1 | /////////////////////////////////////////////////////////////////////////// |
---|
2 | // |
---|
3 | // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas |
---|
4 | // Digital Ltd. LLC |
---|
5 | // |
---|
6 | // All rights reserved. |
---|
7 | // |
---|
8 | // Redistribution and use in source and binary forms, with or without |
---|
9 | // modification, are permitted provided that the following conditions are |
---|
10 | // met: |
---|
11 | // * Redistributions of source code must retain the above copyright |
---|
12 | // notice, this list of conditions and the following disclaimer. |
---|
13 | // * Redistributions in binary form must reproduce the above |
---|
14 | // copyright notice, this list of conditions and the following disclaimer |
---|
15 | // in the documentation and/or other materials provided with the |
---|
16 | // distribution. |
---|
17 | // * Neither the name of Industrial Light & Magic nor the names of |
---|
18 | // its contributors may be used to endorse or promote products derived |
---|
19 | // from this software without specific prior written permission. |
---|
20 | // |
---|
21 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
---|
22 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
---|
23 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
---|
24 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
---|
25 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
---|
26 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
---|
27 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
---|
28 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
---|
29 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
---|
30 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
---|
31 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
---|
32 | // |
---|
33 | /////////////////////////////////////////////////////////////////////////// |
---|
34 | |
---|
35 | // Primary authors: |
---|
36 | // Florian Kainz <kainz@ilm.com> |
---|
37 | // Rod Bogart <rgb@ilm.com> |
---|
38 | |
---|
39 | //--------------------------------------------------------------------------- |
---|
40 | // |
---|
41 | // half -- a 16-bit floating point number class: |
---|
42 | // |
---|
43 | // Type half can represent positive and negative numbers, whose |
---|
44 | // magnitude is between roughly 6.1e-5 and 6.5e+4, with a relative |
---|
45 | // error of 9.8e-4; numbers smaller than 6.1e-5 can be represented |
---|
46 | // with an absolute error of 6.0e-8. All integers from -2048 to |
---|
47 | // +2048 can be represented exactly. |
---|
48 | // |
---|
49 | // Type half behaves (almost) like the built-in C++ floating point |
---|
50 | // types. In arithmetic expressions, half, float and double can be |
---|
51 | // mixed freely. Here are a few examples: |
---|
52 | // |
---|
53 | // half a (3.5); |
---|
54 | // float b (a + sqrt (a)); |
---|
55 | // a += b; |
---|
56 | // b += a; |
---|
57 | // b = a + 7; |
---|
58 | // |
---|
59 | // Conversions from half to float are lossless; all half numbers |
---|
60 | // are exactly representable as floats. |
---|
61 | // |
---|
62 | // Conversions from float to half may not preserve the float's |
---|
63 | // value exactly. If a float is not representable as a half, the |
---|
64 | // float value is rounded to the nearest representable half. If |
---|
65 | // a float value is exactly in the middle between the two closest |
---|
66 | // representable half values, then the float value is rounded to |
---|
67 | // the half with the greater magnitude. |
---|
68 | // |
---|
