source: GTP/trunk/App/Demos/Geom/OgreStuff/include/OgreSceneManager.h @ 1812

Revision 1812, 121.1 KB checked in by gumbau, 18 years ago (diff)
Line 
1/*-------------------------------------------------------------------------
2This source file is a part of OGRE
3(Object-oriented Graphics Rendering Engine)
4
5For the latest info, see http://www.ogre3d.org/
6
7Copyright (c) 2000-2005 The OGRE Team
8Also see acknowledgements in Readme.html
9
10This library is free software; you can redistribute it and/or modify it
11under the terms of the GNU Lesser General Public License (LGPL) as
12published by the Free Software Foundation; either version 2.1 of the
13License, or (at your option) any later version.
14
15This library is distributed in the hope that it will be useful, but
16WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
18License for more details.
19
20You should have received a copy of the GNU Lesser General Public License
21along with this library; if not, write to the Free Software Foundation,
22Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA or go to
23http://www.gnu.org/copyleft/lesser.txt
24-------------------------------------------------------------------------*/
25#ifndef __SceneManager_H__
26#define __SceneManager_H__
27
28// Precompiler options
29#include "OgrePrerequisites.h"
30
31#include "OgreString.h"
32#include "OgreSceneNode.h"
33#include "OgrePlane.h"
34#include "OgreQuaternion.h"
35#include "OgreColourValue.h"
36#include "OgreCommon.h"
37#include "OgreSceneQuery.h"
38#include "OgreAutoParamDataSource.h"
39#include "OgreAnimationState.h"
40#include "OgreRenderQueue.h"
41#include "OgreRenderQueueSortingGrouping.h"
42#include "OgreRectangle2D.h"
43#include "OgrePixelFormat.h"
44#include "OgreResourceGroupManager.h"
45#include "OgreTexture.h"
46
47namespace Ogre {
48
49    /** Structure for holding a position & orientation pair. */
50    struct ViewPoint
51    {
52        Vector3 position;
53        Quaternion orientation;
54    };
55
56        // Forward declarations
57        class DefaultIntersectionSceneQuery;
58        class DefaultRaySceneQuery;
59        class DefaultSphereSceneQuery;
60        class DefaultAxisAlignedBoxSceneQuery;
61
62        /** Interface definition for classes which can listen in on the process
63                of rendering shadows, in order to implement custom behaviour.
64        */
65        class _OgreExport ShadowListener
66        {
67        public:
68                ShadowListener() {}
69                virtual ~ShadowListener() {}
70
71                /** Event raised after all shadow textures have been rendered into for
72                        all queues / targets but before any other geometry has been rendered
73                    (including main scene geometry and any additional shadow receiver
74                        passes).
75                @remarks
76                        This callback is useful for those that wish to perform some
77                        additional processing on shadow textures before they are used to
78                        render shadows. For example you could perform some filtering by
79                        rendering the existing shadow textures into another alternative
80                        shadow texture with a shader.]
81                @note
82                        This event will only be fired when texture shadows are in use.
83                @param numberOfShadowTextures The number of shadow textures in use
84                */
85                virtual void shadowTexturesUpdated(size_t numberOfShadowTextures) = 0;
86
87                /** This event occurs just before the view & projection matrices are
88                        set for rendering into a shadow texture.
89                @remarks
90                        You can use this event hook to perform some custom processing,
91                        such as altering the camera being used for rendering the light's
92                        view, including setting custom view & projection matrices if you
93                        want to perform an advanced shadow technique.
94                @note
95                        This event will only be fired when texture shadows are in use.
96                @param light Pointer to the light for which shadows are being rendered
97                @param camera Pointer to the camera being used to render
98                */
99                virtual void shadowTextureCasterPreViewProj(Light* light,
100                        Camera* camera) = 0;
101                /** This event occurs just before the view & projection matrices are
102                        set for re-rendering a shadow receiver.
103                @remarks
104                        You can use this event hook to perform some custom processing,
105                        such as altering the projection frustum being used for rendering
106                        the shadow onto the receiver to perform an advanced shadow
107                        technique.
108                @note
109                        This event will only be fired when texture shadows are in use.
110                @param light Pointer to the light for which shadows are being rendered
111                @param frustum Pointer to the projection frustum being used to project
112                        the shadow texture
113                */
114                virtual void shadowTextureReceiverPreViewProj(Light* light,
115                        Frustum* frustum) = 0;
116               
117        };
118
119    /** Manages the organisation and rendering of a 'scene' i.e. a collection
120                of objects and potentially world geometry.
121    @remarks
122                This class defines the interface and the basic behaviour of a
123                'Scene Manager'. A SceneManager organises the culling and rendering of
124                the scene, in conjunction with the RenderQueue. This class is designed
125                to be extended through subclassing in order to provide more specialised
126                scene organisation structures for particular needs. The default
127                SceneManager culls based on a hierarchy of node bounding boxes, other
128                implementations can use an octree (@see OctreeSceneManager), a BSP
129                tree (@see BspSceneManager), and many other options. New SceneManager
130                implementations can be added at runtime by plugins, see
131                SceneManagerEnumerator for the interfaces for adding new SceneManager
132                types.
133        @par
134                There is a distinction between 'objects' (which subclass MovableObject,
135                and are movable, discrete objects in the world), and 'world geometry',
136                which is large, generally static geometry. World geometry tends to
137                influence the SceneManager organisational structure (e.g. lots of indoor
138                static geometry might result in a spatial tree structure) and as such
139                world geometry is generally tied to a given SceneManager implementation,
140                whilst MovableObject instances can be used with any SceneManager.
141                Subclasses are free to define world geometry however they please.
142        @par
143                Multiple SceneManager instances can exist at one time, each one with
144                a distinct scene. Which SceneManager is used to render a scene is
145                dependent on the Camera, which will always call back the SceneManager
146                which created it to render the scene.
147     */
148    class _OgreExport SceneManager
149    {
150    public:
151        /// Query type mask which will be used for world geometry @see SceneQuery
152        static uint32 WORLD_GEOMETRY_TYPE_MASK;
153                /// Query type mask which will be used for entities @see SceneQuery
154                static uint32 ENTITY_TYPE_MASK;
155                /// Query type mask which will be used for effects like billboardsets / particle systems @see SceneQuery
156                static uint32 FX_TYPE_MASK;
157                /// Query type mask which will be used for StaticGeometry  @see SceneQuery
158                static uint32 STATICGEOMETRY_TYPE_MASK;
159                /// Query type mask which will be used for lights  @see SceneQuery
160                static uint32 LIGHT_TYPE_MASK;
161                /// User type mask limit
162                static uint32 USER_TYPE_MASK_LIMIT;
163        /** Comparator for material map, for sorting materials into render order (e.g. transparent last).
164        */
165        struct materialLess
166        {
167            _OgreExport bool operator()(const Material* x, const Material* y) const;
168        };
169        /// Comparator for sorting lights relative to a point
170        struct lightLess
171        {
172            _OgreExport bool operator()(const Light* a, const Light* b) const;
173        };
174
175        /// Describes the stage of rendering when performing complex illumination
176        enum IlluminationRenderStage
177        {
178            /// No special illumination stage
179            IRS_NONE,
180            /// Render to texture stage, used for texture based shadows
181            IRS_RENDER_TO_TEXTURE,
182            /// Render from shadow texture to receivers stage
183            IRS_RENDER_RECEIVER_PASS
184        };
185
186                /** Enumeration of the possible modes allowed for processing the special case
187                render queue list.
188                @see SceneManager::setSpecialCaseRenderQueueMode
189                */
190                enum SpecialCaseRenderQueueMode
191                {
192                        /// Render only the queues in the special case list
193                        SCRQM_INCLUDE,
194                        /// Render all except the queues in the special case list
195                        SCRQM_EXCLUDE
196                };
197
198                struct SkyDomeGenParameters
199                {
200                        Real skyDomeCurvature;
201                        Real skyDomeTiling;
202                        Real skyDomeDistance;
203                        int skyDomeXSegments;
204                        int skyDomeYSegments;
205                        int skyDomeYSegments_keep;
206                };
207
208                struct SkyPlaneGenParameters
209                {
210                        Real skyPlaneScale;
211                        Real skyPlaneTiling;
212                        Real skyPlaneBow;
213                        int skyPlaneXSegments;
214                        int skyPlaneYSegments;
215                };
216
217                struct SkyBoxGenParameters
218                {
219                        Real skyBoxDistance;
220                };
221
222    protected:
223                /// Instance name
224                String mName;
225
226        /// Queue of objects for rendering
227        RenderQueue* mRenderQueue;
228
229        /// Current ambient light, cached for RenderSystem
230        ColourValue mAmbientLight;
231
232        /// The rendering system to send the scene to
233        RenderSystem *mDestRenderSystem;
234
235        typedef std::map<String, Camera* > CameraList;
236
237        /** Central list of cameras - for easy memory management and lookup.
238        */
239        CameraList mCameras;
240
241                typedef std::map<String, StaticGeometry* > StaticGeometryList;
242                StaticGeometryList mStaticGeometryList;
243
244        typedef std::map<String, SceneNode*> SceneNodeList;
245
246        /** Central list of SceneNodes - for easy memory management.
247            @note
248                Note that this list is used only for memory management; the structure of the scene
249                is held using the hierarchy of SceneNodes starting with the root node. However you
250                can look up nodes this way.
251        */
252        SceneNodeList mSceneNodes;
253
254        /// Camera in progress
255        Camera* mCameraInProgress;
256        /// Current Viewport
257        Viewport* mCurrentViewport;
258
259        /// Root scene node
260        SceneNode* mSceneRoot;
261
262        /// Autotracking scene nodes
263        typedef std::set<SceneNode*> AutoTrackingSceneNodes;
264        AutoTrackingSceneNodes mAutoTrackingSceneNodes;
265
266        // Sky params
267        // Sky plane
268        Entity* mSkyPlaneEntity;
269        Entity* mSkyDomeEntity[5];
270        Entity* mSkyBoxEntity[6];
271
272        SceneNode* mSkyPlaneNode;
273        SceneNode* mSkyDomeNode;
274        SceneNode* mSkyBoxNode;
275
276        // Sky plane
277        bool mSkyPlaneEnabled;
278        bool mSkyPlaneDrawFirst;
279        Plane mSkyPlane;
280        SkyPlaneGenParameters mSkyPlaneGenParameters;
281        // Sky box
282        bool mSkyBoxEnabled;
283        bool mSkyBoxDrawFirst;
284        Quaternion mSkyBoxOrientation;
285        SkyBoxGenParameters mSkyBoxGenParameters;
286        // Sky dome
287        bool mSkyDomeEnabled;
288        bool mSkyDomeDrawFirst;
289        Quaternion mSkyDomeOrientation;
290        SkyDomeGenParameters mSkyDomeGenParameters;
291
292        // Fog
293        FogMode mFogMode;
294        ColourValue mFogColour;
295        Real mFogStart;
296        Real mFogEnd;
297        Real mFogDensity;
298
299                typedef std::set<uint8> SpecialCaseRenderQueueList;
300                SpecialCaseRenderQueueList mSpecialCaseQueueList;
301                SpecialCaseRenderQueueMode mSpecialCaseQueueMode;
302                uint8 mWorldGeometryRenderQueue;
303               
304                unsigned long mLastFrameNumber;
305                Matrix4 mTempXform[256];
306                bool mResetIdentityView;
307                bool mResetIdentityProj;
308
309                typedef std::map<String, MovableObject*> MovableObjectMap;
310                typedef std::map<String, MovableObjectMap*> MovableObjectCollectionMap;
311                MovableObjectCollectionMap mMovableObjectCollectionMap;
312                MovableObjectMap* getMovableObjectMap(const String& typeName);
313
314        /** Internal method for initialising the render queue.
315        @remarks
316            Subclasses can use this to install their own RenderQueue implementation.
317        */
318        virtual void initRenderQueue(void);
319        /// A pass designed to let us render shadow colour on white for texture shadows
320        Pass* mShadowCasterPlainBlackPass;
321        /// A pass designed to let us render shadow receivers for texture shadows
322        Pass* mShadowReceiverPass;
323        /** Internal method for turning a regular pass into a shadow caster pass.
324        @remarks
325            This is only used for texture shadows, basically we're trying to
326            ensure that objects are rendered solid black.
327            This method will usually return the standard solid black pass for
328            all fixed function passes, but will merge in a vertex program
329            and fudge the AutpoParamDataSource to set black lighting for
330            passes with vertex programs.
331        */
332        const Pass* deriveShadowCasterPass(const Pass* pass);
333        /** Internal method for turning a regular pass into a shadow receiver pass.
334        @remarks
335        This is only used for texture shadows, basically we're trying to
336        ensure that objects are rendered with a projective texture.
337        This method will usually return a standard single-texture pass for
338        all fixed function passes, but will merge in a vertex program
339        for passes with vertex programs.
340        */
341        const Pass* deriveShadowReceiverPass(const Pass* pass);
342   
343        /** Internal method to validate whether a Pass should be allowed to render.
344        @remarks
345            Called just before a pass is about to be used for rendering a group to
346            allow the SceneManager to omit it if required. A return value of false
347            skips this pass.
348        */
349        bool validatePassForRendering(const Pass* pass);
350
351        /** Internal method to validate whether a Renderable should be allowed to render.
352        @remarks
353        Called just before a pass is about to be used for rendering a Renderable to
354        allow the SceneManager to omit it if required. A return value of false
355        skips it.
356        */
357        bool validateRenderableForRendering(const Pass* pass, const Renderable* rend);
358
359        enum BoxPlane
360        {
361            BP_FRONT = 0,
362            BP_BACK = 1,
363            BP_LEFT = 2,
364            BP_RIGHT = 3,
365            BP_UP = 4,
366            BP_DOWN = 5
367        };
368
369        /* Internal utility method for creating the planes of a skybox.
