1 | float4x4 World; ///< World matrix for the current object
|
---|
2 | float4x4 WorldIT; ///< World matrix IT (inverse transposed) to transform surface normals of the current object
|
---|
3 | float4x4 WorldView;
|
---|
4 | float4x4 WorldViewIT;
|
---|
5 | float4x4 WorldViewProj;
|
---|
6 | float3 referencePos;
|
---|
7 | float3 eyePos;
|
---|
8 | float3 F0; // Freshnel factor
|
---|
9 | float N0; // Refraction coefficient
|
---|
10 |
|
---|
11 | int MAX_LIN_ITERATIONCOUNT;
|
---|
12 | int MIN_LIN_ITERATIONCOUNT;
|
---|
13 | int SECANT_ITERATIONCOUNT;
|
---|
14 | int MAX_RAY_DEPTH;
|
---|
15 |
|
---|
16 | texture envCube1;
|
---|
17 | sampler envCubeSampler1 = sampler_state
|
---|
18 | {
|
---|
19 | MinFilter = POINT;
|
---|
20 | MagFilter = POINT;
|
---|
21 | MipFilter = POINT;
|
---|
22 | Texture = <envCube1>;
|
---|
23 | AddressU = WRAP;
|
---|
24 | AddressV = WRAP;
|
---|
25 | };
|
---|
26 |
|
---|
27 | texture envCube2;
|
---|
28 | sampler envCubeSampler2 = sampler_state
|
---|
29 | {
|
---|
30 | MinFilter = POINT;
|
---|
31 | MagFilter = POINT;
|
---|
32 | MipFilter = POINT;
|
---|
33 | Texture = <envCube2>;
|
---|
34 | AddressU = WRAP;
|
---|
35 | AddressV = WRAP;
|
---|
36 | };
|
---|
37 |
|
---|
38 | texture envCube3;
|
---|
39 | sampler envCubeSampler3 = sampler_state
|
---|
40 | {
|
---|
41 | MinFilter = LINEAR;
|
---|
42 | MagFilter = LINEAR;
|
---|
43 | MipFilter = POINT;
|
---|
44 | Texture = <envCube3>;
|
---|
45 | AddressU = WRAP;
|
---|
46 | AddressV = WRAP;
|
---|
47 | };
|
---|
48 |
|
---|
49 | void linearSearch( float3 x, float3 R, samplerCUBE mp,
|
---|
50 | out float3 p,
|
---|
51 | out float dl,
|
---|
52 | out float dp,
|
---|
53 | out float llp,
|
---|
54 | out float ppp)
|
---|
55 | {
|
---|
56 | p = 1;
|
---|
57 |
|
---|
58 | float3 Ra = abs(R), xa = abs(x);
|
---|
59 | float a = max(max(xa.x, xa.y), xa.z) / max(max(Ra.x, Ra.y), Ra.z);
|
---|
60 | bool undershoot = false, overshoot = false;
|
---|
61 |
|
---|
62 | float dt = length(x / max(max(xa.x, xa.y), xa.z) - R / max(max(Ra.x, Ra.y), Ra.z)) * MAX_LIN_ITERATIONCOUNT;
|
---|
63 | dt = max(dt, MIN_LIN_ITERATIONCOUNT);
|
---|
64 | dt = 1.0 / dt;
|
---|
65 |
|
---|
66 | float t = 0.01;
|
---|
67 | while( t < 1 && !(overshoot && undershoot) ) { // iteration
|
---|
68 | float dr = a * t / (1 - t); // ray parameter corresponding to t
|
---|
69 | float3 r = x + R * dr; // point on the ray
|
---|
70 | float ra = texCUBElod(mp, float4(r, 0)).a; // |p'|: distance direction of p
|
---|
71 |
|
---|
72 |
|
---|
73 | if (ra > 0) { // valid texel, i.e. anything is visible
|
---|
74 | float rrp = length(r)/ra; //|r|/|r'|
|
---|
75 | if (rrp < 1) { // undershooting
|
---|
76 | dl = dr; // store last undershooting as l
|
---|
77 | llp = rrp;
|
---|
78 | undershoot = true;
|
---|
79 | } else {
|
---|
80 | dp = dr; // store last overshooting as p
|
---|
81 | ppp = rrp;
|
---|
82 | overshoot = true;}
|
---|
83 | } else { // nothing is visible: restart search
|
---|
84 | undershoot = false;
|
---|
85 | overshoot = false;
|
---|
86 | }
|
---|
87 | t += dt; // next texel
|
---|
88 | }
|
---|
89 |
|
---|
90 | if(!(overshoot && undershoot))
|
---|
91 | p = float3(0,0,0);
|
---|
92 |
|
---|
93 | }
|
---|
94 |
|
---|
