1 | //--------------------------------------------------------------------------------------
|
---|
2 | // File: EnvMap.fx
|
---|
3 | //
|
---|
4 | // The effect file for the OptimizedMesh sample.
|
---|
5 | //
|
---|
6 | // Copyright (c) Microsoft Corporation. All rights reserved.
|
---|
7 | //--------------------------------------------------------------------------------------
|
---|
8 |
|
---|
9 | /// size of the cube map taken from the reference point of the object
|
---|
10 | #define CUBEMAP_SIZE 128
|
---|
11 | /// size of the cube map for diffuse/glossy reflections
|
---|
12 | #define LR_CUBEMAP_SIZE 4
|
---|
13 | /// cube map downsampling rate for diffuse/glossy reflections
|
---|
14 | #define RATE (CUBEMAP_SIZE/LR_CUBEMAP_SIZE)
|
---|
15 | #define PI 3.14159f
|
---|
16 |
|
---|
17 | //--------------------------------------------------------------------------------------
|
---|
18 | // Global variables
|
---|
19 | //--------------------------------------------------------------------------------------
|
---|
20 |
|
---|
21 | float4x4 World; ///< World matrix for the current object
|
---|
22 | float4x4 WorldIT; ///< World matrix IT (inverse transposed) to transform surface normals of the current object
|
---|
23 | float4x4 WorldView; ///< World * View matrix
|
---|
24 | //float4x4 WorldViewIT; ///< World * View IT (inverse transposed) to transform surface normals of the current object
|
---|
25 | float4x4 WorldViewProjection; ///< World * View * Projection matrix
|
---|
26 |
|
---|
27 | float texel_size; ///< upload this constant every time the viewport changes
|
---|
28 |
|
---|
29 | float4 eyePos; ///< current eye (camera) position
|
---|
30 | float4 reference_pos; ///< Reference point for the last cube map generation.
|
---|
31 |
|
---|
32 | int nFace; ///<
|
---|
33 | int iShowCubeMap; ///<
|
---|
34 | float4 objColor;
|
---|
35 |
|
---|
36 | float3 nMetal; ///< real part of the refraction coefficient for metals
|
---|
37 | float3 kMetal; ///< imaginary part of the refraction coefficient for metals
|
---|
38 | float sFresnel; ///< Fresnel refraction param.
|
---|
39 | float refractionIndex;
|
---|
40 | float intensity;
|
---|
41 |
|
---|
42 | float shininess;
|
---|
43 | float brightness;
|
---|
44 |
|
---|
45 | texture EnvironmentMap;
|
---|
46 | texture SmallEnvironmentMap;
|
---|
47 | texture PreconvolvedEnvironmentMap;
|
---|
48 | texture Decoration;
|
---|
49 |
|
---|
50 | sampler EnvironmentMapSampler = sampler_state
|
---|
51 | {
|
---|
52 | /*MinFilter = LINEAR;
|
---|
53 | MagFilter = LINEAR;
|
---|
54 | MipFilter = LINEAR;*/
|
---|
55 | Texture = <EnvironmentMap>;
|
---|
56 | AddressU = WRAP;
|
---|
57 | AddressV = WRAP;
|
---|
58 | };
|
---|
59 |
|
---|
60 | sampler PreconvolvedEnvironmentMapSampler = sampler_state
|
---|
61 | {
|
---|
62 | MinFilter = LINEAR;
|
---|
63 | MagFilter = LINEAR;
|
---|
64 | //MipFilter = LINEAR;
|
---|
65 | Texture = <PreconvolvedEnvironmentMap>;
|
---|
66 | AddressU = WRAP;
|
---|
67 | AddressV = WRAP;
|
---|
68 | };
|
---|
69 |
|
---|
70 | sampler SmallEnvironmentMapSampler = sampler_state
|
---|
71 | {
|
---|
72 | MinFilter = Point;
|
---|
73 | MagFilter = Point;
|
---|
74 | //MipFilter = Point;
|
---|
75 | Texture = <SmallEnvironmentMap>;
|
---|
76 | AddressU = WRAP;
|
---|
77 | AddressV = WRAP;
|
---|
78 | };
|
---|
79 |
|
---|
80 | sampler DecorationSampler = sampler_state
|
---|
81 | {
|
---|
82 | Texture = <Decoration>;
|
---|
83 | MinFilter = LINEAR;
|
---|
84 | MagFilter = LINEAR;
|
---|
85 | //MipFilter = LINEAR;
|
---|
86 | AddressU = CLAMP; //WRAP;
|
---|
87 | AddressV = CLAMP; //WRAP;
|
---|
88 | };
|
---|
89 |
|
---|
90 | // ---------------------------------------------------------------------------------------------------
|
---|
91 |
|
---|
92 | struct ReduceTextureVS_input { ///< vertex shader input
|
---|
93 | float4 Position : POSITION;
|
---|
94 | };
|
---|
95 |
|
---|
96 | struct ReduceTextureVS_output { ///< vertex shader output, pixel shader input
|
---|
97 | float4 hPosition : POSITION;
|
---|
98 | float2 Position : TEXCOORD0;
|
---|
99 | };
|
---|
100 |
|
---|
101 | /// See the pixel program.