370        */
371        MeshPtr createSkyboxPlane(
372            BoxPlane bp,
373            Real distance,
374            const Quaternion& orientation,
375            const String& groupName);
376
377        /* Internal utility method for creating the planes of a skydome.
378        */
379        MeshPtr createSkydomePlane(
380            BoxPlane bp,
381            Real curvature, Real tiling, Real distance,
382            const Quaternion& orientation,
383            int xsegments, int ysegments, int ySegmentsToKeep,
384            const String& groupName);
385
386        // Flag indicating whether SceneNodes will be rendered as a set of 3 axes
387        bool mDisplayNodes;
388
389        /// Storage of animations, lookup by name
390        typedef std::map<String, Animation*> AnimationList;
391        AnimationList mAnimationsList;
392        AnimationStateSet mAnimationStates;
393
394        /** Internal method used by _renderSingleObject to deal with renderables
395            which override the camera's own view / projection materices. */
396        void useRenderableViewProjMode(const Renderable* pRend);
397       
398        /** Internal method used by _renderSingleObject to deal with renderables
399            which override the camera's own view / projection matrices. */
400        void resetViewProjMode(void);
401
402        typedef std::vector<RenderQueueListener*> RenderQueueListenerList;
403        RenderQueueListenerList mRenderQueueListeners;
404
405        typedef std::vector<ShadowListener*> ShadowListenerList;
406        ShadowListenerList mShadowListeners;
407        /// Internal method for firing the queue start event, returns true if queue is to be skipped
408        bool fireRenderQueueStarted(uint8 id, const String& invocation);
409        /// Internal method for firing the queue end event, returns true if queue is to be repeated
410        bool fireRenderQueueEnded(uint8 id, const String& invocation);
411
412                /// Internal method for firing the texture shadows updated event
413        void fireShadowTexturesUpdated(size_t numberOfShadowTextures);
414                /// Internal method for firing the pre caster texture shadows event
415        void fireShadowTexturesPreCaster(Light* light, Camera* camera);
416                /// Internal method for firing the pre receiver texture shadows event
417        void fireShadowTexturesPreReceiver(Light* light, Frustum* f);
418        /** Internal method for setting the destination viewport for the next render. */
419        virtual void setViewport(Viewport *vp);
420
421                /** Flag that indicates if all of the scene node's bounding boxes should be shown as a wireframe. */
422                bool mShowBoundingBoxes;     
423
424                /** Internal method for rendering all objects using the default queue sequence. */
425                virtual void renderVisibleObjectsDefaultSequence(void);
426                /** Internal method for rendering all objects using a custom queue sequence. */
427                virtual void renderVisibleObjectsCustomSequence(RenderQueueInvocationSequence* s);
428                /** Internal method for preparing the render queue for use with each render. */
429                virtual void prepareRenderQueue(void);
430
431
432        /** Internal utility method for rendering a single object.
433        @remarks
434            Assumes that the pass has already been set up.
435        @param rend The renderable to issue to the pipeline
436        @param pass The pass which is being used
437        @param doLightIteration If true, this method will issue the renderable to
438            the pipeline possibly multiple times, if the pass indicates it should be
439            done once per light
440        @param manualLightList Only applicable if doLightIteration is false, this
441            method allows you to pass in a previously determined set of lights
442            which will be used for a single render of this object.
443        */
444        virtual void renderSingleObject(const Renderable* rend, const Pass* pass,
445                        bool doLightIteration, const LightList* manualLightList = 0);
446
447        /// Utility class for calculating automatic parameters for gpu programs
448        AutoParamDataSource mAutoParamDataSource;
449
450        ShadowTechnique mShadowTechnique;
451        bool mDebugShadows;
452        ColourValue mShadowColour;
453        Pass* mShadowDebugPass;
454        Pass* mShadowStencilPass;
455        Pass* mShadowModulativePass;
456                bool mShadowMaterialInitDone;
457        LightList mLightsAffectingFrustum;
458        HardwareIndexBufferSharedPtr mShadowIndexBuffer;
459                size_t mShadowIndexBufferSize;
460        Rectangle2D* mFullScreenQuad;
461        Real mShadowDirLightExtrudeDist;
462        IlluminationRenderStage mIlluminationStage;
463        unsigned short mShadowTextureSize;
464        unsigned short mShadowTextureCount;
465                PixelFormat mShadowTextureFormat;
466        typedef std::vector<TexturePtr> ShadowTextureList;
467        ShadowTextureList mShadowTextures;
468                typedef std::vector<Camera*> ShadowTextureCameraList;
469                ShadowTextureCameraList mShadowTextureCameras;
470        Texture* mCurrentShadowTexture;
471                bool mShadowUseInfiniteFarPlane;
472
473        /** Internal method for locating a list of lights which could be affecting the frustum.
474        @remarks
475            Custom scene managers are encouraged to override this method to make use of their
476            scene partitioning scheme to more efficiently locate lights, and to eliminate lights
477            which may be occluded by word geometry.
478        */
479        virtual void findLightsAffectingFrustum(const Camera* camera);
480        /// Internal method for setting up materials for shadows
481        virtual void initShadowVolumeMaterials(void);
482        /// Internal method for creating shadow textures (texture-based shadows)
483        virtual void createShadowTextures(unsigned short size, unsigned short count,
484                        PixelFormat fmt);
485        /// Internal method for destroying shadow textures (texture-based shadows)
486        virtual void destroyShadowTextures(void);
487        /// Internal method for preparing shadow textures ready for use in a regular render
488        virtual void prepareShadowTextures(Camera* cam, Viewport* vp);
489
490        /** Internal method for rendering all the objects for a given light into the
491            stencil buffer.
492        @param light The light source
493        @param cam The camera being viewed from
494        */
495        virtual void renderShadowVolumesToStencil(const Light* light, const Camera* cam);
496        /** Internal utility method for setting stencil state for rendering shadow volumes.
497        @param secondpass Is this the second pass?
498        @param zfail Should we be using the zfail method?
499        @param twosided Should we use a 2-sided stencil?
500        */
501        virtual void setShadowVolumeStencilState(bool secondpass, bool zfail, bool twosided);
502        /** Render a set of shadow renderables. */
503        void renderShadowVolumeObjects(ShadowCaster::ShadowRenderableListIterator iShadowRenderables,
504            Pass* pass, const LightList *manualLightList, unsigned long flags,
505            bool secondpass, bool zfail, bool twosided);
506        typedef std::vector<ShadowCaster*> ShadowCasterList;
507        ShadowCasterList mShadowCasterList;
508        SphereSceneQuery* mShadowCasterSphereQuery;
509        AxisAlignedBoxSceneQuery* mShadowCasterAABBQuery;
510        Real mShadowFarDist;
511        Real mShadowFarDistSquared;
512        Real mShadowTextureOffset; // proportion of texture offset in view direction e.g. 0.4
513        Real mShadowTextureFadeStart; // as a proportion e.g. 0.6
514        Real mShadowTextureFadeEnd; // as a proportion e.g. 0.9
515                bool mShadowTextureSelfShadow;
516                Pass* mShadowTextureCustomCasterPass;
517                Pass* mShadowTextureCustomReceiverPass;
518                String mShadowTextureCustomCasterVertexProgram;
519                String mShadowTextureCustomReceiverVertexProgram;
520                String mShadowTextureCustomReceiverFragmentProgram;
521                GpuProgramParametersSharedPtr mShadowTextureCustomCasterVPParams;
522                GpuProgramParametersSharedPtr mShadowTextureCustomReceiverVPParams;
523                GpuProgramParametersSharedPtr mShadowTextureCustomReceiverFPParams;
524
525                /// Visibility mask used to show / hide objects
526                uint32 mVisibilityMask;
527                bool mFindVisibleObjects;
528
529                /// Suppress render state changes?
530                bool mSuppressRenderStateChanges;
531                /// Suppress shadows?
532                bool mSuppressShadows;
533
534
535        GpuProgramParametersSharedPtr mInfiniteExtrusionParams;
536        GpuProgramParametersSharedPtr mFiniteExtrusionParams;
537
538        /// Inner class to use as callback for shadow caster scene query
539        class _OgreExport ShadowCasterSceneQueryListener : public SceneQueryListener
540        {
541        protected:
542                        SceneManager* mSceneMgr;
543            ShadowCasterList* mCasterList;
544            bool mIsLightInFrustum;
545            const PlaneBoundedVolumeList* mLightClipVolumeList;
546            const Camera* mCamera;
547            const Light* mLight;
548            Real mFarDistSquared;
549        public:
550            ShadowCasterSceneQueryListener(SceneManager* sm) : mSceneMgr(sm),
551                                mCasterList(0), mIsLightInFrustum(false), mLightClipVolumeList(0),
552                mCamera(0) {}
553            // Prepare the listener for use with a set of parameters 
554            void prepare(bool lightInFrustum,
555                const PlaneBoundedVolumeList* lightClipVolumes,
556                const Light* light, const Camera* cam, ShadowCasterList* casterList,
557                Real farDistSquared)
558            {
559                mCasterList = casterList;
560                mIsLightInFrustum = lightInFrustum;
561                mLightClipVolumeList = lightClipVolumes;
562                mCamera = cam;
563                mLight = light;
564                mFarDistSquared = farDistSquared;
565            }
566            bool queryResult(MovableObject* object);
567            bool queryResult(SceneQuery::WorldFragment* fragment);
568        };
569
570        ShadowCasterSceneQueryListener* mShadowCasterQueryListener;
571
572        /** Internal method for locating a list of shadow casters which
573            could be affecting the frustum for a given light.
574        @remarks
575            Custom scene managers are encouraged to override this method to add optimisations,
576            and to add their own custom shadow casters (perhaps for world geometry)
577        */
578        virtual const ShadowCasterList& findShadowCastersForLight(const Light* light,
579            const Camera* camera);
580        /** Render a group in the ordinary way */
581                virtual void renderBasicQueueGroupObjects(RenderQueueGroup* pGroup,
582                        QueuedRenderableCollection::OrganisationMode om);
583                /** Render a group with the added complexity of additive stencil shadows. */
584                virtual void renderAdditiveStencilShadowedQueueGroupObjects(RenderQueueGroup* group,
585                        QueuedRenderableCollection::OrganisationMode om);
586                /** Render a group with the added complexity of modulative stencil shadows. */
587                virtual void renderModulativeStencilShadowedQueueGroupObjects(RenderQueueGroup* group,
588                        QueuedRenderableCollection::OrganisationMode om);
589        /** Render a group rendering only shadow casters. */
590                virtual void renderTextureShadowCasterQueueGroupObjects(RenderQueueGroup* group,
591                        QueuedRenderableCollection::OrganisationMode om);
592        /** Render a group rendering only shadow receivers. */
593                virtual void renderTextureShadowReceiverQueueGroupObjects(RenderQueueGroup* group,
594                        QueuedRenderableCollection::OrganisationMode om);
595        /** Render a group with the added complexity of modulative texture shadows. */
596                virtual void renderModulativeTextureShadowedQueueGroupObjects(RenderQueueGroup* group,
597                        QueuedRenderableCollection::OrganisationMode om);
598
599                /** Render a group with additive texture shadows. */
600                virtual void renderAdditiveTextureShadowedQueueGroupObjects(RenderQueueGroup* group,
601                        QueuedRenderableCollection::OrganisationMode om);
602                /** Render a set of objects, see renderSingleObject for param definitions */
603                virtual void renderObjects(const QueuedRenderableCollection& objs,
604                        QueuedRenderableCollection::OrganisationMode om,
605            bool doLightIteration, const LightList* manualLightList = 0);
606                /** Render those objects in the transparent pass list which have shadow casting forced on
607                @remarks
608                        This function is intended to be used to render the shadows of transparent objects which have
609                        transparency_casts_shadows set to 'on' in their material
610                */
611                virtual void renderTransparentShadowCasterObjects(const QueuedRenderableCollection& objs,
612                        QueuedRenderableCollection::OrganisationMode om,
613                        bool doLightIteration, const LightList* manualLightList = 0);
614
615                /** Update the state of the global render queue splitting based on a shadow
616                option change. */
617                virtual void updateRenderQueueSplitOptions(void);
618                /** Update the state of the render queue group splitting based on a shadow
619                option change. */
620                virtual void updateRenderQueueGroupSplitOptions(RenderQueueGroup* group,
621                        bool suppressShadows, bool suppressRenderState);
622
623                /** Inner helper class to implement the visitor pattern for rendering objects
624                        in a queue.
625                */
626                class _OgreExport SceneMgrQueuedRenderableVisitor : public QueuedRenderableVisitor
627                {
628                protected:
629                        /// Pass that was actually used at the grouping level
630                        const Pass* mUsedPass;
631                public:
632                        SceneMgrQueuedRenderableVisitor()
633                                :transparentShadowCastersMode(false) {}
634                        ~SceneMgrQueuedRenderableVisitor() {}
635                        void visit(const Renderable* r);
636                        bool visit(const Pass* p);
637                        void visit(const RenderablePass* rp);
638
639                        /// Target SM to send renderables to
640                        SceneManager* targetSceneMgr;
641                        /// Are we in transparent shadow caster mode?
642                        bool transparentShadowCastersMode;
643                        /// Automatic light handling?
644                        bool autoLights;
645                        /// Manual light list
646                        const LightList* manualLightList;
647
648                };
649                /// Allow visitor helper to access protected methods
650                friend class SceneMgrQueuedRenderableVisitor;
651                /// The active renderable visitor class - subclasses could override this
652                SceneMgrQueuedRenderableVisitor* mActiveQueuedRenderableVisitor;
653                /// Storage for default renderable visitor
654                SceneMgrQueuedRenderableVisitor mDefaultQueuedRenderableVisitor;
655
656    public:
657        /** Constructor.