95 | void secantSearch(float3 x, float3 R, samplerCUBE mp,
|
---|
96 | float dl,
|
---|
97 | float dp,
|
---|
98 | float llp,
|
---|
99 | float ppp,
|
---|
100 | out float3 p)
|
---|
101 | {
|
---|
102 | p = x + R * dp; // if no secant iteration
|
---|
103 | for(int i= 0; i < SECANT_ITERATIONCOUNT; i++)
|
---|
104 | {
|
---|
105 | float dnew;
|
---|
106 | dnew = dl + (dp - dl) * (1 - llp) / (ppp - llp);
|
---|
107 | p = x + R * dnew;
|
---|
108 | half pppnew = length(p) / texCUBElod(mp, float4(p, 0)).a;
|
---|
109 | if(pppnew == 1.0)
|
---|
110 | i = SECANT_ITERATIONCOUNT;
|
---|
111 | else if(pppnew < 1.0f)
|
---|
112 | {
|
---|
113 | llp = pppnew;
|
---|
114 | dl = dnew;
|
---|
115 | }
|
---|
116 | else
|
---|
117 | {
|
---|
118 | ppp = pppnew;
|
---|
119 | dp = dnew;
|
---|
120 | }
|
---|
121 | }
|
---|
122 | }
|
---|
123 |
|
---|
124 | float3 Hit(float3 x, float3 R, out float4 Il, out float3 Nl)
|
---|
125 | {
|
---|
126 | float dl1 = 0, dp1, llp1, ppp1;
|
---|
127 | float3 p1;
|
---|
128 | linearSearch(x, R, envCubeSampler1, p1, dl1, dp1, llp1, ppp1);
|
---|
129 | float dl2 = 0, dp2, llp2, ppp2;
|
---|
130 | float3 p2;
|
---|
131 | linearSearch(x, R, envCubeSampler2, p2, dl2, dp2, llp2, ppp2);
|
---|
132 |
|
---|
133 | bool valid1 = dot(p1,p1) != 0;
|
---|
134 | bool valid2 = dot(p2,p2) != 0;
|
---|
135 |
|
---|
136 | float dl, dp, llp, ppp;
|
---|
137 | float3 p;
|
---|
138 |
|
---|
139 | if(!valid1 && ! valid2)
|
---|
140 | {
|
---|
141 | linearSearch(x, R, envCubeSampler3, p, dl, dp, llp, ppp);
|
---|
142 | Il.a = 1;
|
---|
143 | secantSearch(x, R, envCubeSampler3, dl, dp, llp, ppp, p);
|
---|
144 | Il.rgb = Nl.rgb = texCUBElod(envCubeSampler3, float4(p, 0)).rgb;
|
---|
145 | }
|
---|
146 | else
|
---|
147 | {
|
---|
148 | if( !valid2 || (valid1 && dp1 < dp2))
|
---|
149 | {
|
---|
150 | secantSearch(x, R, envCubeSampler1, dl1, dp1, llp1, ppp1, p1);
|
---|
151 | Il.rgb = Nl.rgb = texCUBElod(envCubeSampler1, float4(p1, 0)).rgb;
|
---|
152 | p = p1;
|
---|
153 | }
|
---|
154 | else
|
---|
155 | {
|
---|
156 | secantSearch(x, R, envCubeSampler2, dl2, dp2, llp2, ppp2, p2);
|
---|
157 | Il.rgb = Nl.rgb = texCUBElod(envCubeSampler2, float4(p2, 0)).rgb;
|
---|
158 | p = p2;
|
---|
159 | }
|
---|
160 | Il.a = 0;
|
---|
161 | }
|
---|
162 |
|
---|
163 | return p;
|
---|
164 | }
|
---|
165 |
|
---|
166 |
|
---|
167 | struct SpecularReflection_VS_OUT
|
---|
168 | {
|
---|
169 | float4 hPos : POSITION; // clipping space
|
---|
170 | float3 x : TEXCOORD1; // cube map space
|
---|
171 | float3 N : TEXCOORD2; // normal
|
---|
172 | float3 V : TEXCOORD3; // view
|
---|
173 | };
|
---|
174 |
|
---|
175 | SpecularReflection_VS_OUT SpecularReflectionVS(
|
---|
176 | float4 Pos : POSITION,
|
---|
177 | float4 Norm : NORMAL)
|
---|
178 | {
|
---|
179 | SpecularReflection_VS_OUT OUT;
|
---|
180 | OUT.hPos = mul(Pos, WorldViewProj);
|
---|
181 | OUT.x = mul(Pos, World).xyz;
|
---|
182 | OUT.N = mul(Norm, WorldIT).xyz;
|
---|
183 | OUT.V = OUT.x - eyePos;
|
---|
184 | OUT.x -= referencePos;
|
---|
185 | return OUT;
|
---|
186 | }
|
---|
187 |
|
---|
188 | float4 SingleReflectionPS( SpecularReflection_VS_OUT IN) : COLOR
|
---|
189 | {
|
---|
190 | float3 V = normalize(IN.V); float3 N = normalize(IN.N);
|
---|
191 | float3 R; // reflection dir.
