1 | /*
|
---|
2 | -----------------------------------------------------------------------------
|
---|
3 | This source file is part of OGRE
|
---|
4 | (Object-oriented Graphics Rendering Engine)
|
---|
5 | For the latest info, see http://www.ogre3d.org/
|
---|
6 |
|
---|
7 | Copyright (c) 2000-2005 The OGRE Team
|
---|
8 | Also see acknowledgements in Readme.html
|
---|
9 |
|
---|
10 | This program is free software; you can redistribute it and/or modify it under
|
---|
11 | the terms of the GNU Lesser General Public License as published by the Free Software
|
---|
12 | Foundation; either version 2 of the License, or (at your option) any later
|
---|
13 | version.
|
---|
14 |
|
---|
15 | This program is distributed in the hope that it will be useful, but WITHOUT
|
---|
16 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
---|
17 | FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
|
---|
18 |
|
---|
19 | You should have received a copy of the GNU Lesser General Public License along with
|
---|
20 | this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
---|
21 | Place - Suite 330, Boston, MA 02111-1307, USA, or go to
|
---|
22 | http://www.gnu.org/copyleft/lesser.txt.
|
---|
23 | -----------------------------------------------------------------------------
|
---|
24 | */
|
---|
25 | #ifndef __Vector2_H__
|
---|
26 | #define __Vector2_H__
|
---|
27 |
|
---|
28 |
|
---|
29 | #include "OgrePrerequisites.h"
|
---|
30 | #include "OgreMath.h"
|
---|
31 |
|
---|
32 | namespace Ogre
|
---|
33 | {
|
---|
34 |
|
---|
35 | /** Standard 2-dimensional vector.
|
---|
36 | @remarks
|
---|
37 | A direction in 2D space represented as distances along the 2
|
---|
38 | orthoganal axes (x, y). Note that positions, directions and
|
---|
39 | scaling factors can be represented by a vector, depending on how
|
---|
40 | you interpret the values.
|
---|
41 | */
|
---|
42 | class _OgreExport Vector2
|
---|
43 | {
|
---|
44 | public:
|
---|
45 | union {
|
---|
46 | struct {
|
---|
47 | Real x, y;
|
---|
48 | };
|
---|
49 | Real val[2];
|
---|
50 | };
|
---|
51 |
|
---|
52 | public:
|
---|
53 | inline Vector2()
|
---|
54 | {
|
---|
55 | }
|
---|
56 |
|
---|
57 | inline Vector2( Real fX, Real fY )
|
---|
58 | : x( fX ), y( fY )
|
---|
59 | {
|
---|
60 | }
|
---|
61 |
|
---|
62 | inline Vector2( Real afCoordinate[2] )
|
---|
63 | : x( afCoordinate[0] ),
|
---|
64 | y( afCoordinate[1] )
|
---|
65 | {
|
---|
66 | }
|
---|
67 |
|
---|
68 | inline Vector2( int afCoordinate[2] )
|
---|
69 | {
|
---|
70 | x = (Real)afCoordinate[0];
|
---|
71 | y = (Real)afCoordinate[1];
|
---|
72 | }
|
---|
73 |
|
---|
74 | inline Vector2( const Real* const r )
|
---|
75 | : x( r[0] ), y( r[1] )
|
---|
76 | {
|
---|
77 | }
|
---|
78 |
|
---|
79 | inline Vector2( const Vector2& rkVector )
|
---|
80 | : x( rkVector.x ), y( rkVector.y )
|
---|
81 | {
|
---|
82 | }
|
---|
83 |
|
---|
84 | inline Real operator [] ( size_t i ) const
|
---|
85 | {
|
---|
86 | assert( i < 2 );
|
---|
87 |
|
---|
88 | return *(&x+i);
|
---|
89 | }
|
---|
90 |
|
---|
91 | inline Real& operator [] ( size_t i )
|
---|
92 | {
|
---|
93 | assert( i < 2 );
|
---|
94 |
|
---|
95 | return *(&x+i);
|
---|
96 | }
|
---|
97 |
|
---|
98 | /** Assigns the value of the other vector.