658        */
659        SceneManager(const String& instanceName);
660
661        /** Default destructor.
662        */
663        virtual ~SceneManager();
664
665                /** Return the instance name of this SceneManager. */
666                const String& getName(void) const { return mName; }
667
668                /** Retrieve the type name of this scene manager.
669                @remarks
670                        This method has to be implemented by subclasses. It should
671                        return the type name of this SceneManager which agrees with
672                        the type name of the SceneManagerFactory which created it.
673                */
674                virtual const String& getTypeName(void) const = 0;
675
676        /** Creates a camera to be managed by this scene manager.
677            @remarks
678                This camera must be added to the scene at a later time using
679                the attachObject method of the SceneNode class.
680            @param
681                name Name to give the new camera.
682        */
683        virtual Camera* createCamera(const String& name);
684
685        /** Retrieves a pointer to the named camera.
686                @note Throws an exception if the named instance does not exist
687        */
688        virtual Camera* getCamera(const String& name);
689
690                /** Returns whether a camera with the given name exists.
691                */
692                virtual bool hasCamera(const String& name) const;
693
694        /** Removes a camera from the scene.
695            @remarks
696                This method removes a previously added camera from the scene.
697                The camera is deleted so the caller must ensure no references
698                to it's previous instance (e.g. in a SceneNode) are used.
699            @param
700                cam Pointer to the camera to remove
701        */
702        virtual void destroyCamera(Camera *cam);
703
704        /** Removes a camera from the scene.
705            @remarks
706                This method removes an camera from the scene based on the
707                camera's name rather than a pointer.
708        */
709        virtual void destroyCamera(const String& name);
710
711        /** Removes (and destroys) all cameras from the scene.
712            @remarks
713                Some cameras are internal created to dealing with texture shadow,
714                their aren't supposed to destroy outside. So, while you are using
715                texture shadow, don't call this method, or you can set the shadow
716                technique other than texture-based, which will destroy all internal
717                created shadow cameras and textures.
718        */
719        virtual void destroyAllCameras(void);
720
721        /** Creates a light for use in the scene.
722            @remarks
723                Lights can either be in a fixed position and independent of the
724                scene graph, or they can be attached to SceneNodes so they derive
725                their position from the parent node. Either way, they are created
726                using this method so that the SceneManager manages their
727                existence.
728            @param
729                name The name of the new light, to identify it later.
730        */
731        virtual Light* createLight(const String& name);
732
733        /** Returns a pointer to the named Light which has previously been added to the scene.
734                @note Throws an exception if the named instance does not exist
735        */
736        virtual Light* getLight(const String& name);
737
738                /** Returns whether a light with the given name exists.
739                */
740                virtual bool hasLight(const String& name) const;
741
742                /** Removes the named light from the scene and destroys it.
743            @remarks
744                Any pointers held to this light after calling this method will be invalid.
745        */
746        virtual void destroyLight(const String& name);
747
748        /** Removes the light from the scene and destroys it based on a pointer.
749            @remarks
750                Any pointers held to this light after calling this method will be invalid.
751        */
752        virtual void destroyLight(Light* light);
753        /** Removes and destroys all lights in the scene.
754        */
755        virtual void destroyAllLights(void);
756
757        /** Populate a light list with an ordered set of the lights which are closest
758        to the position specified.
759        @remarks
760            Note that since directional lights have no position, they are always considered
761            closer than any point lights and as such will always take precedence.
762        @par
763            Subclasses of the default SceneManager may wish to take into account other issues
764            such as possible visibility of the light if that information is included in their
765            data structures. This basic scenemanager simply orders by distance, eliminating
766            those lights which are out of range.
767        @par
768            The number of items in the list max exceed the maximum number of lights supported
769            by the renderer, but the extraneous ones will never be used. In fact the limit will
770            be imposed by Pass::getMaxSimultaneousLights.
771        @param position The position at which to evaluate the list of lights
772        @param radius The bounding radius to test
773        @param destList List to be populated with ordered set of lights; will be cleared by
774            this method before population.
775        */
776        virtual void _populateLightList(const Vector3& position, Real radius, LightList& destList);
777
778
779        /** Creates an instance of a SceneNode.
780            @remarks
781                Note that this does not add the SceneNode to the scene hierarchy.
782                This method is for convenience, since it allows an instance to
783                be created for which the SceneManager is responsible for
784                allocating and releasing memory, which is convenient in complex
785                scenes.
786            @par
787                To include the returned SceneNode in the scene, use the addChild
788                method of the SceneNode which is to be it's parent.
789            @par
790                Note that this method takes no parameters, and the node created is unnamed (it is
791                actually given a generated name, which you can retrieve if you want).
792                If you wish to create a node with a specific name, call the alternative method
793                which takes a name parameter.
794        */
795        virtual SceneNode* createSceneNode(void);
796
797        /** Creates an instance of a SceneNode with a given name.
798            @remarks
799                Note that this does not add the SceneNode to the scene hierarchy.
800                This method is for convenience, since it allows an instance to
801                be created for which the SceneManager is responsible for
802                allocating and releasing memory, which is convenient in complex
803                scenes.
804            @par
805                To include the returned SceneNode in the scene, use the addChild
806                method of the SceneNode which is to be it's parent.
807            @par
808                Note that this method takes a name parameter, which makes the node easier to
809                retrieve directly again later.
810        */
811        virtual SceneNode* createSceneNode(const String& name);
812
813        /** Destroys a SceneNode with a given name.
814        @remarks
815            This allows you to physically delete an individual SceneNode if you want to.
816            Note that this is not normally recommended, it's better to allow SceneManager
817            to delete the nodes when the scene is cleared.
818        */
819        virtual void destroySceneNode(const String& name);
820
821        /** Gets the SceneNode at the root of the scene hierarchy.
822            @remarks
823                The entire scene is held as a hierarchy of nodes, which
824                allows things like relative transforms, general changes in
825                rendering state etc (See the SceneNode class for more info).
826                In this basic SceneManager class, the application using
827                Ogre is free to structure this hierarchy however it likes,
828                since it has no real significance apart from making transforms
829                relative to each node (more specialised subclasses will
830                provide utility methods for building specific node structures
831                e.g. loading a BSP tree).
832            @par
833                However, in all cases there is only ever one root node of
834                the hierarchy, and this method returns a pointer to it.
835        */
836        virtual SceneNode* getRootSceneNode(void) const;
837
838        /** Retrieves a named SceneNode from the scene graph.
839        @remarks
840            If you chose to name a SceneNode as you created it, or if you
841            happened to make a note of the generated name, you can look it
842            up wherever it is in the scene graph using this method.
843                        @note Throws an exception if the named instance does not exist
844        */
845        virtual SceneNode* getSceneNode(const String& name) const;
846
847                /** Returns whether a scene node with the given name exists.
848                */
849                virtual bool hasSceneNode(const String& name) const;
850
851
852        /** Create an Entity (instance of a discrete mesh).
853            @param
854                entityName The name to be given to the entity (must be unique).
855            @param
856                meshName The name of the Mesh it is to be based on (e.g. 'knot.oof'). The
857                mesh will be loaded if it is not already.
858        */
859        virtual Entity* createEntity(const String& entityName, const String& meshName);
860
861        /** Prefab shapes available without loading a model.
862            @note
863                Minimal implementation at present.
864            @todo
865                Add more prefabs (teapots, teapots!!!)
866        */
867        enum PrefabType {
868            PT_PLANE
869        };
870
871        /** Create an Entity (instance of a discrete mesh) from a range of prefab shapes.
872            @param
873                entityName The name to be given to the entity (must be unique).
874            @param
875                ptype The prefab type.
876        */
877        virtual Entity* createEntity(const String& entityName, PrefabType ptype);
878        /** Retrieves a pointer to the named Entity.
879                @note Throws an exception if the named instance does not exist
880                */
881        virtual Entity* getEntity(const String& name);
882                /** Returns whether an entity with the given name exists.
883                */
884                virtual bool hasEntity(const String& name) const;
885
886        /** Removes & destroys an Entity from the SceneManager.
887            @warning
888                Must only be done if the Entity is not attached
889                to a SceneNode. It may be safer to wait to clear the whole
890                scene if you are unsure use clearScene.
891            @see
892                SceneManager::clearScene
893        */
894        virtual void destroyEntity(Entity* ent);
895
896        /** Removes & destroys an Entity from the SceneManager by name.
897            @warning
898                Must only be done if the Entity is not attached
899                to a SceneNode. It may be safer to wait to clear the whole
900                scene if you are unsure use clearScene.
901            @see
902                SceneManager::clearScene
903        */
904        virtual void destroyEntity(const String& name);
905
906        /** Removes & destroys all Entities.
907            @warning
908                Again, use caution since no Entity must be referred to
909                elsewhere e.g. attached to a SceneNode otherwise a crash
910                is likely. Use clearScene if you are unsure (it clears SceneNode
911                entries too.)
912            @see
913                SceneManager::clearScene
914        */
915        virtual void destroyAllEntities(void);
916
917        /** Create a ManualObject, an object which you populate with geometry
918                        manually through a GL immediate-mode style interface.
919        @param
920            name The name to be given to the object (must be unique).
921        */
922        virtual ManualObject* createManualObject(const String& name);
923        /** Retrieves a pointer to the named ManualObject.
924                @note Throws an exception if the named instance does not exist
925                */
926        virtual ManualObject* getManualObject(const String& name);
927                /** Returns whether a manual object with the given name exists.
928                */
929                virtual bool hasManualObject(const String& name) const;
930
931        /** Removes & destroys a ManualObject from the SceneManager.
932        */
933        virtual void destroyManualObject(ManualObject* obj);
934                /** Removes & destroys a ManualObject from the SceneManager.
935                */
936                virtual void destroyManualObject(const String& name);
937                /** Removes & destroys all ManualObjects from the SceneManager.
938                */
939                virtual void destroyAllManualObjects(void);
940        /** Create a BillboardChain, an object which you can use to render
941            a linked chain of billboards.
942        @param
943            name The name to be given to the object (must be unique).
944        */
945        virtual BillboardChain* createBillboardChain(const String& name);
946        /** Retrieves a pointer to the named BillboardChain.
947                @note Throws an exception if the named instance does not exist
948                */
949        virtual BillboardChain* getBillboardChain(const String& name);
950                /** Returns whether a billboard chain with the given name exists.
951                */
952                virtual bool hasBillboardChain(const String& name) const;
953
954        /** Removes & destroys a BillboardChain from the SceneManager.
955        */
956        virtual void destroyBillboardChain(BillboardChain* obj);
957                /** Removes & destroys a BillboardChain from the SceneManager.
958                */
959                virtual void destroyBillboardChain(const String& name);
960                /** Removes & destroys all BillboardChains from the SceneManager.
961                */
962                virtual void destroyAllBillboardChains(void);           
963        /** Create a RibbonTrail, an object which you can use to render
964            a linked chain of billboards which follows one or more nodes.
965        @param
966            name The name to be given to the object (must be unique).
967        */
968        virtual RibbonTrail* createRibbonTrail(const String& name);
969        /** Retrieves a pointer to the named RibbonTrail.
970                @note Throws an exception if the named instance does not exist
971                */
972        virtual RibbonTrail* getRibbonTrail(const String& name);
973                /** Returns whether a ribbon trail with the given name exists.
974                */
975                virtual bool hasRibbonTrail(const String& name) const;
976
977        /** Removes & destroys a RibbonTrail from the SceneManager.
978        */
979        virtual void destroyRibbonTrail(RibbonTrail* obj);
980                /** Removes & destroys a RibbonTrail from the SceneManager.
981                */
982                virtual void destroyRibbonTrail(const String& name);
983                /** Removes & destroys all RibbonTrails from the SceneManager.
984                */
985                virtual void destroyAllRibbonTrails(void);             
986
987        /** Creates a particle system based on a template.
988        @remarks
989            This method creates a new ParticleSystem instance based on the named template
990                        (defined through ParticleSystemManager::createTemplate) and returns a
991            pointer to the caller. The caller should not delete this object, it will be freed at system shutdown,
992            or can be released earlier using the destroyParticleSystem method.
993        @par
994            Each system created from a template takes the template's settings at the time of creation,
995            but is completely separate from the template from there on.
996        @par
997            Creating a particle system does not make it a part of the scene. As with other MovableObject
998            subclasses, a ParticleSystem is not rendered until it is attached to a SceneNode.
999        @par
1000            This is probably the more useful particle system creation method since it does not require manual
1001            setup of the system. Note that the initial quota is based on the template but may be changed later.
1002        @param
1003            name The name to give the new particle system instance.
1004        @param
1005            templateName The name of the template to base the new instance on.
1006        */
1007        virtual ParticleSystem* createParticleSystem(const String& name,
1008                        const String& templateName);
1009        /** Create a blank particle system.
1010        @remarks
1011            This method creates a new, blank ParticleSystem instance and returns a pointer to it.
1012            The caller should not delete this object, it will be freed at system shutdown, or can
1013            be released earlier using the destroyParticleSystem method.
1014        @par
1015            The instance returned from this method won't actually do anything because on creation a
1016            particle system has no emitters. The caller should manipulate the instance through it's
1017            ParticleSystem methods to actually create a real particle effect.
1018        @par
1019            Creating a particle system does not make it a part of the scene. As with other MovableObject
1020            subclasses, a ParticleSystem is not rendered until it is attached to a SceneNode.
1021        @param
1022            name The name to give the ParticleSystem.
1023        @param
1024            quota The maximum number of particles to allow in this system.
