queue is to be skipped
319        bool fireRenderQueueStarted(RenderQueueGroupID id);
320        /// Internal method for firing the queue end event, returns true if queue is to be repeated
321        bool fireRenderQueueEnded(RenderQueueGroupID id);
322
323        /** Internal method for setting the destination viewport for the next render. */
324        virtual void setViewport(Viewport *vp);
325
326                /** Flag that indicates if all of the scene node's bounding boxes should be shown as a wireframe. */
327                bool mShowBoundingBoxes;       
328
329        /** Internal utility method for rendering a single object.
330        @remarks
331            Assumes that the pass has already been set up.
332        @param rend The renderable to issue to the pipeline
333        @param pass The pass which is being used
334        @param doLightIteration If true, this method will issue the renderable to
335            the pipeline possibly multiple times, if the pass indicates it should be
336            done once per light
337        @param manualLightList Only applicable if doLightIteration is false, this
338            method allows you to pass in a previously determined set of lights
339            which will be used for a single render of this object.
340        */
341        virtual void renderSingleObject(Renderable* rend, Pass* pass, bool doLightIteration,
342            const LightList* manualLightList = 0);
343
344        /// Utility class for calculating automatic parameters for gpu programs
345        AutoParamDataSource mAutoParamDataSource;
346
347        ShadowTechnique mShadowTechnique;
348        bool mDebugShadows;
349        ColourValue mShadowColour;
350        Pass* mShadowDebugPass;
351        Pass* mShadowStencilPass;
352        Pass* mShadowModulativePass;
353                bool mShadowMaterialInitDone;
354        LightList mLightsAffectingFrustum;
355        HardwareIndexBufferSharedPtr mShadowIndexBuffer;
356                size_t mShadowIndexBufferSize;
357        Rectangle2D* mFullScreenQuad;
358        Real mShadowDirLightExtrudeDist;
359        IlluminationRenderStage mIlluminationStage;
360        unsigned short mShadowTextureSize;
361        unsigned short mShadowTextureCount;
362                PixelFormat mShadowTextureFormat;
363        typedef std::vector<RenderTexture*> ShadowTextureList;
364        ShadowTextureList mShadowTextures;
365        RenderTexture* mCurrentShadowTexture;
366                bool mShadowUseInfiniteFarPlane;
367        /** Internal method for locating a list of lights which could be affecting the frustum.
368        @remarks
369            Custom scene managers are encouraged to override this method to make use of their
370            scene partitioning scheme to more efficiently locate lights, and to eliminate lights
371            which may be occluded by word geometry.
372        */
373        virtual void findLightsAffectingFrustum(const Camera* camera);
374        /// Internal method for setting up materials for shadows
375        virtual void initShadowVolumeMaterials(void);
376        /// Internal method for creating shadow textures (texture-based shadows)
377        virtual void createShadowTextures(unsigned short size, unsigned short count,
378                        PixelFormat fmt);
379        /// Internal method for preparing shadow textures ready for use in a regular render
380        virtual void prepareShadowTextures(Camera* cam, Viewport* vp);
381
382        /** Internal method for rendering all the objects for a given light into the
383            stencil buffer.
384        @param light The light source
385        @param cam The camera being viewed from
386        */
387        virtual void renderShadowVolumesToStencil(const Light* light, const Camera* cam);
388        /** Internal utility method for setting stencil state for rendering shadow volumes.
389        @param secondpass Is this the second pass?
390        @param zfail Should we be using the zfail method?
391        @param twosided Should we use a 2-sided stencil?
392        */
393        virtual void setShadowVolumeStencilState(bool secondpass, bool zfail, bool twosided);
394        /** Render a set of shadow renderables. */
395        void renderShadowVolumeObjects(ShadowCaster::ShadowRenderableListIterator iShadowRenderables,
396            Pass* pass, const LightList *manualLightList, unsigned long flags,
397            bool secondpass, bool zfail, bool twosided);
398        typedef std::vector<ShadowCaster*> ShadowCasterList;
399        ShadowCasterList mShadowCasterList;
400        SphereSceneQuery* mShadowCasterSphereQuery;
401        AxisAlignedBoxSceneQuery* mShadowCasterAABBQuery;
402        Real mShadowFarDist;
403        Real mShadowFarDistSquared;
404        Real mShadowTextureOffset; // proportion of texture offset in view direction e.g. 0.4
405        Real mShadowTextureFadeStart; // as a proportion e.g. 0.6
406        Real mShadowTextureFadeEnd; // as a proportion e.g. 0.9
407                bool mShadowTextureSelfShadow;
408                Pass* mShadowTextureCustomCasterPass;
409                Pass* mShadowTextureCustomReceiverPass;
410                String mShadowTextureCustomCasterVertexProgram;
411                String mShadowTextureCustomReceiverVertexProgram;
412                GpuProgramParametersSharedPtr mShadowTextureCustomCasterVPParams;
413                GpuProgramParametersSharedPtr mShadowTextureCustomReceiverVPParams;
414                bool mShadowTextureCasterVPDirty;
415                bool mShadowTextureReceiverVPDirty;
416
417
418        GpuProgramParametersSharedPtr mInfiniteExtrusionParams;
419        GpuProgramParametersSharedPtr mFiniteExtrusionParams;
420
421        /// Inner class to use as callback for shadow caster scene query
422        class _OgreExport ShadowCasterSceneQueryListener : public SceneQueryListener
423        {
424        protected:
425                        SceneManager* mSceneMgr;
426            ShadowCasterList* mCasterList;
427            bool mIsLightInFrustum;
428            const PlaneBoundedVolumeList* mLightClipVolumeList;
429            const Camera* mCamera;
430            const Light* mLight;
431            Real mFarDistSquared;
432        public:
433            ShadowCasterSceneQueryListener(SceneManager* sm) : mSceneMgr(sm),
434                                mCasterList(0), mIsLightInFrustum(false), mLightClipVolumeList(0),
435                mCamera(0) {}
436            // Prepare the listener for use with a set of parameters 
437            void prepare(bool lightInFrustum,
438                const PlaneBoundedVolumeList* lightClipVolumes,
439                const Light* light, const Camera* cam, ShadowCasterList* casterList,
440                Real farDistSquared)
441            {
442                mCasterList = casterList;
443                mIsLightInFrustum = lightInFrustum;
444                mLightClipVolumeList = lightClipVolumes;
445                mCamera = cam;
446                mLight = light;
447                mFarDistSquared = farDistSquared;
448            }
449            bool queryResult(MovableObject* object);
450            bool queryResult(SceneQuery::WorldFragment* fragment);
451        };
452
453        ShadowCasterSceneQueryListener* mShadowCasterQueryListener;
454
455        /** Internal method for locating a list of shadow casters which
456            could be affecting the frustum for a given light.
457        @remarks
458            Custom scene managers are encouraged to override this method to add optimisations,
459            and to add their own custom shadow casters (perhaps for world geometry)
460        */
461        virtual const ShadowCasterList& findShadowCastersForLight(const Light* light,
462            const Camera* camera);
463                /** Render the objects in a given queue group
464                */
465                virtual void renderQueueGroupObjects(RenderQueueGroup* group);
466        /** Render a group in the ordinary way */
467        virtual void renderBasicQueueGroupObjects(RenderQueueGroup* pGroup);
468                /** Render a group with the added complexity of additive stencil shadows. */
469                virtual void renderAdditiveStencilShadowedQueueGroupObjects(RenderQueueGroup* group);
470                /** Render a group with the added complexity of additive stencil shadows. */
471                virtual void renderModulativeStencilShadowedQueueGroupObjects(RenderQueueGroup* group);
472        /** Render a group rendering only shadow casters. */
473        virtual void renderTextureShadowCasterQueueGroupObjects(RenderQueueGroup* group);
474        /** Render a group rendering only shadow receivers. */
475        virtual void renderTextureShadowReceiverQueueGroupObjects(RenderQueueGroup* group);
476        /** Render a group with the added complexity of additive stencil shadows. */
477        virtual void renderModulativeTextureShadowedQueueGroupObjects(RenderQueueGroup* group);
478                /** Render a set of objects, see renderSingleObject for param definitions */
479                virtual void renderObjects(const RenderPriorityGroup::SolidRenderablePassMap& objs,
480            bool doLightIteration, const LightList* manualLightList = 0);
481        /** Render a set of objects, see renderSingleObject for param definitions */
482                virtual void renderObjects(const RenderPriorityGroup::TransparentRenderablePassList& objs,
483            bool doLightIteration, const LightList* manualLightList = 0);
484                /** Render those objects in the transparent pass list which have shadow casting forced on
485                @remarks
486                        This function is intended to be used to render the shadows of transparent objects which have
487                        transparency_casts_shadows set to 'on' in their material
488                */
489                virtual void renderTransparentShadowCasterObjects(const RenderPriorityGroup::TransparentRenderablePassList& objs,
490                        bool doLightIteration, const LightList* manualLightList = 0);
491
492    public:
493        /** Default constructor.