69 | // Overflows during float-to-half conversions cause arithmetic |
---|
70 | // exceptions. An overflow occurs when the float value to be |
---|
71 | // converted is too large to be represented as a half, or if the |
---|
72 | // float value is an infinity or a NAN. |
---|
73 | // |
---|
74 | // The implementation of type half makes the following assumptions |
---|
75 | // about the implementation of the built-in C++ types: |
---|
76 | // |
---|
77 | // float is an IEEE 754 single-precision number |
---|
78 | // sizeof (float) == 4 |
---|
79 | // sizeof (unsigned int) == sizeof (float) |
---|
80 | // alignof (unsigned int) == alignof (float) |
---|
81 | // sizeof (unsigned short) == 2 |
---|
82 | // |
---|
83 | //--------------------------------------------------------------------------- |
---|
84 | |
---|
85 | #ifndef _HALF_H_ |
---|
86 | #define _HALF_H_ |
---|
87 | |
---|
88 | #include <iostream> |
---|
89 | |
---|
90 | class half |
---|
91 | { |
---|
92 | public: |
---|
93 | |
---|
94 | //------------- |
---|
95 | // Constructors |
---|
96 | //------------- |
---|
97 | |
---|
98 | half (); // no initialization |
---|
99 | half (float f); |
---|
100 | |
---|
101 | |
---|
102 | //-------------------- |
---|
103 | // Conversion to float |
---|
104 | //-------------------- |
---|
105 | |
---|
106 | operator float () const; |
---|
107 | |
---|
108 | |
---|
109 | //------------ |
---|
110 | // Unary minus |
---|
111 | //------------ |
---|
112 | |
---|
113 | half operator - () const; |
---|
114 | |
---|
115 | |
---|
116 | //----------- |
---|
117 | // Assignment |
---|
118 | //----------- |
---|
119 | |
---|
120 | half & operator = (half h); |
---|
121 | half & operator = (float f); |
---|
122 | |
---|
123 | half & operator += (half h); |
---|
124 | half & operator += (float f); |
---|
125 | |
---|
126 | half & operator -= (half h); |
---|
127 | half & operator -= (float f); |
---|
128 | |
---|
129 | half & operator *= (half h); |
---|
130 | half & operator *= (float f); |
---|
131 | |
---|
132 | half & operator /= (half h); |
---|
133 | half & operator /= (float f); |
---|
134 | |
---|
135 | |
---|
136 | //--------------------------------------------------------- |
---|
137 | // Round to n-bit precision (n should be between 0 and 10). |
---|
138 | // After rounding, the significand's 10-n least significant |
---|
139 | // bits will be zero. |
---|
140 | //--------------------------------------------------------- |
---|
141 | |
---|
142 | half round (unsigned int n) const; |
---|
143 | |
---|
144 | |
---|
145 | //-------------------------------------------------------------------- |
---|
146 | // Classification: |
---|
147 | // |
---|
148 | // h.isFinite() returns true if h is a normalized number, |
---|
149 | // a denormalized number or zero |
---|
150 | // |
---|
151 | // h.isNormalized() returns true if h is a normalized number |
---|
152 | // |
---|
153 | // h.isDenormalized() returns true if h is a denormalized number |
---|
154 | // |
---|
155 | // h.isZero() returns true if h is zero |
---|
156 | // |
---|
157 | // h.isNan() returns true if h is a NAN |
---|
158 | // |
---|
159 | // h.isInfinity() returns true if h is a positive |
---|
160 | // or a negative infinity |
---|
161 | // |
---|
162 | // h.isNegative() returns true if the sign bit of h |
---|
163 | // is set (negative) |
---|
164 | //-------------------------------------------------------------------- |
---|
165 | |
---|
166 | bool isFinite () const; |
---|
167 | bool isNormalized () const; |
---|
168 | bool isDenormalized () const; |
---|
169 | bool isZero () const; |
---|