1025        @param
1026            resourceGroup The resource group which will be used to load dependent resources
1027        */
1028        virtual ParticleSystem* createParticleSystem(const String& name,
1029                        size_t quota = 500,
1030            const String& resourceGroup = ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME);
1031        /** Retrieves a pointer to the named ParticleSystem.
1032                @note Throws an exception if the named instance does not exist
1033                */
1034        virtual ParticleSystem* getParticleSystem(const String& name);
1035                /** Returns whether a particle system with the given name exists.
1036                */
1037                virtual bool hasParticleSystem(const String& name) const;
1038
1039        /** Removes & destroys a ParticleSystem from the SceneManager.
1040        */
1041        virtual void destroyParticleSystem(ParticleSystem* obj);
1042                /** Removes & destroys a ParticleSystem from the SceneManager.
1043                */
1044                virtual void destroyParticleSystem(const String& name);
1045                /** Removes & destroys all ParticleSystems from the SceneManager.
1046                */
1047                virtual void destroyAllParticleSystems(void);           
1048
1049                /** Empties the entire scene, inluding all SceneNodes, Entities, Lights,
1050            BillboardSets etc. Cameras are not deleted at this stage since
1051            they are still referenced by viewports, which are not destroyed during
1052            this process.
1053        */
1054        virtual void clearScene(void);
1055
1056        /** Sets the ambient light level to be used for the scene.
1057            @remarks
1058                This sets the colour and intensity of the ambient light in the scene, i.e. the
1059                light which is 'sourceless' and illuminates all objects equally.
1060                The colour of an object is affected by a combination of the light in the scene,
1061                and the amount of light that object reflects (in this case based on the Material::ambient
1062                property).
1063            @remarks
1064                By default the ambient light in the scene is ColourValue::Black, i.e. no ambient light. This
1065                means that any objects rendered with a Material which has lighting enabled (see Material::setLightingEnabled)
1066                will not be visible unless you have some dynamic lights in your scene.
1067        */
1068        void setAmbientLight(const ColourValue& colour);
1069
1070        /** Returns the ambient light level to be used for the scene.
1071        */
1072        const ColourValue& getAmbientLight(void) const;
1073
1074        /** Sets the source of the 'world' geometry, i.e. the large, mainly static geometry
1075            making up the world e.g. rooms, landscape etc.
1076            @remarks
1077                Depending on the type of SceneManager (subclasses will be specialised
1078                for particular world geometry types) you have requested via the Root or
1079                SceneManagerEnumerator classes, you can pass a filename to this method and it
1080                will attempt to load the world-level geometry for use. If you try to load
1081                an inappropriate type of world data an exception will be thrown. The default
1082                SceneManager cannot handle any sort of world geometry and so will always
1083                throw an exception. However subclasses like BspSceneManager can load
1084                particular types of world geometry e.g. "q3dm1.bsp".
1085        */
1086        virtual void setWorldGeometry(const String& filename);
1087
1088        /** Sets the source of the 'world' geometry, i.e. the large, mainly
1089                        static geometry making up the world e.g. rooms, landscape etc.
1090            @remarks
1091                Depending on the type of SceneManager (subclasses will be
1092                                specialised for particular world geometry types) you have
1093                                requested via the Root or SceneManagerEnumerator classes, you
1094                                can pass a stream to this method and it will attempt to load
1095                                the world-level geometry for use. If the manager can only
1096                                handle one input format the typeName parameter is not required.
1097                                The stream passed will be read (and it's state updated).
1098                        @param stream Data stream containing data to load
1099                        @param typeName String identifying the type of world geometry
1100                                contained in the stream - not required if this manager only
1101                                supports one type of world geometry.
1102        */
1103                virtual void setWorldGeometry(DataStreamPtr& stream,
1104                        const String& typeName = StringUtil::BLANK);
1105
1106        /** Estimate the number of loading stages required to load the named
1107            world geometry.
1108        @remarks
1109            This method should be overridden by SceneManagers that provide
1110            custom world geometry that can take some time to load. They should
1111            return from this method a count of the number of stages of progress
1112            they can report on whilst loading. During real loading (setWorldGeomtry),
1113            they should call ResourceGroupManager::_notifyWorldGeometryProgress exactly
1114            that number of times when loading the geometry for real.
1115        @note
1116            The default is to return 0, ie to not report progress.
1117        */
1118        virtual size_t estimateWorldGeometry(const String& filename) { return 0; }
1119
1120        /** Estimate the number of loading stages required to load the named
1121            world geometry.
1122        @remarks
1123                        Operates just like the version of this method which takes a
1124                        filename, but operates on a stream instead. Note that since the
1125                        stream is updated, you'll need to reset the stream or reopen it
1126                        when it comes to loading it for real.
1127                @param stream Data stream containing data to load
1128                @param typeName String identifying the type of world geometry
1129                        contained in the stream - not required if this manager only
1130                        supports one type of world geometry.
1131                */             
1132        virtual size_t estimateWorldGeometry(DataStreamPtr& stream,
1133                        const String& typeName = StringUtil::BLANK) { return 0; }
1134        /** Asks the SceneManager to provide a suggested viewpoint from which the scene should be viewed.
1135            @remarks
1136                Typically this method returns the origin unless a) world geometry has been loaded using
1137                SceneManager::setWorldGeometry and b) that world geometry has suggested 'start' points.
1138                If there is more than one viewpoint which the scene manager can suggest, it will always suggest
1139                the first one unless the random parameter is true.
1140            @param
1141                random If true, and there is more than one possible suggestion, a random one will be used. If false
1142                the same one will always be suggested.
1143            @return
1144                On success, true is returned.
1145            @par
1146                On failiure, false is returned.
1147        */
1148        virtual ViewPoint getSuggestedViewpoint(bool random = false);
1149
1150        /** Method for setting a specific option of the Scene Manager. These options are usually
1151            specific for a certain implemntation of the Scene Manager class, and may (and probably
1152            will) not exist across different implementations.
1153            @param
1154                strKey The name of the option to set
1155            @param
1156                pValue A pointer to the value - the size should be calculated by the scene manager
1157                based on the key
1158            @return
1159                On success, true is returned.
1160            @par
1161                On failiure, false is returned.
1162        */
1163        virtual bool setOption( const String& strKey, const void* pValue ) { return false; }
1164
1165        /** Method for getting the value of an implementation-specific Scene Manager option.
1166            @param
1167                strKey The name of the option
1168            @param
1169                pDestValue A pointer to a memory location where the value will
1170                be copied. Currently, the memory will be allocated by the
1171                scene manager, but this may change
1172            @return
1173                On success, true is returned and pDestValue points to the value of the given
1174                option.
1175            @par
1176                On failiure, false is returned and pDestValue is set to NULL.
1177        */
1178        virtual bool getOption( const String& strKey, void* pDestValue ) { return false; }
1179
1180        /** Method for verifying wether the scene manager has an implementation-specific
1181            option.
1182            @param
1183                strKey The name of the option to check for.
1184            @return
1185                If the scene manager contains the given option, true is returned.
1186            @remarks
1187                If it does not, false is returned.
1188        */
1189        virtual bool hasOption( const String& strKey ) const { return false; }
1190        /** Method for getting all possible values for a specific option. When this list is too large
1191            (i.e. the option expects, for example, a float), the return value will be true, but the
1192            list will contain just one element whose size will be set to 0.
1193            Otherwise, the list will be filled with all the possible values the option can
1194            accept.
1195            @param
1196                strKey The name of the option to get the values for.
1197            @param
1198                refValueList A reference to a list that will be filled with the available values.
1199            @return
1200                On success (the option exists), true is returned.
1201            @par
1202                On failure, false is returned.
1203        */
1204        virtual bool getOptionValues( const String& strKey, StringVector& refValueList ) { return false; }
1205
1206        /** Method for getting all the implementation-specific options of the scene manager.
1207            @param
1208                refKeys A reference to a list that will be filled with all the available options.
1209            @return
1210                On success, true is returned. On failiure, false is returned.
1211        */
1212        virtual bool getOptionKeys( StringVector& refKeys ) { return false; }
1213
1214        /** Internal method for updating the scene graph ie the tree of SceneNode instances managed by this class.
1215            @remarks
1216                This must be done before issuing objects to the rendering pipeline, since derived transformations from
1217                parent nodes are not updated until required. This SceneManager is a basic implementation which simply
1218                updates all nodes from the root. This ensures the scene is up to date but requires all the nodes
1219                to be updated even if they are not visible. Subclasses could trim this such that only potentially visible
1220                nodes are updated.
1221        */
1222        virtual void _updateSceneGraph(Camera* cam);
1223
1224        /** Internal method which parses the scene to find visible objects to render.
1225            @remarks
1226                If you're implementing a custom scene manager, this is the most important method to
1227                override since it's here you can apply your custom world partitioning scheme. Once you
1228                have added the appropriate objects to the render queue, you can let the default
1229                SceneManager objects _renderVisibleObjects handle the actual rendering of the objects
1230                you pick.
1231            @par
1232                Any visible objects will be added to a rendering queue, which is indexed by material in order
1233                to ensure objects with the same material are rendered together to minimise render state changes.
1234        */
1235        virtual void _findVisibleObjects(Camera* cam, bool onlyShadowCasters);
1236
1237        /** Internal method for applying animations to scene nodes.
1238        @remarks
1239            Uses the internally stored AnimationState objects to apply animation to SceneNodes.
1240        */
1241        virtual void _applySceneAnimations(void);
1242
1243        /** Sends visible objects found in _findVisibleObjects to the rendering engine.
1244        */
1245        virtual void _renderVisibleObjects(void);
1246
1247        /** Prompts the class to send its contents to the renderer.
1248            @remarks
1249                This method prompts the scene manager to send the
1250                contents of the scene it manages to the rendering
1251                pipeline, possibly preceded by some sorting, culling
1252                or other scene management tasks. Note that this method is not normally called
1253                directly by the user application; it is called automatically
1254                by the Ogre rendering loop.
1255            @param camera Pointer to a camera from whose viewpoint the scene is to
1256                be rendered.
1257            @param vp The target viewport
1258            @param includeOverlays Whether or not overlay objects should be rendered
1259        */
1260        virtual void _renderScene(Camera* camera, Viewport* vp, bool includeOverlays);
1261
1262        /** Internal method for queueing the sky objects with the params as
1263            previously set through setSkyBox, setSkyPlane and setSkyDome.
1264        */
1265        virtual void _queueSkiesForRendering(Camera* cam);
1266
1267
1268
1269        /** Notifies the scene manager of its destination render system
1270            @remarks
1271                Called automatically by RenderSystem::addSceneManager
1272                this method simply notifies the manager of the render
1273                system to which its output must be directed.
1274            @param
1275                sys Pointer to the RenderSystem subclass to be used as a render target.
1276        */
1277        virtual void _setDestinationRenderSystem(RenderSystem* sys);
1278
1279        /** Enables / disables a 'sky plane' i.e. a plane at constant
1280            distance from the camera representing the sky.
1281            @remarks
1282                You can create sky planes yourself using the standard mesh and
1283                entity methods, but this creates a plane which the camera can
1284                never get closer or further away from - it moves with the camera.
1285                (NB you could create this effect by creating a world plane which
1286                was attached to the same SceneNode as the Camera too, but this
1287                would only apply to a single camera whereas this plane applies to
1288                any camera using this scene manager).
1289            @note
1290                To apply scaling, scrolls etc to the sky texture(s) you
1291                should use the TextureUnitState class methods.
1292            @param
1293                enable True to enable the plane, false to disable it
1294            @param
1295                plane Details of the plane, i.e. it's normal and it's
1296                distance from the camera.
1297            @param
1298                materialName The name of the material the plane will use
1299            @param
1300                scale The scaling applied to the sky plane - higher values
1301                mean a bigger sky plane - you may want to tweak this
1302                depending on the size of plane.d and the other
1303                characteristics of your scene
1304            @param
1305                tiling How many times to tile the texture across the sky.
1306                Applies to all texture layers. If you need finer control use
1307                the TextureUnitState texture coordinate transformation methods.
1308            @param
1309                drawFirst If true, the plane is drawn before all other
1310                geometry in the scene, without updating the depth buffer.
1311                This is the safest rendering method since all other objects
1312                will always appear in front of the sky. However this is not
1313                the most efficient way if most of the sky is often occluded
1314                by other objects. If this is the case, you can set this
1315                parameter to false meaning it draws <em>after</em> all other
1316                geometry which can be an optimisation - however you must
1317                ensure that the plane.d value is large enough that no objects
1318                will 'poke through' the sky plane when it is rendered.
1319                        @param
1320                                bow If zero, the plane will be completely flat (like previous
1321                                versions.  If above zero, the plane will be curved, allowing
1322                                the sky to appear below camera level.  Curved sky planes are
1323                                simular to skydomes, but are more compatable with fog.
1324            @param xsegments, ysegments
1325                Determines the number of segments the plane will have to it. This
1326                is most important when you are bowing the plane, but may also be useful
1327                if you need tesselation on the plane to perform per-vertex effects.
1328            @param groupName
1329                The name of the resource group to which to assign the plane mesh.
1330        */
1331        virtual void setSkyPlane(
1332            bool enable,
1333            const Plane& plane, const String& materialName, Real scale = 1000,
1334            Real tiling = 10, bool drawFirst = true, Real bow = 0,
1335            int xsegments = 1, int ysegments = 1,
1336            const String& groupName = ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME);
1337
1338                /** Return whether a key plane is enabled */
1339                virtual bool isSkyPlaneEnabled(void) const { return mSkyPlaneEnabled; }
1340
1341                /** Get the sky plane node, if enabled. */
1342                virtual SceneNode* getSkyPlaneNode(void) const { return mSkyPlaneNode; }
1343
1344                /** Get the parameters used to construct the SkyPlane, if any **/
1345                virtual const SkyPlaneGenParameters& getSkyPlaneGenParameters(void) const { return mSkyPlaneGenParameters; }
1346
1347        /** Enables / disables a 'sky box' i.e. a 6-sided box at constant
1348            distance from the camera representing the sky.