|
---|
102 | ReduceTextureVS_output ReduceTextureVS(ReduceTextureVS_input IN) {
|
---|
103 | ReduceTextureVS_output OUT;
|
---|
104 | OUT.hPosition = IN.Position;
|
---|
105 | OUT.Position = IN.Position.xy;
|
---|
106 | return OUT;
|
---|
107 | }
|
---|
108 |
|
---|
109 | /// \brief Downsamples a face of a cube map.
|
---|
110 | ///
|
---|
111 | /// Downsamples the nFace-th face of a cube map from resolution #CUBEMAP_SIZE to #LR_CUBEMAP_SIZE
|
---|
112 | /// by averaging the corresponding texel values. The #EnvironmentMap is sampled via #EnvironmentMapSampler.
|
---|
113 | /// \param nFace uniform parameter identifies the current face (0...5)
|
---|
114 | float4 ReduceTexturePS(ReduceTextureVS_output IN) : COLOR
|
---|
115 | {
|
---|
116 | float4 color = 0;
|
---|
117 | float3 dir;
|
---|
118 |
|
---|
119 | for (int i = 0; i < RATE; i++)
|
---|
120 | for (int j = 0; j < RATE; j++)
|
---|
121 | {
|
---|
122 | // generate a position
|
---|
123 | float2 pos;
|
---|
124 | pos.x = IN.Position.x + (2*i + 1)/(float)CUBEMAP_SIZE;
|
---|
125 | pos.y = IN.Position.y - (2*j + 1)/(float)CUBEMAP_SIZE; // y=-u
|
---|
126 |
|
---|
127 | // "scrambling"
|
---|
128 | // ( put the generated position on the nFace-th face )
|
---|
129 | if (nFace == 0) dir = float3(1, pos.y, -pos.x);
|
---|
130 | if (nFace == 1) dir = float3(-1, pos.y, pos.x);
|
---|
131 | if (nFace == 2) dir = float3(pos.x, 1, -pos.y);
|
---|
132 | if (nFace == 3) dir = float3(pos.x, -1, pos.y);
|
---|
133 | if (nFace == 4) dir = float3(pos.xy, 1);
|
---|
134 | if (nFace == 5) dir = float3(-pos.x, pos.y,-1);
|
---|
135 |
|
---|
136 | color += texCUBE( EnvironmentMapSampler, dir);
|
---|
137 | }
|
---|
138 | return color / (RATE*RATE);
|
---|
139 | }
|
---|
140 |
|
---|
141 | /// \brief Returns the precalculated contribution of a texel with regard to the specified query direction.
|
---|
142 | ///
|
---|
143 | /// \param q <b>query direction</b> (i.e. surface normal in diffuse case, ideal reflection direction in specular case).
|
---|
144 | /// \param L vector pointing to the texel center
|
---|
145 | float4 GetContibution(float3 q, float3 L)
|
---|
146 | // Lin * a * ( dw )
|
---|
147 | // -- actually, dw is calculated by the caller --
|
---|
148 | {
|
---|
149 | //float shininess = 1;
|
---|
150 | float fcos = max(dot(L, q), 0);
|
---|
151 | // diffuse
|
---|
152 | if (shininess <= 0)
|
---|
153 | return 0.2 * fcos * texCUBE( SmallEnvironmentMapSampler, L);
|
---|
154 | else
|
---|
155 | // some ad-hoc formula that maintains more even intensity for different shininess values
|
---|
156 | // in case of HDRI environment
|
---|
157 | return (pow(shininess,0.8)*0.2) * pow(fcos, shininess) * texCUBE( SmallEnvironmentMapSampler, L);
|
---|
158 |
|
---|
159 | // return (shininess+2)/8 * pow(fcos, shininess) * texCUBE( SmallEnvironmentMapSampler, L);
|
---|
160 | }
|
---|
161 |
|
---|
162 | /*float4 GetContibution_Metal(float3 q, float3 L)
|
---|
163 | // Lin * a * ( dw )
|
---|
164 | // -- actually, dw is calculated by the caller --
|
---|
165 | {
|
---|
166 | float fcos = max(dot(L, q), 0);
|
---|
167 | float4 Lin = texCUBE( SmallEnvironmentMapSampler, L);
|
---|
168 | return Lin * (pow(shininess,0.8)*0.2) * pow(fcos, shininess);
|
---|
169 | }*/
|
---|
170 |
|
---|
171 | struct ConvolutionVS_input {
|
---|
172 | float4 Position : POSITION;
|
---|
173 | };
|
---|
174 |
|
---|
175 | struct ConvolutionVS_output {
|
---|
176 | float4 hPosition : POSITION;
|
---|
177 | float3 Position : TEXCOORD0;
|
---|
178 | };
|
---|
179 |
|
---|
180 | /// See the pixel program.
|
---|
181 | ConvolutionVS_output ConvolutionVS(ConvolutionVS_input IN) {
|
---|
182 | ConvolutionVS_output OUT;
|
---|
183 | OUT.hPosition = IN.Position;
|
---|
184 |
|
---|
185 | float2 pos = IN.Position.xy; // -1..1
|
---|
186 | pos.x += 1.0f / LR_CUBEMAP_SIZE;
|
---|
187 | pos.y -= 1.0f / LR_CUBEMAP_SIZE;
|
---|
188 |
|
---|
189 | if (nFace == 0) OUT.Position = float3(1, pos.y, -pos.x);
|
---|
190 | if (nFace == 1) OUT.Position = float3(-1, pos.y, pos.x);
|
---|
191 | if (nFace == 2) OUT.Position = float3(pos.x, 1, -pos.y);
|
---|
192 | if (nFace == 3) OUT.Position = float3(pos.x,-1, pos.y);
|
---|
193 | if (nFace == 4) OUT.Position = float3(pos.xy, 1);
|
---|
194 | if (nFace == 5) OUT.Position = float3(-pos.x, pos.y,-1);
|
---|
195 |
|
---|
196 | return OUT;
|
---|
197 | }
|
---|
198 |
|
---|
199 | /// \brief Convolves the values of a cube map.