494        */
495        SceneManager();
496
497        /** Default destructor.
498        */
499        virtual ~SceneManager();
500
501        /** Creates a camera to be managed by this scene manager.
502            @remarks
503                This camera must be added to the scene at a later time using
504                the attachObject method of the SceneNode class.
505            @param
506                name Name to give the new camera.
507        */
508        virtual Camera* createCamera(const String& name);
509
510        /** Retrieves a pointer to the named camera.
511        */
512        virtual Camera* getCamera(const String& name);
513
514        /** Removes a camera from the scene.
515            @remarks
516                This method removes a previously added camera from the scene.
517                The camera is deleted so the caller must ensure no references
518                to it's previous instance (e.g. in a SceneNode) are used.
519            @param
520                cam Pointer to the camera to remove
521        */
522        virtual void removeCamera(Camera *cam);
523
524        /** Removes a camera from the scene.
525            @remarks
526                This method removes an camera from the scene based on the
527                camera's name rather than a pointer.
528        */
529        virtual void removeCamera(const String& name);
530
531        /** Removes (and destroys) all cameras from the scene.
532        */
533        virtual void removeAllCameras(void);
534
535        /** Creates a light for use in the scene.
536            @remarks
537                Lights can either be in a fixed position and independent of the
538                scene graph, or they can be attached to SceneNodes so they derive
539                their position from the parent node. Either way, they are created
540                using this method so that the SceneManager manages their
541                existence.
542            @param
543                name The name of the new light, to identify it later.
544        */
545        virtual Light* createLight(const String& name);
546
547        /** Returns a pointer to the named Light which has previously been added to the scene.
548        */
549        virtual Light* getLight(const String& name);
550
551        /** Removes the named light from the scene and destroys it.
552            @remarks
553                Any pointers held to this light after calling this method will be invalid.
554        */
555        virtual void removeLight(const String& name);
556
557        /** Removes the light from the scene and destroys it based on a pointer.
558            @remarks
559                Any pointers held to this light after calling this method will be invalid.
560        */
561        virtual void removeLight(Light* light);
562        /** Removes and destroys all lights in the scene.
563        */
564        virtual void removeAllLights(void);
565
566        /** Populate a light list with an ordered set of the lights which are closest
567        to the position specified.
568        @remarks
569            Note that since directional lights have no position, they are always considered
570            closer than any point lights and as such will always take precedence.
571        @par
572            Subclasses of the default SceneManager may wish to take into account other issues
573            such as possible visibility of the light if that information is included in their
574            data structures. This basic scenemanager simply orders by distance, eliminating
575            those lights which are out of range.
576        @par
577            The number of items in the list max exceed the maximum number of lights supported
578            by the renderer, but the extraneous ones will never be used. In fact the limit will
579            be imposed by Pass::getMaxSimultaneousLights.
580        @param position The position at which to evaluate the list of lights
581        @param radius The bounding radius to test
582        @param destList List to be populated with ordered set of lights; will be cleared by
583            this method before population.
584        */
585        virtual void _populateLightList(const Vector3& position, Real radius, LightList& destList);
586
587
588        /** Creates an instance of a SceneNode.
589            @remarks
590                Note that this does not add the SceneNode to the scene hierarchy.
591                This method is for convenience, since it allows an instance to
592                be created for which the SceneManager is responsible for
593                allocating and releasing memory, which is convenient in complex
594                scenes.
595            @par
596                To include the returned SceneNode in the scene, use the addChild
597                method of the SceneNode which is to be it's parent.
598            @par
599                Note that this method takes no parameters, and the node created is unnamed (it is
600                actually given a generated name, which you can retrieve if you want).
601                If you wish to create a node with a specific name, call the alternative method
602                which takes a name parameter.
603        */
604        virtual SceneNode* createSceneNode(void);
605
606        /** Creates an instance of a SceneNode with a given name.
607            @remarks
608                Note that this does not add the SceneNode to the scene hierarchy.
609                This method is for convenience, since it allows an instance to
610                be created for which the SceneManager is responsible for
611                allocating and releasing memory, which is convenient in complex
612                scenes.
613            @par
614                To include the returned SceneNode in the scene, use the addChild
615                method of the SceneNode which is to be it's parent.
616            @par
617                Note that this method takes a name parameter, which makes the node easier to
618                retrieve directly again later.
619        */
620        virtual SceneNode* createSceneNode(const String& name);
621
622        /** Destroys a SceneNode with a given name.
623        @remarks
624            This allows you to physically delete an individual SceneNode if you want to.
625            Note that this is not normally recommended, it's better to allow SceneManager
626            to delete the nodes when the scene is cleared.
627        */
628        virtual void destroySceneNode(const String& name);
629
630        /** Gets the SceneNode at the root of the scene hierarchy.
631            @remarks
632                The entire scene is held as a hierarchy of nodes, which
633                allows things like relative transforms, general changes in
634                rendering state etc (See the SceneNode class for more info).
635                In this basic SceneManager class, the application using
636                Ogre is free to structure this hierarchy however it likes,
637                since it has no real significance apart from making transforms
638                relative to each node (more specialised subclasses will
639                provide utility methods for building specific node structures
640                e.g. loading a BSP tree).
641            @par
642                However, in all cases there is only ever one root node of
643                the hierarchy, and this method returns a pointer to it.
644        */
645        virtual SceneNode* getRootSceneNode(void) const;
646
647        /** Retrieves a named SceneNode from the scene graph.
648        @remarks
649            If you chose to name a SceneNode as you created it, or if you
650            happened to make a note of the generated name, you can look it
651            up wherever it is in the scene graph using this method.
652        */
653        virtual SceneNode* getSceneNode(const String& name) const;
654
655        /** Create an Entity (instance of a discrete mesh).
656            @param
657                entityName The name to be given to the entity (must be unique).
658            @param
659                meshName The name of the Mesh it is to be based on (e.g. 'knot.oof'). The
660                mesh will be loaded if it is not already.
661        */
662        virtual Entity* createEntity(const String& entityName, const String& meshName);
663
664        /** Prefab shapes available without loading a model.
665            @note
666                Minimal implementation at present.
667            @todo
668                Add more prefabs (teapots, teapots!!!)
669        */
670        enum PrefabType {
671            PT_PLANE
672        };
673
674        /** Create an Entity (instance of a discrete mesh) from a range of prefab shapes.
675            @param
676                entityName The name to be given to the entity (must be unique).
677            @param
678                ptype The prefab type.
679        */
680        virtual Entity* createEntity(const String& entityName, PrefabType ptype);
681        /** Retrieves a pointer to the named Entity. */
682        virtual Entity* getEntity(const String& name);
683
684        /** Removes & destroys an Entity from the SceneManager.
685            @warning
686                Must only be done if the Entity is not attached
687                to a SceneNode. It may be safer to wait to clear the whole
688                scene if you are unsure use clearScene.
689            @see
690                SceneManager::clearScene
691        */
692        virtual void removeEntity(Entity* ent);
693
694        /** Removes & destroys an Entity from the SceneManager by name.
695            @warning
696                Must only be done if the Entity is not attached
697                to a SceneNode. It may be safer to wait to clear the whole
698                scene if you are unsure use clearScene.
699            @see
700                SceneManager::clearScene
701        */
702        virtual void removeEntity(const String& name);
703
704        /** Removes & destroys all Entities.
705            @warning
706                Again, use caution since no Entity must be referred to
707                elsewhere e.g. attached to a SceneNode otherwise a crash
708                is likely. Use clearScene if you are unsure (it clears SceneNode
709                entries too.)
710            @see
711                SceneManager::clearScene
712        */
713        virtual void removeAllEntities(void);
714
715        /** Empties the entire scene, inluding all SceneNodes, Entities, Lights,
716            BillboardSets etc. Cameras are not deleted at this stage since
717            they are still referenced by viewports, which are not destroyed during
718            this process.
719        */
720        virtual void clearScene(void);
721
722        /** Sets the ambient light level to be used for the scene.
723            @remarks
724                This sets the colour and intensity of the ambient light in the scene, i.e. the
725                light which is 'sourceless' and illuminates all objects equally.
726                The colour of an object is affected by a combination of the light in the scene,
727                and the amount of light that object reflects (in this case based on the Material::ambient
728                property).
729            @remarks
730                By default the ambient light in the scene is ColourValue::Black, i.e. no ambient light. This
731                means that any objects rendered with a Material which has lighting enabled (see Material::setLightingEnabled)
732                will not be visible unless you have some dynamic lights in your scene.