170 | bool isNan () const; |
---|
171 | bool isInfinity () const; |
---|
172 | bool isNegative () const; |
---|
173 | |
---|
174 | |
---|
175 | //-------------------------------------------- |
---|
176 | // Special values |
---|
177 | // |
---|
178 | // posInf() returns +infinity |
---|
179 | // |
---|
180 | // negInf() returns +infinity |
---|
181 | // |
---|
182 | // qNan() returns a NAN with the bit |
---|
183 | // pattern 0111111111111111 |
---|
184 | // |
---|
185 | // sNan() returns a NAN with the bit |
---|
186 | // pattern 0111110111111111 |
---|
187 | //-------------------------------------------- |
---|
188 | |
---|
189 | static half posInf (); |
---|
190 | static half negInf (); |
---|
191 | static half qNan (); |
---|
192 | static half sNan (); |
---|
193 | |
---|
194 | |
---|
195 | //-------------------------------------- |
---|
196 | // Access to the internal representation |
---|
197 | //-------------------------------------- |
---|
198 | |
---|
199 | unsigned short bits () const; |
---|
200 | void setBits (unsigned short bits); |
---|
201 | |
---|
202 | |
---|
203 | public: |
---|
204 | |
---|
205 | union uif |
---|
206 | { |
---|
207 | unsigned int i; |
---|
208 | float f; |
---|
209 | }; |
---|
210 | |
---|
211 | private: |
---|
212 | |
---|
213 | static short convert (int i); |
---|
214 | static float overflow (); |
---|
215 | static bool selftest (); |
---|
216 | |
---|
217 | unsigned short _h; |
---|
218 | |
---|
219 | static const uif _toFloat[1 << 16]; |
---|
220 | static const unsigned short _eLut[1 << 9]; |
---|
221 | static const bool _itWorks; |
---|
222 | }; |
---|
223 | |
---|
224 | |
---|
225 | //----------- |
---|
226 | // Stream I/O |
---|
227 | //----------- |
---|
228 | |
---|
229 | std::ostream & operator << (std::ostream &os, half h); |
---|
230 | std::istream & operator >> (std::istream &is, half &h); |
---|
231 | |
---|
232 | |
---|
233 | //---------- |
---|
234 | // Debugging |
---|
235 | //---------- |
---|
236 | |
---|
237 | void printBits (std::ostream &os, half h); |
---|
238 | void printBits (std::ostream &os, float f); |
---|
239 | void printBits (char c[19], half h); |
---|
240 | void printBits (char c[35], float f); |
---|
241 | |
---|
242 | |
---|
243 | //------- |
---|
244 | // Limits |
---|
245 | //------- |
---|
246 | |
---|
247 | //---------------------------------------------------------------- |
---|
248 | // Visual C++ will complain if these are not float constants, |
---|
249 | // but at least one other compiler (gcc 2.96) produces incorrect |
---|
250 | // results if they are. |
---|
251 | //---------------------------------------------------------------- |
---|
252 | |
---|
253 | #ifdef WIN32 |
---|
254 | #define HALF_MIN 5.96046448e-08f // Smallest positive half |
---|
255 | |
---|
256 | #define HALF_NRM_MIN 6.10351562e-05f // Smallest positive normalized half |
---|
257 | |
---|
258 | #define HALF_MAX 65504.0f // Largest positive half |
---|
259 | |
---|
260 | #define HALF_EPSILON 0.00097656f // Smallest positive e for which |
---|
261 | // half (1.0 + e) != half (1.0) |
---|
262 | #else |
---|
263 | #define HALF_MIN 5.96046448e-08 // Smallest positive half |
---|
264 | |
---|
265 | #define HALF_NRM_MIN 6.10351562e-05 // Smallest positive normalized half |
---|
266 | |
---|
267 | #define HALF_MAX 65504.0 // Largest positive half |
---|
268 | |
---|
269 | #define HALF_EPSILON 0.00097656 // Smallest positive e for which |
---|
270 | // half (1.0 + e) != half (1.0) |
---|
271 | #endif // WIN32 |
---|
272 | |
---|
273 | #define HALF_MANT_DIG 11 // Number of digits in mantissa |