|
---|
99 | @param
|
---|
100 | rkVector The other vector
|
---|
101 | */
|
---|
102 | inline Vector2& operator = ( const Vector2& rkVector )
|
---|
103 | {
|
---|
104 | x = rkVector.x;
|
---|
105 | y = rkVector.y;
|
---|
106 |
|
---|
107 | return *this;
|
---|
108 | }
|
---|
109 |
|
---|
110 | inline bool operator == ( const Vector2& rkVector ) const
|
---|
111 | {
|
---|
112 | return ( x == rkVector.x && y == rkVector.y );
|
---|
113 | }
|
---|
114 |
|
---|
115 | inline bool operator != ( const Vector2& rkVector ) const
|
---|
116 | {
|
---|
117 | return ( x != rkVector.x || y != rkVector.y );
|
---|
118 | }
|
---|
119 |
|
---|
120 | // arithmetic operations
|
---|
121 | inline Vector2 operator + ( const Vector2& rkVector ) const
|
---|
122 | {
|
---|
123 | Vector2 kSum;
|
---|
124 |
|
---|
125 | kSum.x = x + rkVector.x;
|
---|
126 | kSum.y = y + rkVector.y;
|
---|
127 |
|
---|
128 | return kSum;
|
---|
129 | }
|
---|
130 |
|
---|
131 | inline Vector2 operator - ( const Vector2& rkVector ) const
|
---|
132 | {
|
---|
133 | Vector2 kDiff;
|
---|
134 |
|
---|
135 | kDiff.x = x - rkVector.x;
|
---|
136 | kDiff.y = y - rkVector.y;
|
---|
137 |
|
---|
138 | return kDiff;
|
---|
139 | }
|
---|
140 |
|
---|
141 | inline Vector2 operator * ( Real fScalar ) const
|
---|
142 | {
|
---|
143 | Vector2 kProd;
|
---|
144 |
|
---|
145 | kProd.x = fScalar*x;
|
---|
146 | kProd.y = fScalar*y;
|
---|
147 |
|
---|
148 | return kProd;
|
---|
149 | }
|
---|
150 |
|
---|
151 | inline Vector2 operator * ( const Vector2& rhs) const
|
---|
152 | {
|
---|
153 | Vector2 kProd;
|
---|
154 |
|
---|
155 | kProd.x = rhs.x * x;
|
---|
156 | kProd.y = rhs.y * y;
|
---|
157 |
|
---|
158 | return kProd;
|
---|
159 | }
|
---|
160 |
|
---|
161 | inline Vector2 operator / ( Real fScalar ) const
|
---|
162 | {
|
---|
163 | assert( fScalar != 0.0 );
|
---|
164 |
|
---|
165 | Vector2 kDiv;
|
---|
166 |
|
---|
167 | Real fInv = 1.0 / fScalar;
|
---|
168 | kDiv.x = x * fInv;
|
---|
169 | kDiv.y = y * fInv;
|
---|
170 |
|
---|
171 | return kDiv;
|
---|
172 | }
|
---|
173 |
|
---|
174 | inline Vector2 operator - () const
|
---|
175 | {
|
---|
176 | Vector2 kNeg;
|
---|
177 |
|
---|
178 | kNeg.x = -x;
|
---|
179 | kNeg.y = -y;
|
---|
180 |
|
---|
181 | return kNeg;
|
---|
182 | }
|
---|
183 |
|
---|
184 | inline friend Vector2 operator * ( Real fScalar, const Vector2& rkVector )
|
---|
185 | {
|
---|
186 | Vector2 kProd;
|
---|
187 |
|
---|
188 | kProd.x = fScalar * rkVector.x;
|
---|
189 | kProd.y = fScalar * rkVector.y;
|
---|
190 |
|
---|
191 | return kProd;
|
---|
192 | }
|
---|
193 |
|
---|
194 | // arithmetic updates
|
---|
195 | inline Vector2& operator += ( const Vector2& rkVector )
|
---|
196 | {
|
---|
197 | x += rkVector.x;
|
---|
198 | y += rkVector.y;
|
---|
199 |
|
---|
200 | return *this;
|
---|
201 | }
|
---|
202 |
|
---|
203 | inline Vector2& operator -= ( const Vector2& rkVector )
|
---|
204 | {
|
---|
205 | x -= rkVector.x;
|
---|
206 | y -= rkVector.y;
|
---|
207 |
|
---|
208 | return *this;
|
---|
209 | }
|
---|
210 |
|
---|
211 | inline Vector2& operator *= ( Real fScalar )
|
---|
212 | {
|
---|
213 | x *= fScalar;
|
---|
214 | y *= fScalar;
|
---|
215 |
|
---|
216 | return *this;
|
---|
217 | }
|
---|
218 |
|
---|
219 | inline Vector2& operator /= ( Real fScalar )
|
---|
220 | {
|
---|
221 | assert( fScalar != 0.0 );
|
---|
222 |
|
---|
223 | Real fInv = 1.0 / fScalar;
|
---|
224 |
|
---|
225 | x *= fInv;
|
---|
226 | y *= fInv;
|
---|
227 |
|
---|
228 | return *this;
|
---|
229 | }
|
---|
230 |
|
---|
231 | /** Returns the length (magnitude) of the vector.