733        */
734        void setAmbientLight(const ColourValue& colour);
735
736        /** Returns the ambient light level to be used for the scene.
737        */
738        const ColourValue& getAmbientLight(void) const;
739
740        /** Sets the source of the 'world' geometry, i.e. the large, mainly static geometry
741            making up the world e.g. rooms, landscape etc.
742            @remarks
743                Depending on the type of SceneManager (subclasses will be specialised
744                for particular world geometry types) you have requested via the Root or
745                SceneManagerEnumerator classes, you can pass a filename to this method and it
746                will attempt to load the world-level geometry for use. If you try to load
747                an inappropriate type of world data an exception will be thrown. The default
748                SceneManager cannot handle any sort of world geometry and so will always
749                throw an exception. However subclasses like BspSceneManager can load
750                particular types of world geometry e.g. "q3dm1.bsp".
751            @par
752                World geometry will be loaded via the 'common' resource paths and archives set in the
753                ResourceManager class.
754        */
755        virtual void setWorldGeometry(const String& filename);
756
757        /** Estimate the number of loading stages required to load the named
758            world geometry.
759        @remarks
760            This method should be overridden by SceneManagers that provide
761            custom world geometry that can take some time to load. They should
762            return from this method a count of the number of stages of progress
763            they can report on whilst loading. During real loading (setWorldGeomtry),
764            they should call ResourceGroupManager::_notifyWorldGeometryProgress exactly
765            that number of times when loading the geometry for real.
766        @note
767            The default is to return 0, ie to not report progress.
768        */
769        virtual size_t estimateWorldGeometry(const String& filename) { return 0; }
770
771        /** Asks the SceneManager to provide a suggested viewpoint from which the scene should be viewed.
772            @remarks
773                Typically this method returns the origin unless a) world geometry has been loaded using
774                SceneManager::setWorldGeometry and b) that world geometry has suggested 'start' points.
775                If there is more than one viewpoint which the scene manager can suggest, it will always suggest
776                the first one unless the random parameter is true.
777            @param
778                random If true, and there is more than one possible suggestion, a random one will be used. If false
779                the same one will always be suggested.
780            @return
781                On success, true is returned.
782            @par
783                On failiure, false is returned.
784        */
785        virtual ViewPoint getSuggestedViewpoint(bool random = false);
786
787        /** Method for setting a specific option of the Scene Manager. These options are usually
788            specific for a certain implemntation of the Scene Manager class, and may (and probably
789            will) not exist across different implementations.
790            @param
791                strKey The name of the option to set
792            @param
793                pValue A pointer to the value - the size should be calculated by the scene manager
794                based on the key
795            @return
796                On success, true is returned.
797            @par
798                On failiure, false is returned.
799        */
800        virtual bool setOption( const String& strKey, const void* pValue ) { return false; }
801
802        /** Method for getting the value of an implementation-specific Scene Manager option.
803            @param
804                strKey The name of the option
805            @param
806                pDestValue A pointer to a memory location where the value will
807                be copied. Currently, the memory will be allocated by the
808                scene manager, but this may change
809            @return
810                On success, true is returned and pDestValue points to the value of the given
811                option.
812            @par
813                On failiure, false is returned and pDestValue is set to NULL.
814        */
815        virtual bool getOption( const String& strKey, void* pDestValue ) { return false; }
816
817        /** Method for verifying wether the scene manager has an implementation-specific
818            option.
819            @param
820                strKey The name of the option to check for.
821            @return
822                If the scene manager contains the given option, true is returned.
823            @remarks
824                If it does not, false is returned.
825        */
826        virtual bool hasOption( const String& strKey ) const { return false; }
827        /** Method for getting all possible values for a specific option. When this list is too large
828            (i.e. the option expects, for example, a float), the return value will be true, but the
829            list will contain just one element whose size will be set to 0.
830            Otherwise, the list will be filled with all the possible values the option can
831            accept.
832            @param
833                strKey The name of the option to get the values for.
834            @param
835                refValueList A reference to a list that will be filled with the available values.
836            @return
837                On success (the option exists), true is returned.
838            @par
839                On failure, false is returned.
840        */
841        virtual bool getOptionValues( const String& strKey, StringVector& refValueList ) { return false; }
842
843        /** Method for getting all the implementation-specific options of the scene manager.
844            @param
845                refKeys A reference to a list that will be filled with all the available options.
846            @return
847                On success, true is returned. On failiure, false is returned.
848        */
849        virtual bool getOptionKeys( StringVector& refKeys ) { return false; }
850
851        /** Internal method for updating the scene graph ie the tree of SceneNode instances managed by this class.
852            @remarks
853                This must be done before issuing objects to the rendering pipeline, since derived transformations from
854                parent nodes are not updated until required. This SceneManager is a basic implementation which simply
855                updates all nodes from the root. This ensures the scene is up to date but requires all the nodes
856                to be updated even if they are not visible. Subclasses could trim this such that only potentially visible
857                nodes are updated.
858        */
859        virtual void _updateSceneGraph(Camera* cam);
860
861        /** Internal method which parses the scene to find visible objects to render.
862            @remarks
863                If you're implementing a custom scene manager, this is the most important method to
864                override since it's here you can apply your custom world partitioning scheme. Once you
865                have added the appropriate objects to the render queue, you can let the default
866                SceneManager objects _renderVisibleObjects handle the actual rendering of the objects
867                you pick.
868            @par
869                Any visible objects will be added to a rendering queue, which is indexed by material in order
870                to ensure objects with the same material are rendered together to minimise render state changes.
871        */
872        virtual void _findVisibleObjects(Camera* cam, bool onlyShadowCasters);
873
874        /** Internal method for applying animations to scene nodes.
875        @remarks
876            Uses the internally stored AnimationState objects to apply animation to SceneNodes.
877        */
878        virtual void _applySceneAnimations(void);
879
880        /** Sends visible objects found in _findVisibleObjects to the rendering engine.
881        */
882        virtual void _renderVisibleObjects(void);
883
884        /** Prompts the class to send its contents to the renderer.
885            @remarks
886                This method prompts the scene manager to send the
887                contents of the scene it manages to the rendering
888                pipeline, possibly preceded by some sorting, culling
889                or other scene management tasks. Note that this method is not normally called
890                directly by the user application; it is called automatically
891                by the Ogre rendering loop.
892            @param camera Pointer to a camera from whose viewpoint the scene is to
893                be rendered.
894            @param vp The target viewport
895            @param includeOverlays Whether or not overlay objects should be rendered
896        */
897        virtual void _renderScene(Camera* camera, Viewport* vp, bool includeOverlays);
898
899        /** Internal method for queueing the sky objects with the params as
900            previously set through setSkyBox, setSkyPlane and setSkyDome.
901        */
902        virtual void _queueSkiesForRendering(Camera* cam);
903
904
905
906        /** Notifies the scene manager of its destination render system
907            @remarks
908                Called automatically by RenderSystem::addSceneManager
909                this method simply notifies the manager of the render
910                system to which its output must be directed.
911            @param
912                sys Pointer to the RenderSystem subclass to be used as a render target.
913        */
914        virtual void _setDestinationRenderSystem(RenderSystem* sys);
915
916        /** Enables / disables a 'sky plane' i.e. a plane at constant
917            distance from the camera representing the sky.
918            @remarks
919                You can create sky planes yourself using the standard mesh and
920                entity methods, but this creates a plane which the camera can
921                never get closer or further away from - it moves with the camera.
922                (NB you could create this effect by creating a world plane which
923                was attached to the same SceneNode as the Camera too, but this
924                would only apply to a single camera whereas this plane applies to
925                any camera using this scene manager).
926            @note
927                To apply scaling, scrolls etc to the sky texture(s) you
928                should use the TextureUnitState class methods.
929            @param
930                enable True to enable the plane, false to disable it
931            @param
932                plane Details of the plane, i.e. it's normal and it's
933                distance from the camera.
934            @param
935                materialName The name of the material the plane will use
936            @param
937                scale The scaling applied to the sky plane - higher values
938                mean a bigger sky plane - you may want to tweak this
939                depending on the size of plane.d and the other
940                characteristics of your scene
941            @param
942                tiling How many times to tile the texture across the sky.
943                Applies to all texture layers. If you need finer control use
944                the TextureUnitState texture coordinate transformation methods.
945            @param
946                drawFirst If true, the plane is drawn before all other
947                geometry in the scene, without updating the depth buffer.
948                This is the safest rendering method since all other objects
949                will always appear in front of the sky. However this is not
950                the most efficient way if most of the sky is often occluded
951                by other objects. If this is the case, you can set this
952                parameter to false meaning it draws <em>after</em> all other
953                geometry which can be an optimisation - however you must
954                ensure that the plane.d value is large enough that no objects
955                will 'poke through' the sky plane when it is rendered.