---|
274 | // (significand + hidden leading 1) |
---|
275 | |
---|
276 | #define HALF_DIG 2 // Number of base 10 digits that |
---|
277 | // can be represented without change |
---|
278 | |
---|
279 | #define HALF_RADIX 2 // Base of the exponent |
---|
280 | |
---|
281 | #define HALF_MIN_EXP -13 // Minimum negative integer such that |
---|
282 | // HALF_RADIX raised to the power of |
---|
283 | // one less than that integer is a |
---|
284 | // normalized half |
---|
285 | |
---|
286 | #define HALF_MAX_EXP 16 // Maximum positive integer such that |
---|
287 | // HALF_RADIX raised to the power of |
---|
288 | // one less than that integer is a |
---|
289 | // normalized half |
---|
290 | |
---|
291 | #define HALF_MIN_10_EXP -4 // Minimum positive integer such |
---|
292 | // that 10 raised to that power is |
---|
293 | // a normalized half |
---|
294 | |
---|
295 | #define HALF_MAX_10_EXP 4 // Maximum positive integer such |
---|
296 | // that 10 raised to that power is |
---|
297 | // a normalized half |
---|
298 | |
---|
299 | |
---|
300 | //--------------------------------------------------------------------------- |
---|
301 | // |
---|
302 | // Implementation -- |
---|
303 | // |
---|
304 | // Representation of a float: |
---|
305 | // |
---|
306 | // We assume that a float, f, is an IEEE 754 single-precision |
---|
307 | // floating point number, whose bits are arranged as follows: |
---|
308 | // |
---|
309 | // 31 (msb) |
---|
310 | // | |
---|
311 | // | 30 23 |
---|
312 | // | | | |
---|
313 | // | | | 22 0 (lsb) |
---|
314 | // | | | | | |
---|
315 | // X XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX |
---|
316 | // |
---|
317 | // s e m |
---|
318 | // |
---|
319 | // S is the sign-bit, e is the exponent and m is the significand. |
---|
320 | // |
---|
321 | // If e is between 1 and 254, f is a normalized number: |
---|
322 | // |
---|
323 | // s e-127 |
---|
324 | // f = (-1) * 2 * 1.m |
---|
325 | // |
---|
326 | // If e is 0, and m is not zero, f is a denormalized number: |
---|
327 | // |
---|
328 | // s -126 |
---|
329 | // f = (-1) * 2 * 0.m |
---|
330 | // |
---|
331 | // If e and m are both zero, f is zero: |
---|
332 | // |
---|
333 | // f = 0.0 |
---|
334 | // |
---|
335 | // If e is 255, f is an "infinity" or "not a number" (NAN), |
---|
336 | // depending on whether m is zero or not. |
---|
337 | // |
---|
338 | // Examples: |
---|
339 | // |
---|
340 | // 0 00000000 00000000000000000000000 = 0.0 |
---|
341 | // 0 01111110 00000000000000000000000 = 0.5 |
---|
342 | // 0 01111111 00000000000000000000000 = 1.0 |
---|
343 | // 0 10000000 00000000000000000000000 = 2.0 |
---|
344 | // 0 10000000 10000000000000000000000 = 3.0 |
---|
345 | // 1 10000101 11110000010000000000000 = -124.0625 |
---|
346 | // 0 11111111 00000000000000000000000 = +infinity |
---|
347 | // 1 11111111 00000000000000000000000 = -infinity |
---|
348 | // 0 11111111 10000000000000000000000 = NAN |
---|
349 | // 1 11111111 11111111111111111111111 = NAN |
---|
350 | // |
---|
351 | // Representation of a half: |
---|
352 | // |
---|
353 | // Here is the bit-layout for a half number, h: |
---|
354 | // |
---|
355 | // 15 (msb) |
---|
356 | // | |
---|
357 | // | 14 10 |
---|
358 | // | | | |
---|
359 | // | | | 9 0 (lsb) |
---|
360 | // | | | | | |
---|
361 | // X XXXXX XXXXXXXXXX |
---|
362 | // |
---|
363 | // s e m |
---|
364 | // |
---|
365 | // S is the sign-bit, e is the exponent and m is the significand. |
---|
366 | // |
---|
367 | // If e is between 1 and 30, h is a normalized number: |
---|
368 | // |
---|
369 | // s e-15 |