|
---|
232 | @warning
|
---|
233 | This operation requires a square root and is expensive in
|
---|
234 | terms of CPU operations. If you don't need to know the exact
|
---|
235 | length (e.g. for just comparing lengths) use squaredLength()
|
---|
236 | instead.
|
---|
237 | */
|
---|
238 | inline Real length () const
|
---|
239 | {
|
---|
240 | return Math::Sqrt( x * x + y * y );
|
---|
241 | }
|
---|
242 |
|
---|
243 | /** Returns the square of the length(magnitude) of the vector.
|
---|
244 | @remarks
|
---|
245 | This method is for efficiency - calculating the actual
|
---|
246 | length of a vector requires a square root, which is expensive
|
---|
247 | in terms of the operations required. This method returns the
|
---|
248 | square of the length of the vector, i.e. the same as the
|
---|
249 | length but before the square root is taken. Use this if you
|
---|
250 | want to find the longest / shortest vector without incurring
|
---|
251 | the square root.
|
---|
252 | */
|
---|
253 | inline Real squaredLength () const
|
---|
254 | {
|
---|
255 | return x * x + y * y;
|
---|
256 | }
|
---|
257 |
|
---|
258 | /** Calculates the dot (scalar) product of this vector with another.
|
---|
259 | @remarks
|
---|
260 | The dot product can be used to calculate the angle between 2
|
---|
261 | vectors. If both are unit vectors, the dot product is the
|
---|
262 | cosine of the angle; otherwise the dot product must be
|
---|
263 | divided by the product of the lengths of both vectors to get
|
---|
264 | the cosine of the angle. This result can further be used to
|
---|
265 | calculate the distance of a point from a plane.
|
---|
266 | @param
|
---|
267 | vec Vector with which to calculate the dot product (together
|
---|
268 | with this one).
|
---|
269 | @returns
|
---|
270 | A float representing the dot product value.
|
---|
271 | */
|
---|
272 | inline Real dotProduct(const Vector2& vec) const
|
---|
273 | {
|
---|
274 | return x * vec.x + y * vec.y;
|
---|
275 | }
|
---|
276 |
|
---|
277 | /** Normalises the vector.
|
---|
278 | @remarks
|
---|
279 | This method normalises the vector such that it's
|
---|
280 | length / magnitude is 1. The result is called a unit vector.
|
---|
281 | @note
|
---|
282 | This function will not crash for zero-sized vectors, but there
|
---|
283 | will be no changes made to their components.
|
---|
284 | @returns The previous length of the vector.
|
---|
285 | */
|
---|
286 | inline Real normalise()
|
---|
287 | {
|
---|
288 | Real fLength = Math::Sqrt( x * x + y * y);
|
---|
289 |
|
---|
290 | // Will also work for zero-sized vectors, but will change nothing
|
---|
291 | if ( fLength > 1e-08 )
|
---|
292 | {
|
---|
293 | Real fInvLength = 1.0 / fLength;
|
---|
294 | x *= fInvLength;
|
---|
295 | y *= fInvLength;
|
---|
296 | }
|
---|
297 |
|
---|
298 | return fLength;
|
---|
299 | }
|
---|
300 |
|
---|
301 |
|
---|
302 |
|
---|
303 | /** Returns a vector at a point half way between this and the passed
|
---|
304 | in vector.