956                        @param
957                                bow If zero, the plane will be completely flat (like previous
958                                versions.  If above zero, the plane will be curved, allowing
959                                the sky to appear below camera level.  Curved sky planes are
960                                simular to skydomes, but are more compatable with fog.
961            @param xsegments, ysegments
962                Determines the number of segments the plane will have to it. This
963                is most important when you are bowing the plane, but may also be useful
964                if you need tesselation on the plane to perform per-vertex effects.
965            @param groupName
966                The name of the resource group to which to assign the plane mesh.
967        */
968        virtual void setSkyPlane(
969            bool enable,
970            const Plane& plane, const String& materialName, Real scale = 1000,
971            Real tiling = 10, bool drawFirst = true, Real bow = 0,
972            int xsegments = 1, int ysegments = 1,
973            const String& groupName = ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME);
974
975        /** Enables / disables a 'sky box' i.e. a 6-sided box at constant
976            distance from the camera representing the sky.
977            @remarks
978                You could create a sky box yourself using the standard mesh and
979                entity methods, but this creates a plane which the camera can
980                never get closer or further away from - it moves with the camera.
981                (NB you could create this effect by creating a world box which
982                was attached to the same SceneNode as the Camera too, but this
983                would only apply to a single camera whereas this skybox applies
984                to any camera using this scene manager).
985            @par
986                The material you use for the skybox can either contain layers
987                which are single textures, or they can be cubic textures, i.e.
988                made up of 6 images, one for each plane of the cube. See the
989                TextureUnitState class for more information.
990            @param
991                enable True to enable the skybox, false to disable it
992            @param
993                materialName The name of the material the box will use
994            @param
995                distance Distance in world coorinates from the camera to
996                each plane of the box. The default is normally OK.
997            @param
998                drawFirst If true, the box is drawn before all other
999                geometry in the scene, without updating the depth buffer.
1000                This is the safest rendering method since all other objects
1001                will always appear in front of the sky. However this is not
1002                the most efficient way if most of the sky is often occluded
1003                by other objects. If this is the case, you can set this
1004                parameter to false meaning it draws <em>after</em> all other
1005                geometry which can be an optimisation - however you must
1006                ensure that the distance value is large enough that no
1007                objects will 'poke through' the sky box when it is rendered.
1008            @param
1009                orientation Optional parameter to specify the orientation
1010                of the box. By default the 'top' of the box is deemed to be
1011                in the +y direction, and the 'front' at the -z direction.
1012                You can use this parameter to rotate the sky if you want.
1013            @param groupName
1014                The name of the resource group to which to assign the plane mesh.
1015        */
1016        virtual void setSkyBox(
1017            bool enable, const String& materialName, Real distance = 5000,
1018            bool drawFirst = true, const Quaternion& orientation = Quaternion::IDENTITY,
1019            const String& groupName = ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME);
1020
1021        /** Enables / disables a 'sky dome' i.e. an illusion of a curved sky.
1022            @remarks
1023                A sky dome is actually formed by 5 sides of a cube, but with
1024                texture coordinates generated such that the surface appears
1025                curved like a dome. Sky domes are appropriate where you need a
1026                realistic looking sky where the scene is not going to be
1027                'fogged', and there is always a 'floor' of some sort to prevent
1028                the viewer looking below the horizon (the distortion effect below
1029                the horizon can be pretty horrible, and there is never anyhting
1030                directly below the viewer). If you need a complete wrap-around
1031                background, use the setSkyBox method instead. You can actually
1032                combine a sky box and a sky dome if you want, to give a positional
1033                backdrop with an overlayed curved cloud layer.
1034            @par
1035                Sky domes work well with 2D repeating textures like clouds. You
1036                can change the apparant 'curvature' of the sky depending on how
1037                your scene is viewed - lower curvatures are better for 'open'
1038                scenes like landscapes, whilst higher curvatures are better for
1039                say FPS levels where you don't see a lot of the sky at once and
1040                the exaggerated curve looks good.
1041            @param
1042                enable True to enable the skydome, false to disable it
1043            @param
1044                materialName The name of the material the dome will use
1045            @param
1046                curvature The curvature of the dome. Good values are
1047                between 2 and 65. Higher values are more curved leading to
1048                a smoother effect, lower values are less curved meaning
1049                more distortion at the horizons but a better distance effect.
1050            @param
1051                tiling How many times to tile the texture(s) across the
1052                dome.
1053            @param
1054                distance Distance in world coorinates from the camera to
1055                each plane of the box the dome is rendered on. The default
1056                is normally OK.
1057            @param
1058                drawFirst If true, the dome is drawn before all other
1059                geometry in the scene, without updating the depth buffer.
1060                This is the safest rendering method since all other objects
1061                will always appear in front of the sky. However this is not
1062                the most efficient way if most of the sky is often occluded
1063                by other objects. If this is the case, you can set this
1064                parameter to false meaning it draws <em>after</em> all other
1065                geometry which can be an optimisation - however you must
1066                ensure that the distance value is large enough that no
1067                objects will 'poke through' the sky when it is rendered.
1068            @param
1069                orientation Optional parameter to specify the orientation
1070                of the dome. By default the 'top' of the dome is deemed to
1071                be in the +y direction, and the 'front' at the -z direction.
1072                You can use this parameter to rotate the sky if you want.
1073            @param groupName
1074                The name of the resource group to which to assign the plane mesh.
1075        */
1076        virtual void setSkyDome(
1077            bool enable, const String& materialName, Real curvature = 10,
1078            Real tiling = 8, Real distance = 4000, bool drawFirst = true,
1079            const Quaternion& orientation = Quaternion::IDENTITY,
1080            int xsegments = 16, int ysegments = 16, int ysegments_keep = -1,
1081            const String& groupName = ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME);
1082
1083        /** Sets the fogging mode applied to the scene.
1084            @remarks
1085                This method sets up the scene-wide fogging effect. These settings
1086                apply to all geometry rendered, UNLESS the material with which it
1087                is rendered has it's own fog settings (see Material::setFog).
1088            @param
1089                mode Set up the mode of fog as described in the FogMode
1090                enum, or set to FOG_NONE to turn off.
1091            @param
1092                colour The colour of the fog. Either set this to the same
1093                as your viewport background colour, or to blend in with a
1094                skydome or skybox.
1095            @param
1096                expDensity The density of the fog in FOG_EXP or FOG_EXP2
1097                mode, as a value between 0 and 1. The default is 0.001.
1098            @param
1099                linearStart Distance in world units at which linear fog starts to
1100                encroach. Only applicable if mode is
1101                FOG_LINEAR.
1102            @param
1103                linearEnd Distance in world units at which linear fog becomes completely
1104                opaque. Only applicable if mode is
1105                FOG_LINEAR.
1106        */
1107        void setFog(
1108            FogMode mode = FOG_NONE, const ColourValue& colour = ColourValue::White,
1109            Real expDensity = 0.001, Real linearStart = 0.0, Real linearEnd = 1.0);
1110
1111        /** Returns the fog mode for the scene.
1112        */
1113        virtual FogMode getFogMode(void) const;
1114
1115        /** Returns the fog colour for the scene.
1116        */
1117        virtual const ColourValue& getFogColour(void) const;
1118
1119        /** Returns the fog start distance for the scene.
1120        */
1121        virtual Real getFogStart(void) const;
1122
1123        /** Returns the fog end distance for the scene.
1124        */
1125        virtual Real getFogEnd(void) const;
1126
1127        /** Returns the fog density for the scene.
1128        */
1129        virtual Real getFogDensity(void) const;
1130
1131
1132        /** Creates a new BillboardSet for use with this scene manager.
1133            @remarks
1134                This method creates a new BillboardSet which is registered with
1135                the SceneManager. The SceneManager will destroy this object when
1136                it shuts down or when the SceneManager::clearScene method is
1137                called, so the caller does not have to worry about destroying
1138                this object (in fact, it definitely should not do this).
1139            @par
1140                See the BillboardSet documentations for full details of the
1141                returned class.
1142            @param
1143                name The name to give to this billboard set. Must be unique.
1144            @param
1145                poolSize The initial size of the pool of billboards (see BillboardSet for more information)
1146            @see
1147                BillboardSet
1148        */
1149        virtual BillboardSet* createBillboardSet(const String& name, unsigned int poolSize = 20);
1150
1151        /** Retrieves a pointer to the named BillboardSet.
1152        */
1153        virtual BillboardSet* getBillboardSet(const String& name);
1154
1155        /** Removes & destroys an BillboardSet from the SceneManager.