|
---|
200 | ///
|
---|
201 | /// Calculates the diffuse/specular irradiance map of resolution #LR_CUBEMAP_SIZE by summing up the contributions of all cube map texels
|
---|
202 | /// with regard to the current query direction.
|
---|
203 | /// \param SmallEnvironmentMap is bound to EnvMap::pCubeTextureSmall (cube map of resolution #LR_CUBEMAP_SIZE)
|
---|
204 |
|
---|
205 | float4 ConvolutionPS(ConvolutionVS_output IN) : COLOR
|
---|
206 | {
|
---|
207 | // input position = query direction for the result
|
---|
208 | float3 q = normalize( IN.Position );
|
---|
209 | float4 color = 0;
|
---|
210 |
|
---|
211 | //
|
---|
212 | for (int i = 0; i < LR_CUBEMAP_SIZE; i++)
|
---|
213 | for (int j = 0; j < LR_CUBEMAP_SIZE; j++)
|
---|
214 | {
|
---|
215 | float u = (i+0.5) / (float)LR_CUBEMAP_SIZE;
|
---|
216 | float v = (j+0.5) / (float)LR_CUBEMAP_SIZE;
|
---|
217 | float3 pos = float3( 2*u-1, 1-2*v, 1 );
|
---|
218 |
|
---|
219 | float r = length(pos);
|
---|
220 | pos /= r;
|
---|
221 |
|
---|
222 | float4 dcolor = 0;
|
---|
223 | float3 L;
|
---|
224 | L = float3(pos.z, pos.y, -pos.x); dcolor += GetContibution( q, L );
|
---|
225 | L = float3(-pos.z, pos.y, pos.x); dcolor += GetContibution( q, L );
|
---|
226 | L = float3(pos.x, pos.z, -pos.y); dcolor += GetContibution( q, L );
|
---|
227 | L = float3(pos.x, -pos.z, pos.y); dcolor += GetContibution( q, L );
|
---|
228 | L = float3(pos.x, pos.y, pos.z); dcolor += GetContibution( q, L );
|
---|
229 | L = float3(-pos.x, pos.y, -pos.z); dcolor += GetContibution( q, L );
|
---|
230 |
|
---|
231 | float dw = 4 / (r*r*r); // using accurate solid angles
|
---|
232 | //float dw = 4; // assuming equal solid angles
|
---|
233 |
|
---|
234 | color += dcolor*dw;
|
---|
235 | }
|
---|
236 |
|
---|
237 | return 1.5 * color / (LR_CUBEMAP_SIZE * LR_CUBEMAP_SIZE);
|
---|
238 | }
|
---|
239 |
|
---|
240 | // ---------------------------------------------------------------------------------------------------
|
---|
241 |
|
---|
242 | /// \brief This function approximately traces a ray from point x towards direction R.
|
---|
243 | /// Depth information is obtained from the alpha channel of mp.
|
---|
244 | /// \return the approximate hit point.
|
---|
245 |
|
---|
246 | float3 Hit(float3 x, float3 R, sampler mp)
|
---|
247 | {
|
---|
248 | float rl = texCUBE(mp, R).a; // |r|
|
---|
249 | float dp = rl - dot(x, R); // parallax
|
---|
250 |
|
---|
251 | float3 p = x + R * dp;
|
---|
252 | return p;
|
---|
253 | }
|
---|
254 |
|
---|
255 | /// \brief Simple Fresnel term approximation for metals.
|
---|
256 | ///
|
---|
257 | /// The metal is described by its (complex) refraction coefficient (#nMetal,#kMetal).