---|
370 | // h = (-1) * 2 * 1.m |
---|
371 | // |
---|
372 | // If e is 0, and m is not zero, h is a denormalized number: |
---|
373 | // |
---|
374 | // S -14 |
---|
375 | // h = (-1) * 2 * 0.m |
---|
376 | // |
---|
377 | // If e and m are both zero, h is zero: |
---|
378 | // |
---|
379 | // h = 0.0 |
---|
380 | // |
---|
381 | // If e is 31, h is an "infinity" or "not a number" (NAN), |
---|
382 | // depending on whether m is zero or not. |
---|
383 | // |
---|
384 | // Examples: |
---|
385 | // |
---|
386 | // 0 00000 0000000000 = 0.0 |
---|
387 | // 0 01110 0000000000 = 0.5 |
---|
388 | // 0 01111 0000000000 = 1.0 |
---|
389 | // 0 10000 0000000000 = 2.0 |
---|
390 | // 0 10000 1000000000 = 3.0 |
---|
391 | // 1 10101 1111000001 = -124.0625 |
---|
392 | // 0 11111 0000000000 = +infinity |
---|
393 | // 1 11111 0000000000 = -infinity |
---|
394 | // 0 11111 1000000000 = NAN |
---|
395 | // 1 11111 1111111111 = NAN |
---|
396 | // |
---|
397 | // Conversion: |
---|
398 | // |
---|
399 | // Converting from a float to a half requires some non-trivial bit |
---|
400 | // manipulations. In some cases, this makes conversion relatively |
---|
401 | // slow, but the most common case is accelerated via table lookups. |
---|
402 | // |
---|
403 | // Converting back from a half to a float is easier because we don't |
---|
404 | // have to do any rounding. In addition, there are only 65536 |
---|
405 | // different half numbers; we can convert each of those numbers once |
---|
406 | // and store the results in a table. Later, all conversions can be |
---|
407 | // done using only simple table lookups. |
---|
408 | // |
---|
409 | //--------------------------------------------------------------------------- |
---|
410 | |
---|
411 | |
---|
412 | //-------------------- |
---|
413 | // Simple constructors |
---|
414 | //-------------------- |
---|
415 | |
---|
416 | inline |
---|
417 | half::half () |
---|
418 | { |
---|
419 | // no initialization |
---|
420 | } |
---|
421 | |
---|
422 | |
---|
423 | //---------------------------- |
---|
424 | // Half-from-float constructor |
---|
425 | //---------------------------- |
---|
426 | |
---|
427 | inline |
---|
428 | half::half (float f) |
---|
429 | { |
---|
430 | if (f == 0) |
---|
431 | { |
---|
432 | // |
---|
433 | // Common special case - zero. |
---|
434 | // For speed, we don't preserve the zero's sign. |
---|
435 | // |
---|
436 | |
---|
437 | _h = 0; |
---|
438 | } |
---|
439 | else |
---|
440 | { |
---|
441 | // |
---|
442 | // We extract the combined sign and exponent, e, from our |
---|
443 | // floating-point number, f. Then we convert e to the sign |
---|
444 | // and exponent of the half number via a table lookup. |
---|
445 | // |
---|
446 | // For the most common case, where a normalized half is produced, |
---|
447 | // the table lookup returns a non-zero value; in this case, all |
---|
448 | // we have to do, is round f's significand to 10 bits and combine |
---|
449 | // the result with e. |
---|
450 | // |
---|
451 | // For all other cases (overflow, zeroes, denormalized numbers |
---|
452 | // resulting from underflow, infinities and NANs), the table |
---|
453 | // lookup returns zero, and we call a longer, non-inline function |
---|
454 | // to do the float-to-half conversion. |
---|
455 | // |
---|
456 | |
---|
457 | uif x; |
---|
458 | |
---|
459 | x.f = f; |
---|
460 | |
---|
461 | register int e = (x.i >> 23) & 0x000001ff; |
---|
462 | |
---|
463 | e = _eLut[e]; |
---|
464 | |
---|
465 | if (e) |
---|
466 | { |
---|
467 | // |
---|
468 | // Simple case - round the significand and |