1156            @warning
1157                Must only be done if the BillboardSet is not attached
1158                to a SceneNode. It may be safer to wait to clear the whole
1159                scene. If you are unsure, use clearScene.
1160        */
1161        virtual void removeBillboardSet(BillboardSet* set);
1162
1163        /** Removes & destroys an BillboardSet from the SceneManager by name.
1164            @warning
1165                Must only be done if the BillboardSet is not attached
1166                to a SceneNode. It may be safer to wait to clear the whole
1167                scene. If you are unsure, use clearScene.
1168        */
1169        virtual void removeBillboardSet(const String& name);
1170
1171        /** Removes & destroys all BillboardSets.
1172        @warning
1173        Again, use caution since no BillboardSet must be referred to
1174        elsewhere e.g. attached to a SceneNode otherwise a crash
1175        is likely. Use clearScene if you are unsure (it clears SceneNode
1176        entries too.)
1177        @see
1178        SceneManager::clearScene
1179        */
1180        virtual void removeAllBillboardSets(void);
1181
1182        /** Tells the SceneManager whether it should render the SceneNodes which
1183            make up the scene as well as the objects in the scene.
1184        @remarks
1185            This method is mainly for debugging purposes. If you set this to 'true',
1186            each node will be rendered as a set of 3 axes to allow you to easily see
1187            the orientation of the nodes.
1188        */
1189        virtual void setDisplaySceneNodes(bool display);
1190
1191        /** Creates an animation which can be used to animate scene nodes.
1192        @remarks
1193            An animation is a collection of 'tracks' which over time change the position / orientation
1194            of Node objects. In this case, the animation will likely have tracks to modify the position
1195            / orientation of SceneNode objects, e.g. to make objects move along a path.
1196        @par
1197            You don't need to use an Animation object to move objects around - you can do it yourself
1198            using the methods of the Node in your FrameListener class. However, when you need relatively
1199            complex scripted animation, this is the class to use since it will interpolate between
1200            keyframes for you and generally make the whole process easier to manage.
1201        @par
1202            A single animation can affect multiple Node objects (each AnimationTrack affects a single Node).
1203            In addition, through animation blending a single Node can be affected by multiple animations,
1204            athough this is more useful when performing skeletal animation (see Skeleton::createAnimation).
1205        @par
1206            Note that whilst it uses the same classes, the animations created here are kept separate from the
1207            skeletal animations of meshes (each Skeleton owns those animations).
1208        @param name The name of the animation, must be unique within this SceneManager.
1209        @param length The total length of the animation.
1210        */
1211        virtual Animation* createAnimation(const String& name, Real length);
1212
1213        /** Looks up an Animation object previously created with createAnimation. */
1214        virtual Animation* getAnimation(const String& name) const;
1215
1216        /** Destroys an Animation.
1217        @remarks
1218            You should ensure that none of your code is referencing this animation objects since the
1219            memory will be freed.
1220        */
1221        virtual void destroyAnimation(const String& name);
1222
1223        /** Removes all animations created using this SceneManager. */
1224        virtual void destroyAllAnimations(void);
1225
1226        /** Create an AnimationState object for managing application of animations.
1227        @remarks
1228            You can create Animation objects for animating SceneNode obejcts using the
1229            createAnimation method. However, in order to actually apply those animations
1230            you have to call methods on Node and Animation in a particular order (namely
1231            Node::resetToInitialState and Animation::apply). To make this easier and to
1232            help track the current time position of animations, the AnimationState object
1233            is provided. </p>
1234            So if you don't want to control animation application manually, call this method,
1235            update the returned object as you like every frame and let SceneManager apply
1236            the animation state for you.
1237        @par
1238            Remember, AnimationState objects are disabled by default at creation time.
1239            Turn them on when you want them using their setEnabled method.
1240        @par
1241            Note that any SceneNode affected by this automatic animation will have it's state
1242            reset to it's initial position before application of the animation. Unless specifically
1243            modified using Node::setInitialState the Node assumes it's initial state is at the
1244            origin. If you want the base state of the SceneNode to be elsewhere, make your changes
1245            to the node using the standard transform methods, then call setInitialState to
1246            'bake' this reference position into the node.
1247        @param animName The name of an animation created already with createAnimation.
1248        */
1249        virtual AnimationState* createAnimationState(const String& animName);
1250
1251        /** Retrieves animation state as previously created using createAnimationState */
1252        virtual AnimationState* getAnimationState(const String& animName);
1253
1254        /** Destroys an AnimationState.
1255        @remarks
1256            You should ensure that none of your code is referencing this animation
1257            state object since the memory will be freed.
1258        */
1259        virtual void destroyAnimationState(const String& name);
1260
1261        /** Removes all animation states created using this SceneManager. */
1262        virtual void destroyAllAnimationStates(void);
1263
1264        /** Manual rendering method, for advanced users only.
1265        @remarks
1266            This method allows you to send rendering commands through the pipeline on
1267            demand, bypassing OGRE's normal world processing. You should only use this if you
1268            really know what you're doing; OGRE does lots of things for you that you really should
1269            let it do. However, there are times where it may be useful to have this manual interface,
1270            for example overlaying something on top of the scene rendered by OGRE.
1271        @par
1272            Because this is an instant rendering method, timing is important. The best
1273            time to call it is from a RenderTargetListener event handler.
1274        @par
1275            Don't call this method a lot, it's designed for rare (1 or 2 times per frame) use.
1276            Calling it regularly per frame will cause frame rate drops!
1277        @param rend A RenderOperation object describing the rendering op
1278        @param pass The Pass to use for this render
1279        @param vp Pointer to the viewport to render to
1280        @param worldMatrix The transform to apply from object to world space
1281        @param viewMatrix The transform to apply from world to view space
1282        @param projMatrix The transform to apply from view to screen space
1283        @param doBeginEndFrame If true, beginFrame() and endFrame() are called,
1284            otherwise not. You should leave this as false if you are calling
1285            this within the main render loop.
1286        */
1287        virtual void manualRender(RenderOperation* rend, Pass* pass, Viewport* vp,
1288            const Matrix4& worldMatrix, const Matrix4& viewMatrix, const Matrix4& projMatrix,
1289            bool doBeginEndFrame = false) ;
1290
1291        /** Retrieves the internal render queue, for advanced users only.
1292        @remarks
1293            The render queue is mainly used internally to manage the scene object
1294                        rendering queue, it also exports some methods to allow advanced users
1295                        to configure the behavior of rendering process.
1296            Most methods provided by RenderQueue are supposed to be used
1297                        internally only, you should reference to the RenderQueue API for
1298                        more information. Do not access this directly unless you know what
1299                        you are doing.
1300        */
1301        virtual RenderQueue* getRenderQueue(void);
1302
1303        /** Registers a new RenderQueueListener which will be notified when render queues
1304            are processed.
1305        */
1306        virtual void addRenderQueueListener(RenderQueueListener* newListener);
1307
1308        /** Removes a listener previously added with addRenderQueueListener. */
1309        virtual void removeRenderQueueListener(RenderQueueListener* delListener);
1310
1311                /** Adds an item to the 'special case' render queue list.
1312                @remarks
1313                        Normally all render queues are rendered, in their usual sequence,
1314                        only varying if a RenderQueueListener nominates for the queue to be
1315                        repeated or skipped. This method allows you to add a render queue to
1316                        a 'special case' list, which varies the behaviour. The effect of this
1317                        list depends on the 'mode' in which this list is in, which might be
1318                        to exclude these render queues, or to include them alone (excluding
1319                        all other queues). This allows you to perform broad selective
1320                        rendering without requiring a RenderQueueListener.
1321                @param qid The identifier of the queue which should be added to the
1322                        special case list. Nothing happens if the queue is already in the list.
1323                */
1324                virtual void addSpecialCaseRenderQueue(RenderQueueGroupID qid);
1325                /** Removes an item to the 'special case' render queue list.
1326                @see SceneManager::addSpecialCaseRenderQueue
1327                @param qid The identifier of the queue which should be removed from the
1328                        special case list. Nothing happens if the queue is not in the list.
1329                */
1330                virtual void removeSpecialCaseRenderQueue(RenderQueueGroupID qid);
1331                /** Clears the 'special case' render queue list.
1332                @see SceneManager::addSpecialCaseRenderQueue
1333                */
1334                virtual void clearSpecialCaseRenderQueues(void);
1335                /** Sets the way the special case render queue list is processed.
1336                @see SceneManager::addSpecialCaseRenderQueue
1337                @param mode The mode of processing
1338                */
1339                virtual void setSpecialCaseRenderQueueMode(SpecialCaseRenderQueueMode mode);
1340                /** Gets the way the special case render queue list is processed. */
1341                virtual SpecialCaseRenderQueueMode getSpecialCaseRenderQueueMode(void);
1342                /** Returns whether or not the named queue will be rendered based on the
1343                        current 'special case' render queue list and mode.