|
---|
258 | float4 metal_reflectivity(float3 L, float3 N, float3 V)
|
---|
259 | {
|
---|
260 | float3 n = nMetal;
|
---|
261 | float3 k = kMetal;
|
---|
262 |
|
---|
263 | float ctheta_in = dot(N,L);
|
---|
264 | float ctheta_out = dot(N,V);
|
---|
265 |
|
---|
266 | float4 intens = 0;
|
---|
267 | float3 F = 0;
|
---|
268 |
|
---|
269 | // calculating terms F, P, G for Cook-Torrance
|
---|
270 | if ( ctheta_in > 0 && ctheta_out > 0 )
|
---|
271 | {
|
---|
272 | float3 H = normalize(L + V); // halfway vector
|
---|
273 | float calpha = dot(N,H);
|
---|
274 | float cbeta = dot(H,L);
|
---|
275 |
|
---|
276 | F = ( (n-1)*(n-1) + pow(1-cbeta,5) * 4*n + k*k) / ( (n+1)*(n+1) + k*k );
|
---|
277 | }
|
---|
278 |
|
---|
279 | return float4(F, 1);
|
---|
280 | }
|
---|
281 | // --------------------------------------------------------
|
---|
282 | // technique EnvMappedScene
|
---|
283 | // --------------------------------------------------------
|
---|
284 |
|
---|
285 | struct EnvMapVS_input
|
---|
286 | {
|
---|
287 | float4 Position : POSITION;
|
---|
288 | float3 Normal : NORMAL;
|
---|
289 | float2 TexCoord : TEXCOORD0;
|
---|
290 | };
|
---|
291 |
|
---|
292 | struct EnvMapVS_output
|
---|
293 | {
|
---|
294 | float4 hPosition : POSITION;
|
---|
295 | float2 TexCoord : TEXCOORD0;
|
---|
296 | float3 Normal : TEXCOORD1;
|
---|
297 | float3 View : TEXCOORD2;
|
---|
298 | float3 Position : TEXCOORD3;
|
---|
299 | };
|
---|
300 |
|
---|
301 |
|
---|
302 | EnvMapVS_output EnvMapVS( EnvMapVS_input IN )
|
---|
303 | {
|
---|
304 | EnvMapVS_output OUT;
|
---|
305 |
|
---|
306 | OUT.Position = mul( IN.Position, World ).xyz; // scale & offset
|
---|
307 | OUT.View = normalize( OUT.Position - eyePos );
|
---|
308 | //OUT.Normal = IN.Normal;
|
---|
309 | OUT.Normal = mul( IN.Normal, WorldIT ).xyz; // allow distortion/rotation
|
---|
310 |
|
---|
311 | OUT.TexCoord = IN.TexCoord;
|
---|
312 |
|
---|
313 | OUT.hPosition = mul( IN.Position, WorldViewProjection );
|
---|
314 | return OUT;
|
---|
315 | }
|
---|
316 |
|
---|
317 | /// \brief Environment mapping with distance impostors.
|
---|
318 | ///
|
---|
319 | /// Determines the ideal reflection/refraction direction and approximately traces a ray toward that direction using the Hit() function.
|
---|
320 | /// \param EnvironmentMap is bound to EnvMap::pCubeTexture (cube map of resolution #CUBEMAP_SIZE)
|
---|
321 | float4 EnvMapImpostorPS( EnvMapVS_output IN ) : COLOR
|
---|
322 | {
|
---|
323 | IN.View = normalize( IN.View );
|
---|
324 | IN.Normal = normalize( IN.Normal );
|
---|
325 |
|
---|
326 | float3 R = reflect(IN.View, IN.Normal); // reflection direction
|
---|
327 | float3 T = refract(IN.View, IN.Normal, refractionIndex);
|
---|
328 |
|
---|
329 | // translate reference point to the origin
|
---|
330 | float3 p0 = IN.Position - reference_pos.xyz;
|
---|
331 |
|
---|
332 | float3 RR = 0, TT = 0;
|
---|
333 |
|
---|
334 | // -------------------------- approximate raytracing --------------------------
|
---|
335 |
|
---|
336 | // using depth impostors + interpolation
|
---|
337 | RR = Hit(p0, R, EnvironmentMapSampler);
|
---|
338 |
|
---|
339 | // single refraction
|
---|
340 | TT = Hit(p0, T, EnvironmentMapSampler);
|
---|
341 |
|
---|
342 | // reading from the cubemap
|
---|
343 | float4 reflectcolor = texCUBE(EnvironmentMapSampler, RR);
|
---|
344 | float4 refractcolor = texCUBE(EnvironmentMapSampler, TT);
|
---|
345 |
|
---|
346 | float cos_theta = -dot( IN.View, IN.Normal ); // Fresnel approximation
|
---|
347 | float F = (sFresnel + pow(1-cos_theta, 5.0f) * (1-sFresnel));
|
---|
348 |
|
---|
349 | return intensity * (F * reflectcolor + (1-F) * refractcolor);
|
---|
350 | //return reflectcolor;
|
---|
351 | }
|
---|
352 |
|
---|
353 | float4 EnvMapImpostorMetalPS( EnvMapVS_output IN ) : COLOR
|
---|
354 | {
|
---|
355 | IN.View = normalize( IN.View );
|
---|
356 | IN.Normal = normalize( IN.Normal );
|
---|
357 |
|
---|
358 | float3 R = reflect(IN.View, IN.Normal); // reflection direction
|
---|
359 | // translate reference point to the origin
|
---|
360 | float3 p0 = IN.Position - reference_pos.xyz;
|
---|
361 |
|
---|
362 | // -------------------------- approximate raytracing --------------------------
|
---|
363 |
|
---|
364 | // using depth impostors + interpolation
|
---|
365 | float3 RR = Hit(p0, R, EnvironmentMapSampler);
|
---|
366 |
|
---|
367 | // reading from the cubemap
|
---|
368 | float4 reflectcolor = texCUBE(EnvironmentMapSampler, RR);
|
---|
369 |
|
---|
370 | float3 L = R;
|
---|
371 | return intensity * reflectcolor * metal_reflectivity(L, IN.Normal, -IN.View);
|
---|
372 | //return reflectcolor;
|
---|
373 | }
|
---|
374 |
|
---|
375 | /// \brief Classic environment mapping technique.