1349            @remarks
1350                You could create a sky box yourself using the standard mesh and
1351                entity methods, but this creates a plane which the camera can
1352                never get closer or further away from - it moves with the camera.
1353                (NB you could create this effect by creating a world box which
1354                was attached to the same SceneNode as the Camera too, but this
1355                would only apply to a single camera whereas this skybox applies
1356                to any camera using this scene manager).
1357            @par
1358                The material you use for the skybox can either contain layers
1359                which are single textures, or they can be cubic textures, i.e.
1360                made up of 6 images, one for each plane of the cube. See the
1361                TextureUnitState class for more information.
1362            @param
1363                enable True to enable the skybox, false to disable it
1364            @param
1365                materialName The name of the material the box will use
1366            @param
1367                distance Distance in world coorinates from the camera to
1368                each plane of the box. The default is normally OK.
1369            @param
1370                drawFirst If true, the box is drawn before all other
1371                geometry in the scene, without updating the depth buffer.
1372                This is the safest rendering method since all other objects
1373                will always appear in front of the sky. However this is not
1374                the most efficient way if most of the sky is often occluded
1375                by other objects. If this is the case, you can set this
1376                parameter to false meaning it draws <em>after</em> all other
1377                geometry which can be an optimisation - however you must
1378                ensure that the distance value is large enough that no
1379                objects will 'poke through' the sky box when it is rendered.
1380            @param
1381                orientation Optional parameter to specify the orientation
1382                of the box. By default the 'top' of the box is deemed to be
1383                in the +y direction, and the 'front' at the -z direction.
1384                You can use this parameter to rotate the sky if you want.
1385            @param groupName
1386                The name of the resource group to which to assign the plane mesh.
1387        */
1388        virtual void setSkyBox(
1389            bool enable, const String& materialName, Real distance = 5000,
1390            bool drawFirst = true, const Quaternion& orientation = Quaternion::IDENTITY,
1391            const String& groupName = ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME);
1392
1393                /** Return whether a skybox is enabled */
1394                virtual bool isSkyBoxEnabled(void) const { return mSkyBoxEnabled; }
1395
1396                /** Get the skybox node, if enabled. */
1397                virtual SceneNode* getSkyBoxNode(void) const { return mSkyBoxNode; }
1398
1399                /** Get the parameters used to generate the current SkyBox, if any */
1400                virtual const SkyBoxGenParameters& getSkyBoxGenParameters(void) const { return mSkyBoxGenParameters; }
1401
1402                /** Enables / disables a 'sky dome' i.e. an illusion of a curved sky.
1403            @remarks
1404                A sky dome is actually formed by 5 sides of a cube, but with
1405                texture coordinates generated such that the surface appears
1406                curved like a dome. Sky domes are appropriate where you need a
1407                realistic looking sky where the scene is not going to be
1408                'fogged', and there is always a 'floor' of some sort to prevent
1409                the viewer looking below the horizon (the distortion effect below
1410                the horizon can be pretty horrible, and there is never anyhting
1411                directly below the viewer). If you need a complete wrap-around
1412                background, use the setSkyBox method instead. You can actually
1413                combine a sky box and a sky dome if you want, to give a positional
1414                backdrop with an overlayed curved cloud layer.
1415            @par
1416                Sky domes work well with 2D repeating textures like clouds. You
1417                can change the apparant 'curvature' of the sky depending on how
1418                your scene is viewed - lower curvatures are better for 'open'
1419                scenes like landscapes, whilst higher curvatures are better for
1420                say FPS levels where you don't see a lot of the sky at once and
1421                the exaggerated curve looks good.
1422            @param
1423                enable True to enable the skydome, false to disable it
1424            @param
1425                materialName The name of the material the dome will use
1426            @param
1427                curvature The curvature of the dome. Good values are
1428                between 2 and 65. Higher values are more curved leading to
1429                a smoother effect, lower values are less curved meaning
1430                more distortion at the horizons but a better distance effect.
1431            @param
1432                tiling How many times to tile the texture(s) across the
1433                dome.
1434            @param
1435                distance Distance in world coorinates from the camera to
1436                each plane of the box the dome is rendered on. The default
1437                is normally OK.
1438            @param
1439                drawFirst If true, the dome is drawn before all other
1440                geometry in the scene, without updating the depth buffer.
1441                This is the safest rendering method since all other objects
1442                will always appear in front of the sky. However this is not
1443                the most efficient way if most of the sky is often occluded
1444                by other objects. If this is the case, you can set this
1445                parameter to false meaning it draws <em>after</em> all other
1446                geometry which can be an optimisation - however you must
1447                ensure that the distance value is large enough that no
1448                objects will 'poke through' the sky when it is rendered.
1449            @param
1450                orientation Optional parameter to specify the orientation
1451                of the dome. By default the 'top' of the dome is deemed to
1452                be in the +y direction, and the 'front' at the -z direction.
1453                You can use this parameter to rotate the sky if you want.
1454            @param groupName
1455                The name of the resource group to which to assign the plane mesh.
1456        */
1457        virtual void setSkyDome(
1458            bool enable, const String& materialName, Real curvature = 10,
1459            Real tiling = 8, Real distance = 4000, bool drawFirst = true,
1460            const Quaternion& orientation = Quaternion::IDENTITY,
1461            int xsegments = 16, int ysegments = 16, int ysegments_keep = -1,
1462            const String& groupName = ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME);
1463
1464                /** Return whether a skydome is enabled */
1465                virtual bool isSkyDomeEnabled(void) const { return mSkyDomeEnabled; }
1466
1467                /** Get the sky dome node, if enabled. */
1468                virtual SceneNode* getSkyDomeNode(void) const { return mSkyDomeNode; }
1469
1470                /** Get the parameters used to generate the current SkyDome, if any */
1471                virtual const SkyDomeGenParameters& getSkyDomeGenParameters(void) const { return mSkyDomeGenParameters; }
1472
1473                /** Sets the fogging mode applied to the scene.
1474            @remarks
1475                This method sets up the scene-wide fogging effect. These settings
1476                apply to all geometry rendered, UNLESS the material with which it
1477                is rendered has it's own fog settings (see Material::setFog).
1478            @param
1479                mode Set up the mode of fog as described in the FogMode
1480                enum, or set to FOG_NONE to turn off.
1481            @param
1482                colour The colour of the fog. Either set this to the same
1483                as your viewport background colour, or to blend in with a
1484                skydome or skybox.
1485            @param
1486                expDensity The density of the fog in FOG_EXP or FOG_EXP2
1487                mode, as a value between 0 and 1. The default is 0.001.
1488            @param
1489                linearStart Distance in world units at which linear fog starts to
1490                encroach. Only applicable if mode is
1491                FOG_LINEAR.
1492            @param
1493                linearEnd Distance in world units at which linear fog becomes completely
1494                opaque. Only applicable if mode is
1495                FOG_LINEAR.
1496        */
1497        void setFog(
1498            FogMode mode = FOG_NONE, const ColourValue& colour = ColourValue::White,
1499            Real expDensity = 0.001, Real linearStart = 0.0, Real linearEnd = 1.0);
1500
1501        /** Returns the fog mode for the scene.
1502        */
1503        virtual FogMode getFogMode(void) const;
1504
1505        /** Returns the fog colour for the scene.
1506        */
1507        virtual const ColourValue& getFogColour(void) const;
1508
1509        /** Returns the fog start distance for the scene.
1510        */
1511        virtual Real getFogStart(void) const;
1512
1513        /** Returns the fog end distance for the scene.
1514        */
1515        virtual Real getFogEnd(void) const;
1516
1517        /** Returns the fog density for the scene.
1518        */
1519        virtual Real getFogDensity(void) const;
1520
1521
1522        /** Creates a new BillboardSet for use with this scene manager.
1523            @remarks
1524                This method creates a new BillboardSet which is registered with
1525                the SceneManager. The SceneManager will destroy this object when
1526                it shuts down or when the SceneManager::clearScene method is
1527                called, so the caller does not have to worry about destroying
1528                this object (in fact, it definitely should not do this).
1529            @par
1530                See the BillboardSet documentations for full details of the
1531                returned class.
1532            @param
1533                name The name to give to this billboard set. Must be unique.
1534            @param
1535                poolSize The initial size of the pool of billboards (see BillboardSet for more information)
1536            @see
1537                BillboardSet
1538        */
1539        virtual BillboardSet* createBillboardSet(const String& name, unsigned int poolSize = 20);
1540
1541        /** Retrieves a pointer to the named BillboardSet.
1542                @note Throws an exception if the named instance does not exist
1543        */
1544        virtual BillboardSet* getBillboardSet(const String& name);
1545                /** Returns whether a billboardset with the given name exists.
1546                */
1547                virtual bool hasBillboardSet(const String& name) const;
1548
1549        /** Removes & destroys an BillboardSet from the SceneManager.
1550            @warning
1551                Must only be done if the BillboardSet is not attached
1552                to a SceneNode. It may be safer to wait to clear the whole
1553                scene. If you are unsure, use clearScene.
1554        */
1555        virtual void destroyBillboardSet(BillboardSet* set);
1556
1557        /** Removes & destroys an BillboardSet from the SceneManager by name.
1558            @warning
1559                Must only be done if the BillboardSet is not attached
1560                to a SceneNode. It may be safer to wait to clear the whole
1561                scene. If you are unsure, use clearScene.
1562        */
1563        virtual void destroyBillboardSet(const String& name);
1564
1565        /** Removes & destroys all BillboardSets.
1566        @warning
1567        Again, use caution since no BillboardSet must be referred to
1568        elsewhere e.g. attached to a SceneNode otherwise a crash
1569        is likely. Use clearScene if you are unsure (it clears SceneNode
1570        entries too.)
1571        @see
1572        SceneManager::clearScene
1573        */
1574        virtual void destroyAllBillboardSets(void);
1575
1576        /** Tells the SceneManager whether it should render the SceneNodes which
1577            make up the scene as well as the objects in the scene.
1578        @remarks
1579            This method is mainly for debugging purposes. If you set this to 'true',
1580            each node will be rendered as a set of 3 axes to allow you to easily see
1581            the orientation of the nodes.
1582        */
1583        virtual void setDisplaySceneNodes(bool display);
1584        /** Returns true if all scene nodes axis are to be displayed */
1585        virtual bool getDisplaySceneNodes(void) const {return mDisplayNodes;}
1586
1587        /** Creates an animation which can be used to animate scene nodes.
1588        @remarks
1589            An animation is a collection of 'tracks' which over time change the position / orientation
1590            of Node objects. In this case, the animation will likely have tracks to modify the position
1591            / orientation of SceneNode objects, e.g. to make objects move along a path.
1592        @par
1593            You don't need to use an Animation object to move objects around - you can do it yourself
1594            using the methods of the Node in your FrameListener class. However, when you need relatively
1595            complex scripted animation, this is the class to use since it will interpolate between
1596            keyframes for you and generally make the whole process easier to manage.
1597        @par
1598            A single animation can affect multiple Node objects (each AnimationTrack affects a single Node).
1599            In addition, through animation blending a single Node can be affected by multiple animations,
1600            athough this is more useful when performing skeletal animation (see Skeleton::createAnimation).
1601        @par
1602            Note that whilst it uses the same classes, the animations created here are kept separate from the
1603            skeletal animations of meshes (each Skeleton owns those animations).
1604        @param name The name of the animation, must be unique within this SceneManager.
1605        @param length The total length of the animation.
1606        */
1607        virtual Animation* createAnimation(const String& name, Real length);
1608
1609        /** Looks up an Animation object previously created with createAnimation.
1610                @note Throws an exception if the named instance does not exist
1611                */
1612        virtual Animation* getAnimation(const String& name) const;
1613                /** Returns whether an animation with the given name exists.
1614                */
1615                virtual bool hasAnimation(const String& name) const;
1616
1617        /** Destroys an Animation.
1618        @remarks
1619            You should ensure that none of your code is referencing this animation objects since the
1620            memory will be freed.
1621        */
1622        virtual void destroyAnimation(const String& name);
1623
1624        /** Removes all animations created using this SceneManager. */
1625        virtual void destroyAllAnimations(void);
1626
1627        /** Create an AnimationState object for managing application of animations.
1628        @remarks
1629            You can create Animation objects for animating SceneNode obejcts using the
1630            createAnimation method. However, in order to actually apply those animations
1631            you have to call methods on Node and Animation in a particular order (namely
1632            Node::resetToInitialState and Animation::apply). To make this easier and to
1633            help track the current time position of animations, the AnimationState object
1634            is provided. </p>
1635            So if you don't want to control animation application manually, call this method,
1636            update the returned object as you like every frame and let SceneManager apply
1637            the animation state for you.
1638        @par
1639            Remember, AnimationState objects are disabled by default at creation time.
1640            Turn them on when you want them using their setEnabled method.
1641        @par
1642            Note that any SceneNode affected by this automatic animation will have it's state
1643            reset to it's initial position before application of the animation. Unless specifically
1644            modified using Node::setInitialState the Node assumes it's initial state is at the
1645            origin. If you want the base state of the SceneNode to be elsewhere, make your changes
1646            to the node using the standard transform methods, then call setInitialState to
1647            'bake' this reference position into the node.
1648                @par
1649                        If the target of your animation is to be a generic AnimableValue, you
1650                        should ensure that it has a base value set (unlike nodes this has no
1651                        default). @see AnimableValue::setAsBaseValue.