1344                @see SceneManager::addSpecialCaseRenderQueue
1345                @param qid The identifier of the queue which should be tested
1346                @returns true if the queue will be rendered, false otherwise
1347                */
1348                virtual bool isRenderQueueToBeProcessed(RenderQueueGroupID qid);
1349
1350                /** Sets the render queue that the world geometry (if any) this SceneManager
1351                        renders will be associated with.
1352                @remarks
1353                        SceneManagers which provide 'world geometry' should place it in a
1354                        specialised render queue in order to make it possible to enable /
1355                        disable it easily using the addSpecialCaseRenderQueue method. Even
1356                        if the SceneManager does not use the render queues to render the
1357                        world geometry, it should still pick a queue to represent it's manual
1358                        rendering, and check isRenderQueueToBeProcessed before rendering.
1359                @note
1360                        Setting this may not affect the actual ordering of rendering the
1361                        world geometry, if the world geometry is being rendered manually
1362                        by the SceneManager. If the SceneManager feeds world geometry into
1363                        the queues, however, the ordering will be affected.
1364                */
1365                virtual void setWorldGeometryRenderQueue(RenderQueueGroupID qid);
1366                /** Gets the render queue that the world geometry (if any) this SceneManager
1367                        renders will be associated with.
1368                @remarks
1369                        SceneManagers which provide 'world geometry' should place it in a
1370                        specialised render queue in order to make it possible to enable /
1371                        disable it easily using the addSpecialCaseRenderQueue method. Even
1372                        if the SceneManager does not use the render queues to render the
1373                        world geometry, it should still pick a queue to represent it's manual
1374                        rendering, and check isRenderQueueToBeProcessed before rendering.
1375                */
1376                virtual RenderQueueGroupID getWorldGeometryRenderQueue(void);
1377
1378                /** Allows all bounding boxes of scene nodes to be displayed. */
1379                virtual void showBoundingBoxes(bool bShow);
1380
1381                /** Returns if all bounding boxes of scene nodes are to be displayed */
1382                virtual bool getShowBoundingBoxes() const;
1383
1384        /** Internal method for notifying the manager that a SceneNode is autotracking. */
1385        virtual void _notifyAutotrackingSceneNode(SceneNode* node, bool autoTrack);
1386
1387       
1388        /** Creates an AxisAlignedBoxSceneQuery for this scene manager.
1389        @remarks
1390            This method creates a new instance of a query object for this scene manager,
1391            for an axis aligned box region. See SceneQuery and AxisAlignedBoxSceneQuery
1392            for full details.
1393        @par
1394            The instance returned from this method must be destroyed by calling
1395            SceneManager::destroyQuery when it is no longer required.
1396        @param box Details of the box which describes the region for this query.
1397        @param mask The query mask to apply to this query; can be used to filter out
1398            certain objects; see SceneQuery for details.
1399        */
1400        virtual AxisAlignedBoxSceneQuery*
1401            createAABBQuery(const AxisAlignedBox& box, unsigned long mask = 0xFFFFFFFF);
1402        /** Creates a SphereSceneQuery for this scene manager.
1403        @remarks
1404            This method creates a new instance of a query object for this scene manager,
1405            for a spherical region. See SceneQuery and SphereSceneQuery
1406            for full details.
1407        @par
1408            The instance returned from this method must be destroyed by calling
1409            SceneManager::destroyQuery when it is no longer required.
1410        @param sphere Details of the sphere which describes the region for this query.
1411        @param mask The query mask to apply to this query; can be used to filter out
1412            certain objects; see SceneQuery for details.
1413        */
1414        virtual SphereSceneQuery*
1415            createSphereQuery(const Sphere& sphere, unsigned long mask = 0xFFFFFFFF);
1416        /** Creates a PlaneBoundedVolumeListSceneQuery for this scene manager.
1417        @remarks
1418        This method creates a new instance of a query object for this scene manager,
1419        for a region enclosed by a set of planes (normals pointing inwards).
1420        See SceneQuery and PlaneBoundedVolumeListSceneQuery for full details.
1421        @par
1422        The instance returned from this method must be destroyed by calling
1423        SceneManager::destroyQuery when it is no longer required.
1424        @param volumes Details of the volumes which describe the region for this query.
1425        @param mask The query mask to apply to this query; can be used to filter out
1426        certain objects; see SceneQuery for details.
1427        */
1428        virtual PlaneBoundedVolumeListSceneQuery*
1429            createPlaneBoundedVolumeQuery(const PlaneBoundedVolumeList& volumes, unsigned long mask = 0xFFFFFFFF);
1430
1431
1432        /** Creates a RaySceneQuery for this scene manager.
1433        @remarks
1434            This method creates a new instance of a query object for this scene manager,
1435            looking for objects which fall along a ray. See SceneQuery and RaySceneQuery
1436            for full details.
1437        @par
1438            The instance returned from this method must be destroyed by calling
1439            SceneManager::destroyQuery when it is no longer required.
1440        @param ray Details of the ray which describes the region for this query.
1441        @param mask The query mask to apply to this query; can be used to filter out
1442            certain objects; see SceneQuery for details.
1443        */
1444        virtual RaySceneQuery*
1445            createRayQuery(const Ray& ray, unsigned long mask = 0xFFFFFFFF);
1446        //PyramidSceneQuery* createPyramidQuery(const Pyramid& p, unsigned long mask = 0xFFFFFFFF);
1447        /** Creates an IntersectionSceneQuery for this scene manager.
1448        @remarks
1449            This method creates a new instance of a query object for locating
1450            intersecting objects. See SceneQuery and IntersectionSceneQuery
1451            for full details.
1452        @par
1453            The instance returned from this method must be destroyed by calling
1454            SceneManager::destroyQuery when it is no longer required.
1455        @param mask The query mask to apply to this query; can be used to filter out
1456            certain objects; see SceneQuery for details.
1457        */
1458        virtual IntersectionSceneQuery*
1459            createIntersectionQuery(unsigned long mask = 0xFFFFFFFF);
1460
1461        /** Destroys a scene query of any type. */
1462        virtual void destroyQuery(SceneQuery* query);
1463
1464        typedef MapIterator<SceneLightList> LightIterator;
1465        typedef MapIterator<EntityList> EntityIterator;
1466        typedef MapIterator<CameraList> CameraIterator;
1467        typedef MapIterator<BillboardSetList> BillboardSetIterator;
1468        typedef MapIterator<AnimationList> AnimationIterator;
1469
1470        /** Returns a specialised MapIterator over all lights in the scene. */
1471        LightIterator getLightIterator(void) {
1472            return LightIterator(mLights.begin(), mLights.end());
1473        }
1474        /** Returns a specialised MapIterator over all entities in the scene. */
1475        EntityIterator getEntityIterator(void) {
1476            return EntityIterator(mEntities.begin(), mEntities.end());
1477        }
1478        /** Returns a specialised MapIterator over all cameras in the scene. */
1479        CameraIterator getCameraIterator(void) {
1480            return CameraIterator(mCameras.begin(), mCameras.end());
1481        }
1482        /** Returns a specialised MapIterator over all BillboardSets in the scene. */
1483        BillboardSetIterator getBillboardSetIterator(void) {
1484            return BillboardSetIterator(mBillboardSets.begin(), mBillboardSets.end());
1485        }
1486        /** Returns a specialised MapIterator over all animations in the scene. */
1487        AnimationIterator getAnimationIterator(void) {
1488            return AnimationIterator(mAnimationsList.begin(), mAnimationsList.end());
1489        }
1490        /** Returns a specialised MapIterator over all animation states in the scene. */
1491        AnimationStateIterator getAnimationStateIterator(void) {
1492            return AnimationStateIterator(mAnimationStates.begin(), mAnimationStates.end());
1493        }
1494
1495        /** Sets the general shadow technique to be used in this scene.
1496        @remarks   
1497            There are multiple ways to generate shadows in a scene, and each has
1498            strengths and weaknesses.