|
---|
376 | ///
|
---|
377 | /// Simply determines the ideal reflection/refraction direction and performs a cube map lookup into that direction
|
---|
378 | /// \param EnvironmentMap is bound to EnvMap::pCubeTexture (cube map of resolution #CUBEMAP_SIZE)
|
---|
379 |
|
---|
380 | float4 EnvMapClassicPS( EnvMapVS_output IN ) : COLOR
|
---|
381 | {
|
---|
382 | IN.View = normalize( IN.View );
|
---|
383 | IN.Normal = normalize( IN.Normal );
|
---|
384 |
|
---|
385 | float3 R = reflect(IN.View, IN.Normal);
|
---|
386 | float3 T = refract(IN.View, IN.Normal, refractionIndex);
|
---|
387 | float3 p0 = IN.Position;
|
---|
388 |
|
---|
389 | // -------------------------- return value --------------------------
|
---|
390 |
|
---|
391 | // reading from the cubemap
|
---|
392 | float4 reflectcolor = texCUBE(EnvironmentMapSampler, R);
|
---|
393 | float4 refractcolor = texCUBE(EnvironmentMapSampler, T);
|
---|
394 |
|
---|
395 | float cos_theta = -dot( IN.View, IN.Normal ); // Fresnel approximation
|
---|
396 | float F = (sFresnel + pow(1-cos_theta, 5.0f) * (1-sFresnel));
|
---|
397 |
|
---|
398 | return intensity * (F * reflectcolor + (1-F) * refractcolor);
|
---|
399 | //return reflectcolor;
|
---|
400 | }
|
---|
401 |
|
---|
402 | /// Classic environment mapping technique with a simple Fresnel term approximation (metal_reflectivity()).
|
---|
403 | float4 EnvMapClassicMetalPS( EnvMapVS_output IN ) : COLOR
|
---|
404 | {
|
---|
405 | IN.View = normalize( IN.View );
|
---|
406 | IN.Normal = normalize( IN.Normal );
|
---|
407 |
|
---|
408 | float3 R = reflect(IN.View, IN.Normal);
|
---|
409 | float3 p0 = IN.Position;
|
---|
410 |
|
---|
411 | float4 reflectcolor = texCUBE(EnvironmentMapSampler, R);
|
---|
412 |
|
---|
413 | float3 L = R;
|
---|
414 | return intensity * reflectcolor * metal_reflectivity(L, IN.Normal, -IN.View);
|
---|
415 | //return reflectcolor;
|
---|
416 | }
|
---|
417 |
|
---|
418 | /// \brief Determines diffuse or specular illumination with a single lookup into #PreconvolvedEnvironmentMap.
|
---|
419 | /// \param PreconvolvedEnvironmentMap is bound to EnvMap::pCubeTexturePreConvolved (cube map of resolution #LR_CUBEMAP_SIZE)
|
---|
420 | float4 EnvMapDiffusePS( EnvMapVS_output IN ) : COLOR
|
---|
421 | {
|
---|
422 | IN.View = normalize( IN.View );
|
---|
423 | IN.Normal = normalize( IN.Normal );
|
---|
424 |
|
---|
425 | float3 R = reflect(IN.View, IN.Normal);
|
---|
426 |
|
---|
427 | if (shininess <= 0) // diffuse
|
---|
428 | return intensity * texCUBE(PreconvolvedEnvironmentMapSampler, IN.Normal);
|
---|
429 | else // specular
|
---|
430 | return intensity * texCUBE(PreconvolvedEnvironmentMapSampler, R);
|
---|
431 | }
|
---|
432 |
|
---|
433 | /// \brief Calculates the contribution of a single texel of #SmallEnvironmentMap to the illumination of the shaded point.
|
---|
434 | ///
|
---|
435 | /// \param L vector pointing to the center of the texel under examination. We assume that the largest coordinate component
|
---|
436 | /// of L is equal to one, i.e. L points to the face of a cube of edge length of 2.
|
---|
437 | /// \param pos is the position of the shaded point
|
---|
438 | /// \param N is the surface normal at the shaded point
|
---|
439 | /// \param V is the viewing direction at the shaded point
|
---|
440 |
|
---|
441 | float4 GetContibution(float3 L, float3 pos, float3 N, float3 V) // Phong-Blinn
|
---|
442 | // L: a hossza lényeges (az egységkocka faláig ér)
|
---|
443 | {
|
---|
444 | float kd = 0.4; // 0.3
|
---|
445 | float ks = 0.5; // 0.5
|
---|
446 |
|
---|
447 | float l = length(L);
|
---|
448 | L = normalize(L);
|
---|
449 |
|
---|
450 | //Lin
|
---|
451 | float4 Lin = texCUBE(SmallEnvironmentMapSampler, L);
|
---|
452 | //dw
|
---|
453 | float dw = 4 / (LR_CUBEMAP_SIZE*LR_CUBEMAP_SIZE*l*l*l + 4/2/3.1416f);
|
---|
454 |
|
---|
455 | float dws = dw;
|
---|
456 |
|
---|
457 | //#ifdef LOCALIZE
|
---|
458 |
|
---|
459 | //r
|
---|
460 | float doy = texCUBE(SmallEnvironmentMapSampler, L).a;
|
---|
461 | float dxy = length(pos - L * doy);
|
---|
462 |
|
---|
463 | //dws
|
---|
464 | dws = (doy*doy * dw) / (dxy*dxy*(1 - dw/2/3.1416f) + doy*doy*dw/2/3.1416f); // localization
|
---|
465 |
|
---|
466 | L = L * doy - pos; // L should start from the object (and not from the reference point)
|
---|
467 | L = normalize(L);
|
---|
468 |
|
---|
469 | //#endif
|
---|
470 |
|
---|
471 | float3 H = normalize(L + V); // felezõvektor
|
---|
472 | float3 R = reflect(-V, N); // reflection vector
|
---|
473 |
|
---|
474 | // a: from texture
|
---|
475 |
|
---|
476 | float4 color = 0;
|
---|
477 |
|
---|
478 | float a = 0;
|
---|
479 | if ( shininess <= 0 )
|
---|
480 | a = kd * max(dot(N,L),0); // diffuse
|
---|
481 | else
|
---|
482 | a = ks * pow(max(dot(N,H),0), shininess) * (shininess+2)/(2*PI); // specular
|
---|
483 | // note: using dot(N,H) looks better than dot(R,L)
|
---|
484 |
|
---|
485 | return Lin * a * dws;
|
---|
486 | }
|
---|
487 |
|
---|
488 | /// \brief Calculates diffuse or specular contributions of all texels in #SmallEnvironmentMap to the current point.