1652        @param animName The name of an animation created already with createAnimation.
1653        */
1654        virtual AnimationState* createAnimationState(const String& animName);
1655
1656        /** Retrieves animation state as previously created using createAnimationState.
1657                @note Throws an exception if the named instance does not exist
1658                */
1659        virtual AnimationState* getAnimationState(const String& animName);
1660                /** Returns whether an animation state with the given name exists.
1661                */
1662                virtual bool hasAnimationState(const String& name) const;
1663
1664        /** Destroys an AnimationState.
1665        @remarks
1666            You should ensure that none of your code is referencing this animation
1667            state object since the memory will be freed.
1668        */
1669        virtual void destroyAnimationState(const String& name);
1670
1671        /** Removes all animation states created using this SceneManager. */
1672        virtual void destroyAllAnimationStates(void);
1673
1674        /** Manual rendering method, for advanced users only.
1675        @remarks
1676            This method allows you to send rendering commands through the pipeline on
1677            demand, bypassing OGRE's normal world processing. You should only use this if you
1678            really know what you're doing; OGRE does lots of things for you that you really should
1679            let it do. However, there are times where it may be useful to have this manual interface,
1680            for example overlaying something on top of the scene rendered by OGRE.
1681        @par
1682            Because this is an instant rendering method, timing is important. The best
1683            time to call it is from a RenderTargetListener event handler.
1684        @par
1685            Don't call this method a lot, it's designed for rare (1 or 2 times per frame) use.
1686            Calling it regularly per frame will cause frame rate drops!
1687        @param rend A RenderOperation object describing the rendering op
1688        @param pass The Pass to use for this render
1689        @param vp Pointer to the viewport to render to
1690        @param worldMatrix The transform to apply from object to world space
1691        @param viewMatrix The transform to apply from world to view space
1692        @param projMatrix The transform to apply from view to screen space
1693        @param doBeginEndFrame If true, beginFrame() and endFrame() are called,
1694            otherwise not. You should leave this as false if you are calling
1695            this within the main render loop.
1696        */
1697        virtual void manualRender(RenderOperation* rend, Pass* pass, Viewport* vp,
1698            const Matrix4& worldMatrix, const Matrix4& viewMatrix, const Matrix4& projMatrix,
1699            bool doBeginEndFrame = false) ;
1700
1701        /** Retrieves the internal render queue, for advanced users only.
1702        @remarks
1703            The render queue is mainly used internally to manage the scene object
1704                        rendering queue, it also exports some methods to allow advanced users
1705                        to configure the behavior of rendering process.
1706            Most methods provided by RenderQueue are supposed to be used
1707                        internally only, you should reference to the RenderQueue API for
1708                        more information. Do not access this directly unless you know what
1709                        you are doing.
1710        */
1711        virtual RenderQueue* getRenderQueue(void);
1712
1713        /** Registers a new RenderQueueListener which will be notified when render queues
1714            are processed.
1715        */
1716        virtual void addRenderQueueListener(RenderQueueListener* newListener);
1717
1718        /** Removes a listener previously added with addRenderQueueListener. */
1719        virtual void removeRenderQueueListener(RenderQueueListener* delListener);
1720
1721                /** Adds an item to the 'special case' render queue list.
1722                @remarks
1723                        Normally all render queues are rendered, in their usual sequence,
1724                        only varying if a RenderQueueListener nominates for the queue to be
1725                        repeated or skipped. This method allows you to add a render queue to
1726                        a 'special case' list, which varies the behaviour. The effect of this
1727                        list depends on the 'mode' in which this list is in, which might be
1728                        to exclude these render queues, or to include them alone (excluding
1729                        all other queues). This allows you to perform broad selective
1730                        rendering without requiring a RenderQueueListener.
1731                @param qid The identifier of the queue which should be added to the
1732                        special case list. Nothing happens if the queue is already in the list.
1733                */
1734                virtual void addSpecialCaseRenderQueue(uint8 qid);
1735                /** Removes an item to the 'special case' render queue list.
1736                @see SceneManager::addSpecialCaseRenderQueue
1737                @param qid The identifier of the queue which should be removed from the
1738                        special case list. Nothing happens if the queue is not in the list.
1739                */
1740                virtual void removeSpecialCaseRenderQueue(uint8 qid);
1741                /** Clears the 'special case' render queue list.
1742                @see SceneManager::addSpecialCaseRenderQueue
1743                */
1744                virtual void clearSpecialCaseRenderQueues(void);
1745                /** Sets the way the special case render queue list is processed.
1746                @see SceneManager::addSpecialCaseRenderQueue
1747                @param mode The mode of processing
1748                */
1749                virtual void setSpecialCaseRenderQueueMode(SpecialCaseRenderQueueMode mode);
1750                /** Gets the way the special case render queue list is processed. */
1751                virtual SpecialCaseRenderQueueMode getSpecialCaseRenderQueueMode(void);
1752                /** Returns whether or not the named queue will be rendered based on the
1753                        current 'special case' render queue list and mode.
1754                @see SceneManager::addSpecialCaseRenderQueue
1755                @param qid The identifier of the queue which should be tested
1756                @returns true if the queue will be rendered, false otherwise
1757                */
1758                virtual bool isRenderQueueToBeProcessed(uint8 qid);
1759
1760                /** Sets the render queue that the world geometry (if any) this SceneManager
1761                        renders will be associated with.
1762                @remarks
1763                        SceneManagers which provide 'world geometry' should place it in a
1764                        specialised render queue in order to make it possible to enable /
1765                        disable it easily using the addSpecialCaseRenderQueue method. Even
1766                        if the SceneManager does not use the render queues to render the
1767                        world geometry, it should still pick a queue to represent it's manual
1768                        rendering, and check isRenderQueueToBeProcessed before rendering.
1769                @note
1770                        Setting this may not affect the actual ordering of rendering the
1771                        world geometry, if the world geometry is being rendered manually
1772                        by the SceneManager. If the SceneManager feeds world geometry into
1773                        the queues, however, the ordering will be affected.
1774                */
1775                virtual void setWorldGeometryRenderQueue(uint8 qid);
1776                /** Gets the render queue that the world geometry (if any) this SceneManager
1777                        renders will be associated with.
1778                @remarks
1779                        SceneManagers which provide 'world geometry' should place it in a
1780                        specialised render queue in order to make it possible to enable /
1781                        disable it easily using the addSpecialCaseRenderQueue method. Even
1782                        if the SceneManager does not use the render queues to render the
1783                        world geometry, it should still pick a queue to represent it's manual
1784                        rendering, and check isRenderQueueToBeProcessed before rendering.
1785                */
1786                virtual uint8 getWorldGeometryRenderQueue(void);
1787
1788                /** Allows all bounding boxes of scene nodes to be displayed. */
1789                virtual void showBoundingBoxes(bool bShow);
1790
1791                /** Returns if all bounding boxes of scene nodes are to be displayed */
1792                virtual bool getShowBoundingBoxes() const;
1793
1794        /** Internal method for notifying the manager that a SceneNode is autotracking. */
1795        virtual void _notifyAutotrackingSceneNode(SceneNode* node, bool autoTrack);
1796
1797       
1798        /** Creates an AxisAlignedBoxSceneQuery for this scene manager.
1799        @remarks
1800            This method creates a new instance of a query object for this scene manager,
1801            for an axis aligned box region. See SceneQuery and AxisAlignedBoxSceneQuery
1802            for full details.
1803        @par
1804            The instance returned from this method must be destroyed by calling
1805            SceneManager::destroyQuery when it is no longer required.
1806        @param box Details of the box which describes the region for this query.
1807        @param mask The query mask to apply to this query; can be used to filter out
1808            certain objects; see SceneQuery for details.
1809        */
1810        virtual AxisAlignedBoxSceneQuery*
1811            createAABBQuery(const AxisAlignedBox& box, unsigned long mask = 0xFFFFFFFF);
1812        /** Creates a SphereSceneQuery for this scene manager.
1813        @remarks
1814            This method creates a new instance of a query object for this scene manager,
1815            for a spherical region. See SceneQuery and SphereSceneQuery
1816            for full details.
1817        @par
1818            The instance returned from this method must be destroyed by calling
1819            SceneManager::destroyQuery when it is no longer required.
1820        @param sphere Details of the sphere which describes the region for this query.
1821        @param mask The query mask to apply to this query; can be used to filter out
1822            certain objects; see SceneQuery for details.
1823        */
1824        virtual SphereSceneQuery*
1825            createSphereQuery(const Sphere& sphere, unsigned long mask = 0xFFFFFFFF);
1826        /** Creates a PlaneBoundedVolumeListSceneQuery for this scene manager.
1827        @remarks
1828        This method creates a new instance of a query object for this scene manager,
1829        for a region enclosed by a set of planes (normals pointing inwards).
1830        See SceneQuery and PlaneBoundedVolumeListSceneQuery for full details.
1831        @par
1832        The instance returned from this method must be destroyed by calling
1833        SceneManager::destroyQuery when it is no longer required.
1834        @param volumes Details of the volumes which describe the region for this query.
1835        @param mask The query mask to apply to this query; can be used to filter out
1836        certain objects; see SceneQuery for details.
1837        */
1838        virtual PlaneBoundedVolumeListSceneQuery*
1839            createPlaneBoundedVolumeQuery(const PlaneBoundedVolumeList& volumes, unsigned long mask = 0xFFFFFFFF);
1840
1841
1842        /** Creates a RaySceneQuery for this scene manager.
1843        @remarks
1844            This method creates a new instance of a query object for this scene manager,
1845            looking for objects which fall along a ray. See SceneQuery and RaySceneQuery
1846            for full details.
1847        @par
1848            The instance returned from this method must be destroyed by calling
1849            SceneManager::destroyQuery when it is no longer required.
1850        @param ray Details of the ray which describes the region for this query.
1851        @param mask The query mask to apply to this query; can be used to filter out
1852            certain objects; see SceneQuery for details.
1853        */
1854        virtual RaySceneQuery*
1855            createRayQuery(const Ray& ray, unsigned long mask = 0xFFFFFFFF);
1856        //PyramidSceneQuery* createPyramidQuery(const Pyramid& p, unsigned long mask = 0xFFFFFFFF);
1857        /** Creates an IntersectionSceneQuery for this scene manager.
1858        @remarks
1859            This method creates a new instance of a query object for locating
1860            intersecting objects. See SceneQuery and IntersectionSceneQuery
1861            for full details.
1862        @par
1863            The instance returned from this method must be destroyed by calling
1864            SceneManager::destroyQuery when it is no longer required.
1865        @param mask The query mask to apply to this query; can be used to filter out
1866            certain objects; see SceneQuery for details.
1867        */
1868        virtual IntersectionSceneQuery*
1869            createIntersectionQuery(unsigned long mask = 0xFFFFFFFF);
1870
1871        /** Destroys a scene query of any type. */
1872        virtual void destroyQuery(SceneQuery* query);
1873
1874        typedef MapIterator<CameraList> CameraIterator;
1875        typedef MapIterator<AnimationList> AnimationIterator;
1876
1877        /** Returns a specialised MapIterator over all cameras in the scene. */
1878        CameraIterator getCameraIterator(void) {
1879            return CameraIterator(mCameras.begin(), mCameras.end());
1880        }
1881        /** Returns a specialised MapIterator over all animations in the scene. */
1882        AnimationIterator getAnimationIterator(void) {
1883            return AnimationIterator(mAnimationsList.begin(), mAnimationsList.end());
1884        }
1885        /** Returns a specialised MapIterator over all animation states in the scene. */
1886        AnimationStateIterator getAnimationStateIterator(void) {
1887            return mAnimationStates.getAnimationStateIterator();
1888        }
1889
1890        /** Sets the general shadow technique to be used in this scene.
1891        @remarks   
1892            There are multiple ways to generate shadows in a scene, and each has
1893            strengths and weaknesses.
1894            <ul><li>Stencil-based approaches can be used to
1895            draw very long, extreme shadows without loss of precision and the 'additive'
1896            version can correctly show the shadowing of complex effects like bump mapping
1897            because they physically exclude the light from those areas. However, the edges
1898            are very sharp and stencils cannot handle transparency, and they involve a
1899            fair amount of CPU work in order to calculate the shadow volumes, especially
1900            when animated objects are involved.</li>
1901            <li>Texture-based approaches are good for handling transparency (they can, for
1902            example, correctly shadow a mesh which uses alpha to represent holes), and they
1903            require little CPU overhead, and can happily shadow geometry which is deformed
1904            by a vertex program, unlike stencil shadows. However, they have a fixed precision
1905            which can introduce 'jaggies' at long range and have fillrate issues of their own.</li>
1906            </ul>
1907        @par
1908            We support 2 kinds of stencil shadows, and 2 kinds of texture-based shadows, and one
1909            simple decal approach. The 2 stencil approaches differ in the amount of multipass work
1910            that is required - the modulative approach simply 'darkens' areas in shadow after the
1911            main render, which is the least expensive, whilst the additive approach has to perform
1912            a render per light and adds the cumulative effect, whcih is more expensive but more
1913            accurate. The texture based shadows both work in roughly the same way, the only difference is
1914            that the shadowmap approach is slightly more accurate, but requires a more recent
1915            graphics card.
1916        @par
1917            Note that because mixing many shadow techniques can cause problems, only one technique
1918            is supported at once. Also, you should call this method at the start of the
1919            scene setup.
1920        @param technique The shadowing technique to use for the scene.
1921        */
1922        virtual void setShadowTechnique(ShadowTechnique technique);
1923       
1924        /** Gets the current shadow technique. */
1925        virtual ShadowTechnique getShadowTechnique(void) const { return mShadowTechnique; }
1926
1927        /** Enables / disables the rendering of debug information for shadows. */
1928        virtual void setShowDebugShadows(bool debug) { mDebugShadows = debug; }
1929        /** Are debug shadows shown? */
1930        virtual bool getShowDebugShadows(void ) const { return mDebugShadows; }
1931
1932        /** Set the colour used to modulate areas in shadow.