1499            <ul><li>Stencil-based approaches can be used to
1500            draw very long, extreme shadows without loss of precision and the 'additive'
1501            version can correctly show the shadowing of complex effects like bump mapping
1502            because they physically exclude the light from those areas. However, the edges
1503            are very sharp and stencils cannot handle transparency, and they involve a
1504            fair amount of CPU work in order to calculate the shadow volumes, especially
1505            when animated objects are involved.</li>
1506            <li>Texture-based approaches are good for handling transparency (they can, for
1507            example, correctly shadow a mesh which uses alpha to represent holes), and they
1508            require little CPU overhead, and can happily shadow geometry which is deformed
1509            by a vertex program, unlike stencil shadows. However, they have a fixed precision
1510            which can introduce 'jaggies' at long range and have fillrate issues of their own.</li>
1511            </ul>
1512        @par
1513            We support 2 kinds of stencil shadows, and 2 kinds of texture-based shadows, and one
1514            simple decal approach. The 2 stencil approaches differ in the amount of multipass work
1515            that is required - the modulative approach simply 'darkens' areas in shadow after the
1516            main render, which is the least expensive, whilst the additive approach has to perform
1517            a render per light and adds the cumulative effect, whcih is more expensive but more
1518            accurate. The texture based shadows both work in roughly the same way, the only difference is
1519            that the shadowmap approach is slightly more accurate, but requires a more recent
1520            graphics card.
1521        @par
1522            Note that because mixing many shadow techniques can cause problems, only one technique
1523            is supported at once. Also, you should call this method at the start of the
1524            scene setup.
1525        @param technique The shadowing technique to use for the scene.
1526        */
1527        virtual void setShadowTechnique(ShadowTechnique technique);
1528       
1529        /** Gets the current shadow technique. */
1530        virtual ShadowTechnique getShadowTechnique(void) const { return mShadowTechnique; }
1531
1532        /** Enables / disables the rendering of debug information for shadows. */
1533        virtual void setShowDebugShadows(bool debug) { mDebugShadows = debug; }
1534        /** Are debug shadows shown? */
1535        virtual bool getShowDebugShadows(void ) const { return mDebugShadows; }
1536
1537        /** Set the colour used to modulate areas in shadow.
1538        @remarks This is only applicable for shadow techniques which involve
1539            darkening the area in shadow, as opposed to masking out the light.
1540            This colour provided is used as a modulative value to darken the
1541            areas.
1542        */
1543        virtual void setShadowColour(const ColourValue& colour);
1544        /** Get the colour used to modulate areas in shadow.
1545        @remarks This is only applicable for shadow techniques which involve
1546        darkening the area in shadow, as opposed to masking out the light.
1547        This colour provided is used as a modulative value to darken the
1548        areas.
1549        */
1550        virtual const ColourValue& getShadowColour(void) const;
1551        /** Sets the distance a shadow volume is extruded for a directional light.
1552        @remarks
1553            Although directional lights are essentially infinite, there are many
1554            reasons to limit the shadow extrusion distance to a finite number,
1555            not least of which is compatibility with older cards (which do not
1556            support infinite positions), and shadow caster elimination.
1557        @par
1558            The default value is 10,000 world units. This does not apply to
1559            point lights or spotlights, since they extrude up to their
1560            attenuation range.
1561        */
1562        virtual void setShadowDirectionalLightExtrusionDistance(Real dist);
1563        /** Gets the distance a shadow volume is extruded for a directional light.
1564        */
1565        virtual Real getShadowDirectionalLightExtrusionDistance(void) const;
1566        /** Sets the maximum distance away from the camera that shadows
1567        will be visible.
1568        @remarks
1569        Shadow techniques can be expensive, therefore it is a good idea
1570        to limit them to being rendered close to the camera if possible,
1571        and to skip the expense of rendering shadows for distance objects.
1572        This method allows you to set the distance at which shadows will no
1573        longer be rendered.
1574        @note
1575        Each shadow technique can interpret this subtely differently.
1576        For example, one technique may use this to eliminate casters,
1577        another might use it to attenuate the shadows themselves.
1578        You should tweak this value to suit your chosen shadow technique
1579        and scene setup.
1580        */
1581        virtual void setShadowFarDistance(Real distance);
1582        /** Gets the maximum distance away from the camera that shadows
1583        will be visible.
1584        */
1585        virtual Real getShadowFarDistance(void) const
1586        { return mShadowFarDist; }
1587
1588                /** Sets the maximum size of the index buffer used to render shadow
1589                        primitives.
1590                @remarks
1591                        This method allows you to tweak the size of the index buffer used
1592                        to render shadow primitives (including stencil shadow volumes). The
1593                        default size is 51,200 entries, which is 100k of GPU memory, or
1594                        enough to render approximately 17,000 triangles. You can reduce this
1595                        as long as you do not have any models / world geometry chunks which
1596                        could require more than the amount you set.
1597                @par
1598                        The maximum number of triangles required to render a single shadow
1599                        volume (including light and dark caps when needed) will be 3x the
1600                        number of edges on the light silhouette, plus the number of
1601                        light-facing triangles. On average, half the
1602                        triangles will be facing toward the light, but the number of
1603                        triangles in the silhouette entirely depends on the mesh -
1604                        angular meshes will have a higher silhouette tris/mesh tris
1605                        ratio than a smooth mesh. You can estimate the requirements for
1606                        your particular mesh by rendering it alone in a scene with shadows
1607                        enabled and a single light - rotate it or the light and make a note
1608                        of how high the triangle count goes (remembering to subtract the
1609                        mesh triangle count)
1610                @param size The number of indexes; divide this by 3 to determine the
1611                        number of triangles.
1612                */
1613                virtual void setShadowIndexBufferSize(size_t size);
1614        /// Get the size of the shadow index buffer
1615                virtual size_t getShadowIndexBufferSize(void) const
1616                { return mShadowIndexBufferSize; }
1617        /** Set the size of the texture used for texture-based shadows.
1618        @remarks
1619            The larger the shadow texture, the better the detail on
1620            texture based shadows, but obviously this takes more memory.
1621            The default size is 512. Sizes must be a power of 2.
1622        */
1623        virtual void setShadowTextureSize(unsigned short size);
1624        /// Get the size of the texture used for texture based shadows
1625        unsigned short getShadowTextureSize(void) const {return mShadowTextureSize; }
1626        /** Set the pixel format of the textures used for texture-based shadows.
1627        @remarks
1628                        By default, a colour texture is used (PF_X8R8G8B8) for texture shadows,
1629                        but if you want to use more advanced texture shadow types you can
1630                        alter this. If you do, you will have to also call
1631                        setShadowTextureCasterMaterial and setShadowTextureReceiverMaterial
1632                        to provide shader-based materials to use these customised shadow
1633                        texture formats.
1634        */
1635        virtual void setShadowTexturePixelFormat(PixelFormat fmt);
1636        /// Get the format of the textures used for texture based shadows
1637        PixelFormat getShadowTexturePixelFormat(void) const {return mShadowTextureFormat; }
1638        /** Set the number of textures allocated for texture-based shadows.
1639        @remarks
1640            The default number of textures assigned to deal with texture based
1641            shadows is 1; however this means you can only have one light casting
1642            shadows at the same time. You can increase this number in order to
1643            make this more flexible, but be aware of the texture memory it will use.
1644        */
1645        virtual void setShadowTextureCount(unsigned short count);
1646        /// Get the number of the textures allocated for texture based shadows
1647        unsigned short getShadowTextureCount(void) const {return mShadowTextureCount; }
1648        /** Sets the size and count of textures used in texture-based shadows.
1649        @remarks
1650            @see setShadowTextureSize and setShadowTextureCount for details, this
1651            method just allows you to change both at once, which can save on
1652            reallocation if the textures have already been created.
1653        */
1654        virtual void setShadowTextureSettings(unsigned short size, unsigned short count,
1655                        PixelFormat fmt = PF_X8R8G8B8);
1656        /** Sets the proportional distance which a texture shadow which is generated from a
1657            directional light will be offset into the camera view to make best use of texture space.
1658        @remarks
1659            When generating a shadow texture from a directional light, an approximation is used
1660            since it is not possible to render the entire scene to one texture.
1661            The texture is projected onto an area centred on the camera, and is
1662            the shadow far distance * 2 in length (it is square). This wastes
1663            a lot of texture space outside the frustum though, so this offset allows
1664            you to move the texture in front of the camera more. However, be aware
1665            that this can cause a little shadow 'jittering' during rotation, and
1666            that if you move it too far then you'll start to get artefacts close
1667            to the camera. The value is represented as a proportion of the shadow
1668            far distance, and the default is 0.6.
1669        */
1670        virtual void setShadowDirLightTextureOffset(Real offset) { mShadowTextureOffset = offset;}
1671        /** Sets the proportional distance at which texture shadows begin to fade out.
1672        @remarks
1673            To hide the edges where texture shadows end (in directional lights)
1674            Ogre will fade out the shadow in the distance. This value is a proportional
1675            distance of the entire shadow visibility distance at which the shadow
1676            begins to fade out. The default is 0.7
1677        */
1678        virtual void setShadowTextureFadeStart(Real fadeStart)
1679        { mShadowTextureFadeStart = fadeStart; }
1680        /** Sets the proportional distance at which texture shadows finish to fading out.