|
---|
305 | */
|
---|
306 | inline Vector2 midPoint( const Vector2& vec ) const
|
---|
307 | {
|
---|
308 | return Vector2(
|
---|
309 | ( x + vec.x ) * 0.5,
|
---|
310 | ( y + vec.y ) * 0.5 );
|
---|
311 | }
|
---|
312 |
|
---|
313 | /** Returns true if the vector's scalar components are all greater
|
---|
314 | that the ones of the vector it is compared against.
|
---|
315 | */
|
---|
316 | inline bool operator < ( const Vector2& rhs ) const
|
---|
317 | {
|
---|
318 | if( x < rhs.x && y < rhs.y )
|
---|
319 | return true;
|
---|
320 | return false;
|
---|
321 | }
|
---|
322 |
|
---|
323 | /** Returns true if the vector's scalar components are all smaller
|
---|
324 | that the ones of the vector it is compared against.
|
---|
325 | */
|
---|
326 | inline bool operator > ( const Vector2& rhs ) const
|
---|
327 | {
|
---|
328 | if( x > rhs.x && y > rhs.y )
|
---|
329 | return true;
|
---|
330 | return false;
|
---|
331 | }
|
---|
332 |
|
---|
333 | /** Sets this vector's components to the minimum of its own and the
|
---|
334 | ones of the passed in vector.
|
---|
335 | @remarks
|
---|
336 | 'Minimum' in this case means the combination of the lowest
|
---|
337 | value of x, y and z from both vectors. Lowest is taken just
|
---|
338 | numerically, not magnitude, so -1 < 0.
|
---|
339 | */
|
---|
340 | inline void makeFloor( const Vector2& cmp )
|
---|
341 | {
|
---|
342 | if( cmp.x < x ) x = cmp.x;
|
---|
343 | if( cmp.y < y ) y = cmp.y;
|
---|
344 | }
|
---|
345 |
|
---|
346 | /** Sets this vector's components to the maximum of its own and the
|
---|
347 | ones of the passed in vector.
|
---|
348 | @remarks
|
---|
349 | 'Maximum' in this case means the combination of the highest
|
---|
350 | value of x, y and z from both vectors. Highest is taken just
|
---|
351 | numerically, not magnitude, so 1 > -3.
|
---|
352 | */
|
---|
353 | inline void makeCeil( const Vector2& cmp )
|
---|
354 | {
|
---|
355 | if( cmp.x > x ) x = cmp.x;
|
---|
356 | if( cmp.y > y ) y = cmp.y;
|
---|
357 | }
|
---|
358 |
|
---|
359 | /** Generates a vector perpendicular to this vector (eg an 'up' vector).
|
---|
360 | @remarks
|
---|
361 | This method will return a vector which is perpendicular to this
|
---|
362 | vector. There are an infinite number of possibilities but this
|
---|
363 | method will guarantee to generate one of them. If you need more
|
---|
364 | control you should use the Quaternion class.
|
---|
365 | */
|
---|
366 | inline Vector2 perpendicular(void) const
|
---|
367 | {
|
---|
368 | return Vector2 (-y, x);
|
---|
369 | }
|
---|
370 | /** Calculates the cross-product of 2 vectors, i.e. the vector that
|
---|
371 | lies perpendicular to them both.
|
---|
372 | @remarks
|
---|
373 | The cross-product is normally used to calculate the normal
|
---|
374 | vector of a plane, by calculating the cross-product of 2
|
---|
375 | non-equivalent vectors which lie on the plane (e.g. 2 edges
|
---|
376 | of a triangle).
|
---|
377 | @param
|
---|
378 | vec Vector which, together with this one, will be used to
|
---|
379 | calculate the cross-product.
|
---|
380 | @returns
|
---|
381 | A vector which is the result of the cross-product. This
|
---|
382 | vector will <b>NOT</b> be normalised, to maximise efficiency
|
---|
383 | - call Vector3::normalise on the result if you wish this to
|
---|
384 | be done. As for which side the resultant vector will be on, the
|
---|
385 | returned vector will be on the side from which the arc from 'this'
|
---|
386 | to rkVector is anticlockwise, e.g. UNIT_Y.crossProduct(UNIT_Z)
|
---|
387 | = UNIT_X, whilst UNIT_Z.crossProduct(UNIT_Y) = -UNIT_X.