|
---|
489 | /// For each texel of #SmallEnvironmentMap, function GetContibution(float3,float3,float3,float3) is called.
|
---|
490 | /// \param SmallEnvironmentMap is bound to EnvMap::pCubeTextureSmall (cube map of resolution #LR_CUBEMAP_SIZE)
|
---|
491 |
|
---|
492 | float4 EnvMapDiffuseLocalizedPS( EnvMapVS_output IN ) : COLOR
|
---|
493 | {
|
---|
494 | IN.View = -normalize( IN.View );
|
---|
495 | IN.Normal = normalize( IN.Normal );
|
---|
496 | // translate reference point to the origin
|
---|
497 | IN.Position -= reference_pos.xyz;
|
---|
498 |
|
---|
499 | float3 R = -reflect( IN.View, IN.Normal ); // reflection direction
|
---|
500 |
|
---|
501 | float4 I = 0;
|
---|
502 |
|
---|
503 | for (int x = 0; x < LR_CUBEMAP_SIZE; x++) // foreach texel
|
---|
504 | for (int y = 0; y < LR_CUBEMAP_SIZE; y++)
|
---|
505 | {
|
---|
506 | // compute intensity for 6 texels with equal solid angles
|
---|
507 |
|
---|
508 | float2 tpos;
|
---|
509 | tpos.x = x/(float)LR_CUBEMAP_SIZE; // 0..1
|
---|
510 | tpos.y = y/(float)LR_CUBEMAP_SIZE; // 0..1
|
---|
511 | tpos.xy += float2(0.5/LR_CUBEMAP_SIZE, 0.5/LR_CUBEMAP_SIZE); // offset to texel center
|
---|
512 |
|
---|
513 | float2 p = float2(tpos.x, 1-tpos.y); // reverse y
|
---|
514 | p.xy = 2*p.xy - 1; // -1..1
|
---|
515 |
|
---|
516 | float3 L;
|
---|
517 |
|
---|
518 | L = float3(p.x, p.y, 1);
|
---|
519 | I += GetContibution( L, IN.Position, IN.Normal, IN.View );
|
---|
520 |
|
---|
521 | L = float3(p.x, p.y, -1);
|
---|
522 | I += GetContibution( L, IN.Position, IN.Normal, IN.View );
|
---|
523 |
|
---|
524 | L = float3(p.x, 1, p.y);
|
---|
525 | I += GetContibution( L, IN.Position, IN.Normal, IN.View );
|
---|
526 |
|
---|
527 | L = float3(p.x, -1, p.y);
|
---|
528 | I += GetContibution( L, IN.Position, IN.Normal, IN.View );
|
---|
529 |
|
---|
530 | L = float3(1, p.x, p.y);
|
---|
531 | I += GetContibution( L, IN.Position, IN.Normal, IN.View );
|
---|
532 |
|
---|
533 | L = float3(-1, p.x, p.y);
|
---|
534 | I += GetContibution( L, IN.Position, IN.Normal, IN.View );
|
---|
535 | }
|
---|
536 |
|
---|
537 | return intensity * I;
|
---|
538 | }
|
---|
539 |
|
---|
540 | /// \brief Calculates the contribution of a single texel of #SmallEnvironmentMap to the illumination of the shaded point.
|
---|
541 | ///
|
---|
542 | /// The only difference from GetContibution(float3,float3,float3,float3) is that
|
---|
543 | /// now we use precalculated integral values to compute reflectivity (instead of using only one sample).