1933        @remarks This is only applicable for shadow techniques which involve
1934            darkening the area in shadow, as opposed to masking out the light.
1935            This colour provided is used as a modulative value to darken the
1936            areas.
1937        */
1938        virtual void setShadowColour(const ColourValue& colour);
1939        /** Get the colour used to modulate areas in shadow.
1940        @remarks This is only applicable for shadow techniques which involve
1941        darkening the area in shadow, as opposed to masking out the light.
1942        This colour provided is used as a modulative value to darken the
1943        areas.
1944        */
1945        virtual const ColourValue& getShadowColour(void) const;
1946        /** Sets the distance a shadow volume is extruded for a directional light.
1947        @remarks
1948            Although directional lights are essentially infinite, there are many
1949            reasons to limit the shadow extrusion distance to a finite number,
1950            not least of which is compatibility with older cards (which do not
1951            support infinite positions), and shadow caster elimination.
1952        @par
1953            The default value is 10,000 world units. This does not apply to
1954            point lights or spotlights, since they extrude up to their
1955            attenuation range.
1956        */
1957        virtual void setShadowDirectionalLightExtrusionDistance(Real dist);
1958        /** Gets the distance a shadow volume is extruded for a directional light.
1959        */
1960        virtual Real getShadowDirectionalLightExtrusionDistance(void) const;
1961        /** Sets the maximum distance away from the camera that shadows
1962        will be visible.
1963        @remarks
1964        Shadow techniques can be expensive, therefore it is a good idea
1965        to limit them to being rendered close to the camera if possible,
1966        and to skip the expense of rendering shadows for distance objects.
1967        This method allows you to set the distance at which shadows will no
1968        longer be rendered.
1969        @note
1970        Each shadow technique can interpret this subtely differently.
1971        For example, one technique may use this to eliminate casters,
1972        another might use it to attenuate the shadows themselves.
1973        You should tweak this value to suit your chosen shadow technique
1974        and scene setup.
1975        */
1976        virtual void setShadowFarDistance(Real distance);
1977        /** Gets the maximum distance away from the camera that shadows
1978        will be visible.
1979        */
1980        virtual Real getShadowFarDistance(void) const
1981        { return mShadowFarDist; }
1982
1983                /** Sets the maximum size of the index buffer used to render shadow
1984                        primitives.
1985                @remarks
1986                        This method allows you to tweak the size of the index buffer used
1987                        to render shadow primitives (including stencil shadow volumes). The
1988                        default size is 51,200 entries, which is 100k of GPU memory, or
1989                        enough to render approximately 17,000 triangles. You can reduce this
1990                        as long as you do not have any models / world geometry chunks which
1991                        could require more than the amount you set.
1992                @par
1993                        The maximum number of triangles required to render a single shadow
1994                        volume (including light and dark caps when needed) will be 3x the
1995                        number of edges on the light silhouette, plus the number of
1996                        light-facing triangles. On average, half the
1997                        triangles will be facing toward the light, but the number of
1998                        triangles in the silhouette entirely depends on the mesh -
1999                        angular meshes will have a higher silhouette tris/mesh tris
2000                        ratio than a smooth mesh. You can estimate the requirements for
2001                        your particular mesh by rendering it alone in a scene with shadows
2002                        enabled and a single light - rotate it or the light and make a note
2003                        of how high the triangle count goes (remembering to subtract the
2004                        mesh triangle count)
2005                @param size The number of indexes; divide this by 3 to determine the
2006                        number of triangles.
2007                */
2008                virtual void setShadowIndexBufferSize(size_t size);
2009        /// Get the size of the shadow index buffer
2010                virtual size_t getShadowIndexBufferSize(void) const
2011                { return mShadowIndexBufferSize; }
2012        /** Set the size of the texture used for texture-based shadows.
2013        @remarks
2014            The larger the shadow texture, the better the detail on
2015            texture based shadows, but obviously this takes more memory.
2016            The default size is 512. Sizes must be a power of 2.
2017        */
2018        virtual void setShadowTextureSize(unsigned short size);
2019        /// Get the size of the texture used for texture based shadows
2020        unsigned short getShadowTextureSize(void) const {return mShadowTextureSize; }
2021        /** Set the pixel format of the textures used for texture-based shadows.
2022        @remarks
2023                        By default, a colour texture is used (PF_X8R8G8B8) for texture shadows,
2024                        but if you want to use more advanced texture shadow types you can
2025                        alter this. If you do, you will have to also call
2026                        setShadowTextureCasterMaterial and setShadowTextureReceiverMaterial
2027                        to provide shader-based materials to use these customised shadow
2028                        texture formats.
2029        */
2030        virtual void setShadowTexturePixelFormat(PixelFormat fmt);
2031        /// Get the format of the textures used for texture based shadows
2032        PixelFormat getShadowTexturePixelFormat(void) const {return mShadowTextureFormat; }
2033        /** Set the number of textures allocated for texture-based shadows.
2034        @remarks
2035            The default number of textures assigned to deal with texture based
2036            shadows is 1; however this means you can only have one light casting
2037            shadows at the same time. You can increase this number in order to
2038            make this more flexible, but be aware of the texture memory it will use.
2039        */
2040        virtual void setShadowTextureCount(unsigned short count);
2041        /// Get the number of the textures allocated for texture based shadows
2042        unsigned short getShadowTextureCount(void) const {return mShadowTextureCount; }
2043        /** Sets the size and count of textures used in texture-based shadows.
2044        @remarks
2045            @see setShadowTextureSize and setShadowTextureCount for details, this
2046            method just allows you to change both at once, which can save on
2047            reallocation if the textures have already been created.
2048        */
2049        virtual void setShadowTextureSettings(unsigned short size, unsigned short count,
2050                        PixelFormat fmt = PF_X8R8G8B8);
2051        /** Sets the proportional distance which a texture shadow which is generated from a
2052            directional light will be offset into the camera view to make best use of texture space.
2053        @remarks
2054            When generating a shadow texture from a directional light, an approximation is used
2055            since it is not possible to render the entire scene to one texture.
2056            The texture is projected onto an area centred on the camera, and is
2057            the shadow far distance * 2 in length (it is square). This wastes
2058            a lot of texture space outside the frustum though, so this offset allows
2059            you to move the texture in front of the camera more. However, be aware
2060            that this can cause a little shadow 'jittering' during rotation, and
2061            that if you move it too far then you'll start to get artefacts close
2062            to the camera. The value is represented as a proportion of the shadow
2063            far distance, and the default is 0.6.
2064        */
2065        virtual void setShadowDirLightTextureOffset(Real offset) { mShadowTextureOffset = offset;}
2066        /** Sets the proportional distance at which texture shadows begin to fade out.
2067        @remarks
2068            To hide the edges where texture shadows end (in directional lights)
2069            Ogre will fade out the shadow in the distance. This value is a proportional
2070            distance of the entire shadow visibility distance at which the shadow
2071            begins to fade out. The default is 0.7
2072        */
2073        virtual void setShadowTextureFadeStart(Real fadeStart)
2074        { mShadowTextureFadeStart = fadeStart; }
2075        /** Sets the proportional distance at which texture shadows finish to fading out.
2076        @remarks
2077        To hide the edges where texture shadows end (in directional lights)
2078        Ogre will fade out the shadow in the distance. This value is a proportional
2079        distance of the entire shadow visibility distance at which the shadow
2080        is completely invisible. The default is 0.9.
2081        */
2082        virtual void setShadowTextureFadeEnd(Real fadeEnd)
2083        { mShadowTextureFadeEnd = fadeEnd; }
2084
2085                /** Sets whether or not texture shadows should attempt to self-shadow.
2086                @remarks
2087                        The default implementation of texture shadows uses a fixed-function
2088                        colour texture projection approach for maximum compatibility, and
2089                        as such cannot support self-shadowing. However, if you decide to
2090                        implement a more complex shadowing technique using the
2091                        setShadowTextureCasterMaterial and setShadowTextureReceiverMaterial
2092                        there is a possibility you may be able to support
2093                        self-shadowing (e.g by implementing a shader-based shadow map). In
2094                        this case you might want to enable this option.
2095                @param selfShadow Whether to attempt self-shadowing with texture shadows
2096                */
2097                virtual void setShadowTextureSelfShadow(bool selfShadow);
2098
2099                /// Gets whether or not texture shadows attempt to self-shadow.
2100                virtual bool getShadowTextureSelfShadow(void) const
2101                { return mShadowTextureSelfShadow; }
2102                /** Sets the default material to use for rendering shadow casters.
2103                @remarks
2104                        By default shadow casters are rendered into the shadow texture using
2105                        an automatically generated fixed-function pass. This allows basic
2106                        projective texture shadows, but it's possible to use more advanced
2107                        shadow techniques by overriding the caster and receiver materials, for
2108                        example providing vertex and fragment programs to implement shadow
2109                        maps.
2110                @par
2111                        You can rely on the ambient light in the scene being set to the
2112                        requested texture shadow colour, if that's useful.
2113                @note
2114                        Individual objects may also override the vertex program in
2115                        your default material if their materials include
2116                        shadow_caster_vertex_program_ref shadow_receiver_vertex_program_ref
2117                        entries, so if you use both make sure they are compatible.
2118                @note
2119                        Only a single pass is allowed in your material, although multiple
2120                        techniques may be used for hardware fallback.
2121                */
2122                virtual void setShadowTextureCasterMaterial(const String& name);
2123                /** Sets the default material to use for rendering shadow receivers.
2124                @remarks
2125                        By default shadow receivers are rendered as a post-pass using basic
2126                        modulation. This allows basic projective texture shadows, but it's
2127                        possible to use more advanced shadow techniques by overriding the
2128                        caster and receiver materials, for example providing vertex and
2129                        fragment programs to implement shadow maps.
2130                @par
2131                        You can rely on texture unit 0 containing the shadow texture, and
2132                        for the unit to be set to use projective texturing from the light
2133                        (only useful if you're using fixed-function, which is unlikely;
2134                        otherwise you should rely on the texture_viewproj_matrix auto binding)
2135                @note
2136                        Individual objects may also override the vertex program in
2137                        your default material if their materials include
2138                        shadow_caster_vertex_program_ref shadow_receiver_vertex_program_ref
2139                        entries, so if you use both make sure they are compatible.
2140                @note
2141                        Only a single pass is allowed in your material, although multiple
2142                        techniques may be used for hardware fallback.
2143                */
2144                virtual void setShadowTextureReceiverMaterial(const String& name);
2145
2146                /** Sets whether we should use an inifinite camera far plane
2147                        when rendering stencil shadows.
2148                @remarks
2149                        Stencil shadow coherency is very reliant on the shadow volume
2150                        not being clipped by the far plane. If this clipping happens, you
2151                        get a kind of 'negative' shadow effect. The best way to achieve
2152                        coherency is to move the far plane of the camera out to infinity,
2153                        thus preventing the far plane from clipping the shadow volumes.
2154                        When combined with vertex program extrusion of the volume to
2155                        infinity, which Ogre does when available, this results in very
2156                        robust shadow volumes. For this reason, when you enable stencil
2157                        shadows, Ogre automatically changes your camera settings to
2158                        project to infinity if the card supports it. You can disable this
2159                        behaviour if you like by calling this method; although you can
2160                        never enable infinite projection if the card does not support it.
2161                @par   
2162                        If you disable infinite projection, or it is not available,
2163                        you need to be far more careful with your light attenuation /
2164                        directional light extrusion distances to avoid clipping artefacts
2165                        at the far plane.
2166                @note
2167                        Recent cards will generally support infinite far plane projection.
2168                        However, we have found some cases where they do not, especially
2169                        on Direct3D. There is no standard capability we can check to
2170                        validate this, so we use some heuristics based on experience:
2171                        <UL>
2172                        <LI>OpenGL always seems to support it no matter what the card</LI>
2173                        <LI>Direct3D on non-vertex program capable systems (including
2174                        vertex program capable cards on Direct3D7) does not
2175                        support it</LI>
2176                        <LI>Direct3D on GeForce3 and GeForce4 Ti does not seem to support
2177                        infinite projection<LI>
2178                        </UL>
2179                        Therefore in the RenderSystem implementation, we may veto the use
2180                        of an infinite far plane based on these heuristics.
2181                */
2182        virtual void setShadowUseInfiniteFarPlane(bool enable) {
2183            mShadowUseInfiniteFarPlane = enable; }
2184
2185                /** Is there a stencil shadow based shadowing technique in use? */
2186                virtual bool isShadowTechniqueStencilBased(void) const
2187                { return (mShadowTechnique & SHADOWDETAILTYPE_STENCIL) != 0; }
2188                /** Is there a texture shadow based shadowing technique in use? */
2189                virtual bool isShadowTechniqueTextureBased(void) const
2190                { return (mShadowTechnique & SHADOWDETAILTYPE_TEXTURE) != 0; }
2191                /** Is there a modulative shadowing technique in use? */
2192                virtual bool isShadowTechniqueModulative(void) const
2193                { return (mShadowTechnique & SHADOWDETAILTYPE_MODULATIVE) != 0; }
2194                /** Is there an additive shadowing technique in use? */
2195                virtual bool isShadowTechniqueAdditive(void) const
2196                { return (mShadowTechnique & SHADOWDETAILTYPE_ADDITIVE) != 0; }
2197                /** Is there any shadowing technique in use? */
2198                virtual bool isShadowTechniqueInUse(void) const
2199                { return mShadowTechnique != SHADOWTYPE_NONE; }
2200
2201                /** Add a shadow listener which will get called back on shadow
2202                        events.