|
---|
388 | @par
|
---|
389 | For a clearer explanation, look a the left and the bottom edges
|
---|
390 | of your monitor's screen. Assume that the first vector is the
|
---|
391 | left edge and the second vector is the bottom edge, both of
|
---|
392 | them starting from the lower-left corner of the screen. The
|
---|
393 | resulting vector is going to be perpendicular to both of them
|
---|
394 | and will go <i>inside</i> the screen, towards the cathode tube
|
---|
395 | (assuming you're using a CRT monitor, of course).
|
---|
396 | */
|
---|
397 | inline Vector2 crossProduct( const Vector2& rkVector ) const
|
---|
398 | {
|
---|
399 | return Vector2(-rkVector.y, rkVector.x);
|
---|
400 | }
|
---|
401 | /** Generates a new random vector which deviates from this vector by a
|
---|
402 | given angle in a random direction.
|
---|
403 | @remarks
|
---|
404 | This method assumes that the random number generator has already
|
---|
405 | been seeded appropriately.
|
---|
406 | @param
|
---|
407 | angle The angle at which to deviate in radians
|
---|
408 | @param
|
---|
409 | up Any vector perpendicular to this one (which could generated
|
---|
410 | by cross-product of this vector and any other non-colinear
|
---|
411 | vector). If you choose not to provide this the function will
|
---|
412 | derive one on it's own, however if you provide one yourself the
|
---|
413 | function will be faster (this allows you to reuse up vectors if
|
---|
414 | you call this method more than once)
|
---|
415 | @returns
|
---|
416 | A random vector which deviates from this vector by angle. This
|
---|
417 | vector will not be normalised, normalise it if you wish
|
---|
418 | afterwards.
|
---|
419 | */
|
---|
420 | inline Vector2 randomDeviant(
|
---|
421 | Real angle) const
|
---|
422 | {
|
---|
423 |
|
---|
424 | angle *= Math::UnitRandom() * Math::TWO_PI;
|
---|
425 | Real cosa = cos(angle);
|
---|
426 | Real sina = sin(angle);
|
---|
427 | return Vector2(cosa * x - sina * y,
|
---|
428 | sina * x + cosa * y);
|
---|
429 | }
|
---|
430 |
|
---|
431 | /** Returns true if this vector is zero length. */
|
---|
432 | inline bool isZeroLength(void) const
|
---|
433 | {
|
---|
434 | Real sqlen = (x * x) + (y * y);
|
---|
435 | return (sqlen < (1e-06 * 1e-06));
|
---|
436 |
|
---|
437 | }
|
---|
438 |
|
---|
439 | /** As normalise, except that this vector is unaffected and the
|
---|
440 | normalised vector is returned as a copy. */
|
---|
441 | inline Vector2 normalisedCopy(void) const
|
---|
442 | {
|
---|
443 | Vector2 ret = *this;
|
---|
444 | ret.normalise();
|
---|
445 | return ret;
|
---|
446 | }
|
---|
447 |
|
---|
448 | /** Calculates a reflection vector to the plane with the given normal .
|
---|
449 | @remarks NB assumes 'this' is pointing AWAY FROM the plane, invert if it is not.
|
---|
450 | */
|
---|
451 | inline Vector2 reflect(const Vector2& normal) const
|
---|
452 | {
|
---|
453 | return Vector2( *this - ( 2 * this->dotProduct(normal) * normal ) );
|
---|
454 | }
|
---|
455 |
|
---|
456 | // special points
|
---|
457 | static const Vector2 ZERO;
|
---|
458 | static const Vector2 UNIT_X;
|
---|
459 | static const Vector2 UNIT_Y;
|
---|
460 | static const Vector2 NEGATIVE_UNIT_X;
|
---|
461 | static const Vector2 NEGATIVE_UNIT_Y;
|
---|
462 | static const Vector2 UNIT_SCALE;
|
---|
463 |
|
---|
464 | /** Function for writing to a stream.
|
---|
465 | */
|
---|
466 | inline _OgreExport friend std::ostream& operator <<
|
---|
467 | ( std::ostream& o, const Vector2& v )
|
---|
468 | {
|
---|
469 | o << "Vector2(" << v.x << ", " << v.y << ")";
|
---|
470 | return o;
|
---|
471 | }
|
---|
472 | };
|
---|
473 |
|
---|
474 | }
|
---|
475 | #endif
|
---|