---|
469 | // combine it with the sign and exponent. |
---|
470 | // |
---|
471 | |
---|
472 | _h = e + (((x.i & 0x007fffff) + 0x00001000) >> 13); |
---|
473 | } |
---|
474 | else |
---|
475 | { |
---|
476 | // |
---|
477 | // Difficult case - call a function. |
---|
478 | // |
---|
479 | |
---|
480 | _h = convert (x.i); |
---|
481 | } |
---|
482 | } |
---|
483 | } |
---|
484 | |
---|
485 | |
---|
486 | //------------------------------------------ |
---|
487 | // Half-to-float conversion via table lookup |
---|
488 | //------------------------------------------ |
---|
489 | |
---|
490 | inline |
---|
491 | half::operator float () const |
---|
492 | { |
---|
493 | return _toFloat[_h].f; |
---|
494 | } |
---|
495 | |
---|
496 | |
---|
497 | //------------------------- |
---|
498 | // Round to n-bit precision |
---|
499 | //------------------------- |
---|
500 | |
---|
501 | inline half |
---|
502 | half::round (unsigned int n) const |
---|
503 | { |
---|
504 | // |
---|
505 | // Parameter check. |
---|
506 | // |
---|
507 | |
---|
508 | if (n >= 10) |
---|
509 | return *this; |
---|
510 | |
---|
511 | // |
---|
512 | // Disassemble h into the sign, s, |
---|
513 | // and the combined exponent and significand, e. |
---|
514 | // |
---|
515 | |
---|
516 | unsigned short s = _h & 0x8000; |
---|
517 | unsigned short e = _h & 0x7fff; |
---|
518 | |
---|
519 | // |
---|
520 | // Round the exponent and significand to the nearest value |
---|
521 | // where ones occur only in the (10-n) most significant bits. |
---|
522 | // Note that the exponent adjusts automatically if rounding |
---|
523 | // up causes the significand to overflow. |
---|
524 | // |
---|
525 | |
---|
526 | e >>= 9 - n; |
---|
527 | e += e & 1; |
---|
528 | e <<= 9 - n; |
---|
529 | |
---|
530 | // |
---|
531 | // Check for exponent overflow. |
---|
532 | // |
---|
533 | |
---|
534 | if (e >= 0x7c00) |
---|
535 | { |
---|
536 | // |
---|
537 | // Overflow occurred -- truncate instead of rounding. |
---|
538 | // |
---|
539 | |
---|
540 | e = _h; |
---|
541 | e >>= 10 - n; |
---|
542 | e <<= 10 - n; |
---|
543 | } |
---|
544 | |
---|
545 | // |
---|
546 | // Put the original sign bit back. |
---|
547 | // |
---|
548 | |
---|
549 | half h; |
---|
550 | h._h = s | e; |
---|
551 | |
---|
552 | return h; |
---|
553 | } |
---|
554 | |
---|
555 | |
---|
556 | //----------------------- |
---|
557 | // Other inline functions |
---|
558 | //----------------------- |
---|
559 | |
---|
560 | inline half |
---|
561 | half::operator - () const |
---|
562 | { |
---|
563 | half h; |
---|
564 | h._h = _h ^ 0x8000; |
---|
565 | return h; |
---|
566 | } |
---|
567 | |
---|
568 | |
---|
569 | inline half & |
---|
570 | half::operator = (half h) |
---|
571 | { |
---|
572 | _h = h._h; |
---|
573 | return *this; |
---|
574 | } |
---|
575 | |
---|
576 | |
---|
577 | inline half & |
---|
578 | half::operator = (float f) |
---|
579 | { |
---|
580 | *this = half (f); |
---|
581 | return *this; |
---|
582 | } |
---|
583 | |
---|
584 | |
---|
585 | inline half & |
---|
586 | half::operator += (half h) |
---|
587 | { |
---|
588 | *this = half (float (*this) + float (h)); |
---|
589 | return *this; |
---|
590 | } |
---|
591 | |
---|
592 | |
---|
593 | inline half & |
---|
594 | half::operator += (float f) |
---|
595 | { |
---|
596 | *this = half (float (*this) + f); |
---|
597 | return *this; |
---|
598 | } |
---|
599 | |
---|
600 | |
---|
601 | inline half & |
---|
602 | half::operator -= (half h) |
---|
603 | { |
---|
604 | *this = half (float (*this) - float (h)); |
---|
605 | return *this; |