2203                */
2204                virtual void addShadowListener(ShadowListener* s);
2205                /** Remove a shadow listener
2206                */
2207                virtual void removeShadowListener(ShadowListener* s);
2208
2209                /** Creates a StaticGeometry instance suitable for use with this
2210                        SceneManager.
2211                @remarks
2212                        StaticGeometry is a way of batching up geometry into a more
2213                        efficient form at the expense of being able to move it. Please
2214                        read the StaticGeometry class documentation for full information.
2215                @param name The name to give the new object
2216                @returns The new StaticGeometry instance
2217                */
2218                virtual StaticGeometry* createStaticGeometry(const String& name);
2219                /** Retrieve a previously created StaticGeometry instance.
2220                @note Throws an exception if the named instance does not exist
2221                */
2222                virtual StaticGeometry* getStaticGeometry(const String& name) const;
2223                /** Returns whether a static geometry instance with the given name exists. */
2224                virtual bool hasStaticGeometry(const String& name) const;
2225                /** Remove & destroy a StaticGeometry instance. */
2226                virtual void destroyStaticGeometry(StaticGeometry* geom);
2227                /** Remove & destroy a StaticGeometry instance. */
2228                virtual void destroyStaticGeometry(const String& name);
2229                /** Remove & destroy all StaticGeometry instances. */
2230                virtual void destroyAllStaticGeometry(void);
2231
2232
2233                /** Create a movable object of the type specified.
2234                @remarks
2235                        This is the generalised form of MovableObject creation where you can
2236                        create a MovableObject of any specialised type generically, including
2237                        any new types registered using plugins.
2238                @param name The name to give the object. Must be unique within type.
2239                @param typeName The type of object to create
2240                @param params Optional name/value pair list to give extra parameters to
2241                        the created object.
2242                */
2243                virtual MovableObject* createMovableObject(const String& name,
2244                        const String& typeName, const NameValuePairList* params = 0);
2245                /** Destroys a MovableObject with the name specified, of the type specified.
2246                @remarks
2247                        The MovableObject will automatically detach itself from any nodes
2248                        on destruction.
2249                */
2250                virtual void destroyMovableObject(const String& name, const String& typeName);
2251                /** Destroys a MovableObject.
2252                @remarks
2253                        The MovableObject will automatically detach itself from any nodes
2254                        on destruction.
2255                */
2256                virtual void destroyMovableObject(MovableObject* m);
2257                /** Destroy all MovableObjects of a given type. */
2258                virtual void destroyAllMovableObjectsByType(const String& typeName);
2259                /** Destroy all MovableObjects. */
2260                virtual void destroyAllMovableObjects(void);
2261                /** Get a reference to a previously created MovableObject.
2262                @note Throws an exception if the named instance does not exist
2263                */
2264                virtual MovableObject* getMovableObject(const String& name, const String& typeName);
2265                /** Returns whether a movable object instance with the given name exists. */
2266                virtual bool hasMovableObject(const String& name, const String& typeName) const;
2267                typedef MapIterator<MovableObjectMap> MovableObjectIterator;
2268                /** Get an iterator over all MovableObect instances of a given type. */
2269                virtual MovableObjectIterator getMovableObjectIterator(const String& typeName);
2270                /** Inject a MovableObject instance created externally.
2271                @remarks
2272                        This method 'injects' a MovableObject instance created externally into
2273                        the MovableObject instance registry held in the SceneManager. You
2274                        might want to use this if you have a MovableObject which you don't
2275                        want to register a factory for; for example a MovableObject which
2276                        cannot be generally constructed by clients.
2277                @note
2278                        It is important that the MovableObject has a unique name for the type,
2279                        and that its getMovableType() method returns a proper type name.
2280                */
2281                virtual void injectMovableObject(MovableObject* m);
2282                /** Extract a previously injected MovableObject.
2283                @remarks
2284                        Essentially this does the same as destroyMovableObject, but only
2285                        removes the instance from the internal lists, it does not attempt
2286                        to destroy it.
2287                */
2288                virtual void extractMovableObject(const String& name, const String& typeName);
2289                /** Extract a previously injected MovableObject.
2290                @remarks
2291                        Essentially this does the same as destroyMovableObject, but only
2292                        removes the instance from the internal lists, it does not attempt
2293                        to destroy it.
2294                */
2295                virtual void extractMovableObject(MovableObject* m);
2296                /** Extract all injected MovableObjects of a given type.
2297                @remarks
2298                        Essentially this does the same as destroyAllMovableObjectsByType,
2299                        but only removes the instances from the internal lists, it does not
2300                        attempt to destroy them.
2301                */
2302                virtual void extractAllMovableObjectsByType(const String& typeName);
2303
2304                /** Sets a mask which is bitwise 'and'ed with objects own visibility masks
2305                        to determine if the object is visible.
2306                */
2307                virtual void setVisibilityMask(uint32 vmask) { mVisibilityMask = vmask; }
2308
2309                /** Gets a mask which is bitwise 'and'ed with objects own visibility masks
2310                        to determine if the object is visible.
2311                */
2312                virtual uint32 getVisibilityMask(void) { return mVisibilityMask; }
2313
2314                /** Sets whether the SceneManager should search for visible objects, or
2315            whether they are being manually handled.
2316        @remarks
2317            This is an advanced function, you should not use this unless you know
2318            what you are doing.
2319                */
2320                virtual void setFindVisibleObjects(bool find) { mFindVisibleObjects = find; }
2321
2322                /** Gets whether the SceneManager should search for visible objects, or
2323            whether they are being manually handled.
2324                */
2325                virtual bool getFindVisibleObjects(void) { return mFindVisibleObjects; }
2326
2327                /** Render something as if it came from the current queue.
2328                        @param pass             Material pass to use for setting up this quad.
2329                        @param rend             Renderable to render
2330                        @param shadowDerivation Whether passes should be replaced with shadow caster / receiver passes
2331                 */
2332                virtual void _injectRenderWithPass(Pass *pass, Renderable *rend, bool shadowDerivation = true);
2333
2334                /** Indicates to the SceneManager whether it should suppress changing
2335                        the RenderSystem states when rendering objects.
2336                @remarks
2337                        This method allows you to tell the SceneManager not to change any
2338                        RenderSystem state until you tell it to. This method is only
2339                        intended for advanced use, don't use it if you're unsure of the
2340                        effect. The only RenderSystems calls made are to set the world
2341                        matrix for each object (note - view an projection matrices are NOT
2342                        SET - they are under your control) and to render the object; it is up to
2343                        the caller to do everything else, including enabling any vertex /
2344                        fragment programs and updating their parameter state, and binding
2345                        parameters to the RenderSystem.
2346                @note
2347                        Calling this implicitly disables shadow processing since no shadows
2348                        can be rendered without changing state.
2349                @param suppress If true, no RenderSystem state changes will be issued
2350                        until this method is called again with a parameter of false.
2351                */
2352                virtual void _suppressRenderStateChanges(bool suppress);
2353               
2354                /** Are render state changes suppressed?
2355                @see _suppressRenderStateChanges
2356                */
2357                virtual bool _areRenderStateChangesSuppressed(void) const
2358                { return mSuppressRenderStateChanges; }
2359
2360        /** Internal method for setting up the renderstate for a rendering pass.
2361            @param pass The Pass details to set.
2362                        @param evenIfSuppressed Sets the pass details even if render state
2363                                changes are suppressed; if you are using this to manually set state
2364                                when render state changes are suppressed, you should set this to
2365                                true.
2366                        @param shadowDerivation If false, disables the derivation of shadow
2367                                passes from original passes
2368            @returns
2369                A Pass object that was used instead of the one passed in, can
2370                happen when rendering shadow passes
2371        */
2372        virtual const Pass* _setPass(const Pass* pass,
2373                        bool evenIfSuppressed = false, bool shadowDerivation = true);
2374
2375
2376                /** Indicates to the SceneManager whether it should suppress the
2377                        active shadow rendering technique until told otherwise.
2378                @remarks
2379                        This is a temporary alternative to setShadowTechnique to suppress
2380                        the rendering of shadows and forcing all processing down the
2381                        standard rendering path. This is intended for internal use only.
2382                @param suppress If true, no shadow rendering will occur until this
2383                        method is called again with a parameter of false.
2384                */
2385                virtual void _suppressShadows(bool suppress);
2386
2387                /** Are shadows suppressed?
2388                @see _suppressShadows
2389                */
2390                virtual bool _areShadowsSuppressed(void) const
2391                { return mSuppressShadows; }
2392
2393                /** Render the objects in a given queue group
2394                @remarks You should only call this from a RenderQueueInvocation implementation
2395                */
2396                virtual void _renderQueueGroupObjects(RenderQueueGroup* group,
2397                        QueuedRenderableCollection::OrganisationMode om);
2398
2399                /** Get the rendersystem subclass to which the output of this Scene Manager
2400                        gets sent
2401                */
2402                RenderSystem *getDestinationRenderSystem();
2403
2404                /** Gets the current viewport being rendered (advanced use only, only
2405                        valid during viewport update. */
2406                Viewport* getCurrentViewport(void) { return mCurrentViewport; }
2407
2408    };
2409
2410    /** Default implementation of IntersectionSceneQuery. */
2411    class _OgreExport DefaultIntersectionSceneQuery :
2412        public IntersectionSceneQuery
2413    {
2414    public:
2415        DefaultIntersectionSceneQuery(SceneManager* creator);
2416        ~DefaultIntersectionSceneQuery();
2417
2418        /** See IntersectionSceneQuery. */
2419        void execute(IntersectionSceneQueryListener* listener);
2420    };
2421
2422    /** Default implementation of RaySceneQuery. */
2423        class _OgreExport DefaultRaySceneQuery : public RaySceneQuery
2424    {
2425    public:
2426        DefaultRaySceneQuery(SceneManager* creator);
2427        ~DefaultRaySceneQuery();
2428
2429        /** See RayScenQuery. */
2430        void execute(RaySceneQueryListener* listener);
2431    };
2432    /** Default implementation of SphereSceneQuery. */
2433        class _OgreExport DefaultSphereSceneQuery : public SphereSceneQuery
2434    {
2435    public:
2436        DefaultSphereSceneQuery(SceneManager* creator);
2437        ~DefaultSphereSceneQuery();
2438
2439        /** See SceneQuery. */
2440        void execute(SceneQueryListener* listener);
2441    };
2442    /** Default implementation of PlaneBoundedVolumeListSceneQuery. */
2443    class _OgreExport DefaultPlaneBoundedVolumeListSceneQuery : public PlaneBoundedVolumeListSceneQuery
2444    {
2445    public:
2446        DefaultPlaneBoundedVolumeListSceneQuery(SceneManager* creator);
2447        ~DefaultPlaneBoundedVolumeListSceneQuery();
2448
2449        /** See SceneQuery. */
2450        void execute(SceneQueryListener* listener);
2451    };
2452    /** Default implementation of AxisAlignedBoxSceneQuery. */
2453        class _OgreExport DefaultAxisAlignedBoxSceneQuery : public AxisAlignedBoxSceneQuery
2454    {
2455    public:
2456        DefaultAxisAlignedBoxSceneQuery(SceneManager* creator);
2457        ~DefaultAxisAlignedBoxSceneQuery();
2458
2459        /** See RayScenQuery. */
2460        void execute(SceneQueryListener* listener);
2461    };
2462   
2463
2464        /// Bitmask containing scene types
2465        typedef uint16 SceneTypeMask;
2466
2467        /** Classification of a scene to allow a decision of what type of
2468        SceenManager to provide back to the application.
2469        */
2470        enum SceneType
2471        {
2472                ST_GENERIC = 1,
2473                ST_EXTERIOR_CLOSE = 2,
2474                ST_EXTERIOR_FAR = 4,
2475                ST_EXTERIOR_REAL_FAR = 8,
2476                ST_INTERIOR = 16
2477        };
2478
2479        /** Structure containing information about a scene manager. */
2480        struct SceneManagerMetaData
2481        {
2482                /// A globally unique string identifying the scene manager type
2483                String typeName;
2484                /// A text description of the scene manager
2485                String description;
2486                /// A mask describing which sorts of scenes this manager can handle
2487                SceneTypeMask sceneTypeMask;
2488                /// Flag indicating whether world geometry is supported
2489                bool worldGeometrySupported;
2490        };
2491
2492
2493
2494        /** Class which will create instances of a given SceneManager. */
2495        class _OgreExport SceneManagerFactory
2496        {
2497        protected:
2498                mutable SceneManagerMetaData mMetaData;
2499                mutable bool mMetaDataInit;
2500                /// Internal method to initialise the metadata, must be implemented
2501                virtual void initMetaData(void) const = 0;
2502        public:
2503                SceneManagerFactory() : mMetaDataInit(true) {}
2504                virtual ~SceneManagerFactory() {}
2505                /** Get information about the SceneManager type created by this factory. */
2506                virtual const SceneManagerMetaData& getMetaData(void) const
2507                {
2508                        if (mMetaDataInit)
2509                        {
2510                                initMetaData();
2511                                mMetaDataInit = false;
2512                        }
2513                        return mMetaData;
2514                }
2515                /** Create a new instance of a SceneManager.
2516                @remarks
2517                Don't call directly, use SceneManagerEnumerator::createSceneManager.
2518                */
2519                virtual SceneManager* createInstance(const String& instanceName) = 0;
2520                /** Destroy an instance of a SceneManager. */
2521                virtual void destroyInstance(SceneManager* instance) = 0;
2522
2523        };
2524
2525
2526
2527} // Namespace
2528
2529
2530
2531#endif
Note: See TracBrowser for help on using the repository browser.