|
---|
544 |
|
---|
545 | float4 GetContibutionWithCosLookup(float3 L, float3 pos, float3 N, float3 V) // Phong-Blinn
|
---|
546 | // L: a hossza lényeges (az egységkocka faláig ér)
|
---|
547 | {
|
---|
548 | float ks = 0.5; // 0.5
|
---|
549 | float l = length(L);
|
---|
550 | L = normalize(L);
|
---|
551 |
|
---|
552 | //Lin
|
---|
553 | float4 Lin = texCUBE(SmallEnvironmentMapSampler, L);
|
---|
554 |
|
---|
555 | //dw
|
---|
556 | //float dw = 4 / (LIGHT_TEXTURE_SIZE*LIGHT_TEXTURE_SIZE*l*l*l + 4/3.1416f);
|
---|
557 | float dw = 4 / (LR_CUBEMAP_SIZE*LR_CUBEMAP_SIZE*l*l*l + 4/2/3.1416f);
|
---|
558 |
|
---|
559 | float dws = dw;
|
---|
560 |
|
---|
561 | //#ifdef LOCALIZE
|
---|
562 |
|
---|
563 | //if (localize > 0)
|
---|
564 | {
|
---|
565 | //r
|
---|
566 | float doy = texCUBE(SmallEnvironmentMapSampler, L).a;
|
---|
567 | float dxy = length(pos - L * doy);
|
---|
568 |
|
---|
569 | //dws
|
---|
570 | //dws = (doy*doy * dw) / (dxy*dxy*(1 - dw/3.1416f) + doy*doy*dw/3.1416f); // localization:
|
---|
571 | dws = (doy*doy * dw) / (dxy*dxy*(1 - dw/2/3.1416f) + doy*doy*dw/2/3.1416f); // localization:
|
---|
572 |
|
---|
573 | // az illum.képletben használt L kiszámítása
|
---|
574 | L = L * doy - pos; // bugfix: L az objektumtól induljon, ne a középpontból (x->y)
|
---|
575 | L = normalize(L);
|
---|
576 | }
|
---|
577 |
|
---|
578 | //#endif
|
---|
579 |
|
---|
580 | float3 H = normalize(L + V); // felezõvektor
|
---|
581 | float3 R = reflect(-V, N); // reflection vector
|
---|
582 |
|
---|
583 | // from texture
|
---|
584 |
|
---|
585 | float4 color = 0;
|
---|
586 | float cos_value;
|
---|
587 |
|
---|
588 | if (shininess <= 0)
|
---|
589 | cos_value = dot(N,L); // diffuse
|
---|
590 | else
|
---|
591 | cos_value = dot(R,L); // specular
|
---|
592 |
|
---|
593 | float2 tex;
|
---|
594 | tex.x = (cos_value + 1)/2;
|
---|
595 | tex.y = dws/2/PI;
|
---|
596 | cos_value = tex2D(DecorationSampler, tex).g * 3;
|
---|
597 | //color = Lin * kd * cos_value * 2; // bugfix: kd
|
---|
598 | color = Lin * ks * cos_value * 1.2; // ks
|
---|
599 | //return Lin * cos_value;
|
---|
600 |
|
---|
601 | return color;
|
---|
602 | }
|
---|
603 |
|
---|
604 | /// \brief Calculates diffuse or specular contributions of all texels in #SmallEnvironmentMap to the current point.
|
---|
605 | /// For each texel of #SmallEnvironmentMap, function GetContibutionWithCosLookup() is called.
|
---|
606 | /// \param SmallEnvironmentMap is bound to EnvMap::pCubeTextureSmall (cube map of resolution #LR_CUBEMAP_SIZE)
|
---|
607 |
|
---|
608 | float4 EnvMapDiffuseLocalizedWithCosLookupPS( EnvMapVS_output IN ) : COLOR
|
---|
609 | {
|
---|
610 | IN.View = -normalize( IN.View );
|
---|
611 | IN.Normal = normalize( IN.Normal );
|
---|
612 | IN.Position -= reference_pos.xyz;
|
---|
613 |
|
---|
614 | float3 R = -reflect( IN.View, IN.Normal ); // reflection direction
|
---|
615 |
|
---|
616 | float4 I = 0;
|
---|
617 |
|
---|
618 | for (int x = 0; x < LR_CUBEMAP_SIZE; x++) // foreach texel
|
---|
619 | for (int y = 0; y < LR_CUBEMAP_SIZE; y++)
|
---|
620 | {
|
---|
621 | // compute intensity for 6 texels with equal solid angles
|
---|
622 |
|
---|
623 | float2 tpos;
|
---|
624 | tpos.x = x/(float)LR_CUBEMAP_SIZE; // 0..1
|
---|
625 | tpos.y = y/(float)LR_CUBEMAP_SIZE; // 0..1
|
---|
626 | tpos.xy += float2(0.5/LR_CUBEMAP_SIZE, 0.5/LR_CUBEMAP_SIZE); // offset to texel center
|
---|
627 |
|
---|
628 | float2 p = float2(tpos.x, 1-tpos.y); // reverse y
|
---|
629 | p.xy = 2*p.xy - 1; // -1..1
|
---|
630 |
|
---|
631 | float3 L;
|
---|
632 |
|
---|
633 | L = float3(p.x, p.y, 1);
|
---|
634 | I += GetContibutionWithCosLookup( L, IN.Position, IN.Normal, IN.View );
|
---|
635 |
|
---|
636 | L = float3(p.x, p.y, -1);
|
---|
637 | I += GetContibutionWithCosLookup( L, IN.Position, IN.Normal, IN.View );
|
---|
638 |
|
---|
639 | L = float3(p.x, 1, p.y);
|
---|
640 | I += GetContibutionWithCosLookup( L, IN.Position, IN.Normal, IN.View );
|
---|
641 |
|
---|
642 | L = float3(p.x, -1, p.y);
|
---|
643 | I += GetContibutionWithCosLookup( L, IN.Position, IN.Normal, IN.View );
|
---|
644 |
|
---|
645 | L = float3(1, p.x, p.y);
|
---|
646 | I += GetContibutionWithCosLookup( L, IN.Position, IN.Normal, IN.View );
|
---|
647 |
|
---|
648 | L = float3(-1, p.x, p.y);
|
---|