1681        @remarks
1682        To hide the edges where texture shadows end (in directional lights)
1683        Ogre will fade out the shadow in the distance. This value is a proportional
1684        distance of the entire shadow visibility distance at which the shadow
1685        is completely invisible. The default is 0.9.
1686        */
1687        virtual void setShadowTextureFadeEnd(Real fadeEnd)
1688        { mShadowTextureFadeEnd = fadeEnd; }
1689
1690                /** Sets whether or not texture shadows should attempt to self-shadow.
1691                @remarks
1692                        The default implementation of texture shadows uses a fixed-function
1693                        colour texture projection approach for maximum compatibility, and
1694                        as such cannot support self-shadowing. However, if you decide to
1695                        implement a more complex shadowing technique using the
1696                        setShadowTextureCasterMaterial and setShadowTextureReceiverMaterial
1697                        there is a possibility you may be able to support
1698                        self-shadowing (e.g by implementing a shader-based shadow map). In
1699                        this case you might want to enable this option.
1700                @param selfShadow Whether to attempt self-shadowing with texture shadows
1701                */
1702                virtual void setShadowTextureSelfShadow(bool selfShadow)
1703                { mShadowTextureSelfShadow = selfShadow; }
1704                /// Gets whether or not texture shadows attempt to self-shadow.
1705                virtual bool getShadowTextureSelfShadow(void) const
1706                { return mShadowTextureSelfShadow; }
1707                /** Sets the default material to use for rendering shadow casters.
1708                @remarks
1709                        By default shadow casters are rendered into the shadow texture using
1710                        an automatically generated fixed-function pass. This allows basic
1711                        projective texture shadows, but it's possible to use more advanced
1712                        shadow techniques by overriding the caster and receiver materials, for
1713                        example providing vertex and fragment programs to implement shadow
1714                        maps.
1715                @par
1716                        You can rely on the ambient light in the scene being set to the
1717                        requested texture shadow colour, if that's useful.
1718                @note
1719                        Individual objects may also override the vertex program in
1720                        your default material if their materials include
1721                        shadow_caster_vertex_program_ref shadow_receiver_vertex_program_ref
1722                        entries, so if you use both make sure they are compatible.
1723                @note
1724                        Only a single pass is allowed in your material, although multiple
1725                        techniques may be used for hardware fallback.
1726                */
1727                virtual void setShadowTextureCasterMaterial(const String& name);
1728                /** Sets the default material to use for rendering shadow receivers.
1729                @remarks
1730                        By default shadow receivers are rendered as a post-pass using basic
1731                        modulation. This allows basic projective texture shadows, but it's
1732                        possible to use more advanced shadow techniques by overriding the
1733                        caster and receiver materials, for example providing vertex and
1734                        fragment programs to implement shadow maps.
1735                @par
1736                        You can rely on texture unit 0 containing the shadow texture, and
1737                        for the unit to be set to use projective texturing from the light
1738                        (only useful if you're using fixed-function, which is unlikely;
1739                        otherwise you should rely on the texture_viewproj_matrix auto binding)
1740                @note
1741                        Individual objects may also override the vertex program in
1742                        your default material if their materials include
1743                        shadow_caster_vertex_program_ref shadow_receiver_vertex_program_ref
1744                        entries, so if you use both make sure they are compatible.
1745                @note
1746                        Only a single pass is allowed in your material, although multiple
1747                        techniques may be used for hardware fallback.
1748                */
1749                virtual void setShadowTextureReceiverMaterial(const String& name);
1750
1751                /** Sets whether we should use an inifinite camera far plane
1752                        when rendering stencil shadows.
1753                @remarks
1754                        Stencil shadow coherency is very reliant on the shadow volume
1755                        not being clipped by the far plane. If this clipping happens, you
1756                        get a kind of 'negative' shadow effect. The best way to achieve
1757                        coherency is to move the far plane of the camera out to infinity,
1758                        thus preventing the far plane from clipping the shadow volumes.
1759                        When combined with vertex program extrusion of the volume to
1760                        infinity, which Ogre does when available, this results in very
1761                        robust shadow volumes. For this reason, when you enable stencil
1762                        shadows, Ogre automatically changes your camera settings to
1763                        project to infinity if the card supports it. You can disable this
1764                        behaviour if you like by calling this method; although you can
1765                        never enable infinite projection if the card does not support it.
1766                @par   
1767                        If you disable infinite projection, or it is not available,
1768                        you need to be far more careful with your light attenuation /
1769                        directional light extrusion distances to avoid clipping artefacts
1770                        at the far plane.
1771                @note
1772                        Recent cards will generally support infinite far plane projection.
1773                        However, we have found some cases where they do not, especially
1774                        on Direct3D. There is no standard capability we can check to
1775                        validate this, so we use some heuristics based on experience:
1776                        <UL>
1777                        <LI>OpenGL always seems to support it no matter what the card</LI>
1778                        <LI>Direct3D on non-vertex program capable systems (including
1779                        vertex program capable cards on Direct3D7) does not
1780                        support it</LI>
1781                        <LI>Direct3D on GeForce3 and GeForce4 Ti does not seem to support
1782                        infinite projection<LI>
1783                        </UL>
1784                        Therefore in the RenderSystem implementation, we may veto the use
1785                        of an infinite far plane based on these heuristics.
1786                */
1787        virtual void setShadowUseInfiniteFarPlane(bool enable) {
1788            mShadowUseInfiniteFarPlane = enable; }
1789
1790                /** Creates a StaticGeometry instance suitable for use with this
1791                        SceneManager.
1792                @remarks
1793                        StaticGeometry is a way of batching up geometry into a more
1794                        efficient form at the expense of being able to move it. Please
1795                        read the StaticGeometry class documentation for full information.
1796                @param name The name to give the new object
1797                @returns The new StaticGeometry instance
1798                */
1799                virtual StaticGeometry* createStaticGeometry(const String& name);
1800                /** Retrieve a previously created StaticGeometry instance. */
1801                virtual StaticGeometry* getStaticGeometry(const String& name) const;
1802                /** Remove & destroy a StaticGeometry instance. */
1803                virtual void removeStaticGeometry(StaticGeometry* geom);
1804                /** Remove & destroy a StaticGeometry instance. */
1805                virtual void removeStaticGeometry(const String& name);
1806                /** Remove & destroy all StaticGeometry instances. */
1807                virtual void removeAllStaticGeometry(void);
1808
1809               
1810    };
1811
1812    /** Default implementation of IntersectionSceneQuery. */
1813    class _OgreExport DefaultIntersectionSceneQuery :
1814        public IntersectionSceneQuery
1815    {
1816    public:
1817        DefaultIntersectionSceneQuery(SceneManager* creator);
1818        ~DefaultIntersectionSceneQuery();
1819
1820        /** See IntersectionSceneQuery. */
1821        void execute(IntersectionSceneQueryListener* listener);
1822    };
1823
1824    /** Default implementation of RaySceneQuery. */
1825        class _OgreExport DefaultRaySceneQuery : public RaySceneQuery
1826    {
1827    public:
1828        DefaultRaySceneQuery(SceneManager* creator);
1829        ~DefaultRaySceneQuery();
1830
1831        /** See RayScenQuery. */
1832        void execute(RaySceneQueryListener* listener);
1833    };
1834    /** Default implementation of SphereSceneQuery. */
1835        class _OgreExport DefaultSphereSceneQuery : public SphereSceneQuery
1836    {
1837    public:
1838        DefaultSphereSceneQuery(SceneManager* creator);
1839        ~DefaultSphereSceneQuery();
1840
1841        /** See SceneQuery. */
1842        void execute(SceneQueryListener* listener);
1843    };
1844    /** Default implementation of PlaneBoundedVolumeListSceneQuery. */
1845    class _OgreExport DefaultPlaneBoundedVolumeListSceneQuery : public PlaneBoundedVolumeListSceneQuery
1846    {
1847    public:
1848        DefaultPlaneBoundedVolumeListSceneQuery(SceneManager* creator);
1849        ~DefaultPlaneBoundedVolumeListSceneQuery();
1850
1851        /** See SceneQuery. */
1852        void execute(SceneQueryListener* listener);
1853    };
1854    /** Default implementation of AxisAlignedBoxSceneQuery. */
1855        class _OgreExport DefaultAxisAlignedBoxSceneQuery : public AxisAlignedBoxSceneQuery
1856    {
1857    public:
1858        DefaultAxisAlignedBoxSceneQuery(SceneManager* creator);
1859        ~DefaultAxisAlignedBoxSceneQuery();
1860
1861        /** See RayScenQuery. */
1862        void execute(SceneQueryListener* listener);
1863    };
1864   
1865
1866
1867} // Namespace
1868
1869
1870
1871#endif
Note: See TracBrowser for help on using the repository browser.