---|
606 | } |
---|
607 | |
---|
608 | |
---|
609 | inline half & |
---|
610 | half::operator -= (float f) |
---|
611 | { |
---|
612 | *this = half (float (*this) - f); |
---|
613 | return *this; |
---|
614 | } |
---|
615 | |
---|
616 | |
---|
617 | inline half & |
---|
618 | half::operator *= (half h) |
---|
619 | { |
---|
620 | *this = half (float (*this) * float (h)); |
---|
621 | return *this; |
---|
622 | } |
---|
623 | |
---|
624 | |
---|
625 | inline half & |
---|
626 | half::operator *= (float f) |
---|
627 | { |
---|
628 | *this = half (float (*this) * f); |
---|
629 | return *this; |
---|
630 | } |
---|
631 | |
---|
632 | |
---|
633 | inline half & |
---|
634 | half::operator /= (half h) |
---|
635 | { |
---|
636 | *this = half (float (*this) / float (h)); |
---|
637 | return *this; |
---|
638 | } |
---|
639 | |
---|
640 | |
---|
641 | inline half & |
---|
642 | half::operator /= (float f) |
---|
643 | { |
---|
644 | *this = half (float (*this) / f); |
---|
645 | return *this; |
---|
646 | } |
---|
647 | |
---|
648 | |
---|
649 | inline bool |
---|
650 | half::isFinite () const |
---|
651 | { |
---|
652 | unsigned short e = (_h >> 10) & 0x001f; |
---|
653 | return e < 31; |
---|
654 | } |
---|
655 | |
---|
656 | |
---|
657 | inline bool |
---|
658 | half::isNormalized () const |
---|
659 | { |
---|
660 | unsigned short e = (_h >> 10) & 0x001f; |
---|
661 | return e > 0 && e < 31; |
---|
662 | } |
---|
663 | |
---|
664 | |
---|
665 | inline bool |
---|
666 | half::isDenormalized () const |
---|
667 | { |
---|
668 | unsigned short e = (_h >> 10) & 0x001f; |
---|
669 | unsigned short m = _h & 0x3ff; |
---|
670 | return e == 0 && m != 0; |
---|
671 | } |
---|
672 | |
---|
673 | |
---|
674 | inline bool |
---|
675 | half::isZero () const |
---|
676 | { |
---|
677 | return (_h & 0x7fff) == 0; |
---|
678 | } |
---|
679 | |
---|
680 | |
---|
681 | inline bool |
---|
682 | half::isNan () const |
---|
683 | { |
---|
684 | unsigned short e = (_h >> 10) & 0x001f; |
---|
685 | unsigned short m = _h & 0x3ff; |
---|
686 | return e == 31 && m != 0; |
---|
687 | } |
---|
688 | |
---|
689 | |
---|
690 | inline bool |
---|
691 | half::isInfinity () const |
---|
692 | { |
---|
693 | unsigned short e = (_h >> 10) & 0x001f; |
---|
694 | unsigned short m = _h & 0x3ff; |
---|
695 | return e == 31 && m == 0; |
---|
696 | } |
---|
697 | |
---|
698 | |
---|
699 | inline bool |
---|
700 | half::isNegative () const |
---|
701 | { |
---|
702 | return (_h & 0x8000) != 0; |
---|
703 | } |
---|
704 | |
---|
705 | |
---|
706 | inline half |
---|
707 | half::posInf () |
---|
708 | { |
---|
709 | half h; |
---|
710 | h._h = 0x7c00; |
---|
711 | return h; |
---|
712 | } |
---|
713 | |
---|
714 | |
---|
715 | inline half |
---|
716 | half::negInf () |
---|
717 | { |
---|
718 | half h; |
---|
719 | h._h = 0xfc00; |
---|
720 | return h; |
---|
721 | } |
---|
722 | |
---|
723 | |
---|
724 | inline half |
---|
725 | half::qNan () |
---|
726 | { |
---|
727 | half h; |
---|
728 | h._h = 0x7fff; |
---|
729 | return h; |
---|
730 | } |
---|
731 | |
---|
732 | |
---|
733 | inline half |
---|
734 | half::sNan () |
---|
735 | { |
---|
736 | half h; |
---|
737 | h._h = 0x7dff; |
---|
738 | return h; |
---|
739 | } |
---|
740 | |
---|
741 | |
---|
742 | inline unsigned short |
---|
743 | half::bits () const |
---|
744 | { |
---|
745 | return _h; |
---|
746 | } |
---|
747 | |
---|
748 | |
---|
749 | inline void |
---|
750 | half::setBits (unsigned short bits) |
---|
751 | { |
---|
752 | _h = bits; |
---|
753 | } |
---|
754 | |
---|
755 | |
---|
756 | #endif |
---|