649 | I += GetContibutionWithCosLookup( L, IN.Position, IN.Normal, IN.View );
|
---|
650 | }
|
---|
651 |
|
---|
652 | return intensity * I;
|
---|
653 | }
|
---|
654 |
|
---|
655 | // --------------------------------------------------------
|
---|
656 | // technique IlluminatedScene
|
---|
657 | // --------------------------------------------------------
|
---|
658 |
|
---|
659 | struct IlluminatedSceneVS_input {
|
---|
660 | float4 Position : POSITION;
|
---|
661 | float3 Normal : NORMAL;
|
---|
662 | float2 TexCoord : TEXCOORD0;
|
---|
663 | };
|
---|
664 |
|
---|
665 | struct IlluminatedSceneVS_output {
|
---|
666 | float4 hPosition : POSITION;
|
---|
667 | float2 TexCoord : TEXCOORD0;
|
---|
668 | float3 Position : TEXCOORD1;
|
---|
669 | };
|
---|
670 |
|
---|
671 | IlluminatedSceneVS_output IlluminatedSceneVS( IlluminatedSceneVS_input IN )
|
---|
672 | {
|
---|
673 | IlluminatedSceneVS_output OUT;
|
---|
674 | OUT.hPosition = mul( IN.Position, WorldViewProjection );
|
---|
675 |
|
---|
676 | // texel_size as uniform parameter
|
---|
677 | OUT.hPosition.x -= texel_size * OUT.hPosition.w;
|
---|
678 | OUT.hPosition.y += texel_size * OUT.hPosition.w;
|
---|
679 |
|
---|
680 | if (iShowCubeMap > 0)
|
---|
681 | {
|
---|
682 | // if one of the cube maps is displayed on the walls,
|
---|
683 | // position is simply forwarded
|
---|
684 | OUT.Position = IN.Position;
|
---|
685 | }
|
---|
686 | else
|
---|
687 | {
|
---|
688 | // also consider camera orientation
|
---|
689 | OUT.Position = mul( IN.Position, WorldView );
|
---|
690 | }
|
---|
691 |
|
---|
692 | OUT.TexCoord = IN.TexCoord;
|
---|
693 | return OUT;
|
---|
694 | }
|
---|
695 |
|
---|
696 | /// Displays the environment with a simple shading
|
---|
697 | float4 IlluminatedScenePS( IlluminatedSceneVS_output IN ) : COLOR0
|
---|
698 | {
|
---|
699 | float3 color = objColor * tex2D(DecorationSampler, IN.TexCoord);
|
---|
700 |
|
---|
701 | if (iShowCubeMap > 0)
|
---|
702 | {
|
---|
703 | // if one of the cube maps should be displayed on the walls,
|
---|
704 | // display it
|
---|
705 | color = texCUBE(EnvironmentMapSampler, IN.Position) * intensity;
|
---|
706 | }
|
---|
707 | else
|
---|
708 | {
|
---|
709 | // create an exponential falloff for each face of the room
|
---|
710 | float3 L = float3(2*IN.TexCoord.x-1, 2*IN.TexCoord.y-1, -1);
|
---|
711 | L = normalize(L);
|
---|
712 | float3 N = float3(0,0,1);
|
---|
713 | color *= abs(pow(dot(L,N), 3)) * brightness;
|
---|
714 | }
|
---|
715 |
|
---|
716 | float dist = length( IN.Position );
|
---|
717 |
|
---|
718 | return float4(color, dist);
|
---|
719 | }
|
---|
720 |
|
---|
721 |
|
---|
722 | //--------------------------------------------------------------------------------------
|
---|
723 | // Techniques
|
---|
724 | //--------------------------------------------------------------------------------------
|
---|
725 |
|
---|
726 | /// a helpful macro to define techniques with a common vertex program
|
---|
727 | #define TechniqueUsingCommonVS(name); \
|
---|
728 | technique name \
|
---|
729 | { \
|
---|
730 | pass p0 \
|
---|
731 | { \
|
---|
732 | VertexShader = compile vs_3_0 EnvMapVS(); \
|
---|
733 | PixelShader = compile ps_3_0 name##PS(); \
|
---|
734 | } \
|
---|
735 | }
|
---|
736 |
|
---|
737 | TechniqueUsingCommonVS( EnvMapClassic );
|
---|
738 | TechniqueUsingCommonVS( EnvMapClassicMetal );
|
---|
739 | TechniqueUsingCommonVS( EnvMapImpostor );
|
---|
740 | TechniqueUsingCommonVS( EnvMapImpostorMetal );
|
---|
741 | TechniqueUsingCommonVS( EnvMapDiffuse );
|
---|
742 | TechniqueUsingCommonVS( EnvMapDiffuseLocalized );
|
---|
743 | TechniqueUsingCommonVS( EnvMapDiffuseLocalizedWithCosLookup );
|
---|
744 |
|
---|
745 | /// a helpful macro to define techniques
|
---|
746 | #define Technique(name); \
|
---|
747 | technique name \
|
---|
748 | { \
|
---|
749 | pass p0 \
|
---|
750 | { \
|
---|
751 | VertexShader = compile vs_3_0 name##VS(); \
|
---|
752 | PixelShader = compile ps_3_0 name##PS(); \
|
---|
753 | } \
|
---|
754 | }
|
---|
755 |
|
---|
756 | // defining techniques
|
---|
757 | // where the name of EnvMapVS program is <TechniqueName>EnvMapVS
|
---|
758 | // and the name of PS program is <TechniqueName>PS
|
---|
759 | Technique( IlluminatedScene );
|
---|
760 | Technique( ReduceTexture );
|
---|
761 | Technique( Convolution ); |
---|