|
---|
192 | float3 Nl; // normal vector at the hit point
|
---|
193 | float4 Il; // radiance at the hit point
|
---|
194 | float3 I = 1;
|
---|
195 |
|
---|
196 | float3 F = F0 + pow(1-dot(N, -V), 5) * (1 - F0);
|
---|
197 | if (N0 <= 0) // reflective material
|
---|
198 | {
|
---|
199 | R = reflect(V, N);
|
---|
200 | I *= F; // Fresnel reflection
|
---|
201 | }
|
---|
202 | else //refractive material
|
---|
203 | {
|
---|
204 | R = refract(V, N, N0);
|
---|
205 | if (dot(R, R) == 0) // no refraction direction exits
|
---|
206 | R = reflect(V, N); // total reflection
|
---|
207 | else
|
---|
208 | I *= (1 - F); // Fresnel refraction
|
---|
209 | }
|
---|
210 | // ray hit l, radiance Il, normal Nl
|
---|
211 | float3 l = Hit(IN.x, R, Il, Nl);
|
---|
212 | if(Il.a == 0)//not a valid hit
|
---|
213 | Il = texCUBE(envCubeSampler3, R); //read the distance environment map from the last direction
|
---|
214 |
|
---|
215 | return Il * float4(I,1);
|
---|
216 | }
|
---|
217 |
|
---|
218 |
|
---|
219 | technique SingleReflection
|
---|
220 | {
|
---|
221 | pass p0
|
---|
222 | {
|
---|
223 | VertexShader = compile vs_2_0 SpecularReflectionVS();
|
---|
224 | PixelShader = compile ps_3_0 SingleReflectionPS();
|
---|
225 | }
|
---|
226 | }
|
---|
227 |
|
---|
228 | float4 MultipleReflectionPS( SpecularReflection_VS_OUT IN ) : COLOR
|
---|
229 | {
|
---|
230 | float3 V = normalize(IN.V); float3 N = normalize(IN.N);
|
---|
231 | float3 x = IN.x;
|
---|
232 |
|
---|
233 | float4 I = float4(1,1,1,0);// radiance of the path
|
---|
234 | float3 Fp = F0; // Fresnel at 90 degrees at first hit
|
---|
235 | float n = N0; // index of refraction of the first hit
|
---|
236 | int depth = 0; // length of the path
|
---|
237 | while (depth < MAX_RAY_DEPTH) {
|
---|
238 | float3 R; // reflection or refraction dir
|
---|
239 | float3 F = Fp + pow(1-abs(dot(N, -V)), 5) * (1-Fp); // Fresnel
|
---|
240 | if (n <= 0) {
|
---|
241 | R = reflect(V, N); // reflection
|
---|
242 | I.rgb *= F; // Fresnel reflection
|
---|
243 | }
|
---|
244 | else{ // refraction
|
---|
245 | if (dot(V,N) > 0) { // coming from inside
|
---|
246 | n = 1.0 / n;
|
---|
247 | N = -N;
|
---|
248 | }
|
---|
249 | R = refract(V, N, n);
|
---|
250 | if (dot(R, R) == 0) // no refraction direction exits
|
---|
251 | R = reflect(V, N); // total reflection
|
---|
252 | else
|
---|
253 | I.rgb *= (1-F); // Fresnel refraction
|
---|
254 | }
|
---|
255 |
|
---|
256 | float4 Il; // radiance at the hit point
|
---|
257 | float3 Nl; // normal vector at the hit point
|
---|
258 | // Trace ray x+R*d and obtain hit l, radiance Il, normal Nl
|
---|
259 | float3 l = Hit(x, R, Il, Nl);
|
---|
260 | if (Il.a == 0)// hit point is on specular surface
|
---|
261 | {
|
---|
262 | depth += 1;
|
---|
263 | }
|
---|
264 | else
|
---|
265 | { // hit point is on diffuse surface
|
---|
266 | I.rgb *= Il.rgb; // multiply with the radiance
|
---|
267 | I.a = 1;
|
---|
268 | depth = MAX_RAY_DEPTH; // terminate
|
---|
269 | }
|
---|
270 | N = Nl; V = R; x = l; // hit point is the next shaded point
|
---|
271 | }
|
---|
272 | return I * I.a;
|
---|
273 | }
|
---|
274 |
|
---|
275 | technique MultipleReflection
|
---|
276 | {
|
---|
277 | pass p0
|
---|
278 | {
|
---|
279 | VertexShader = compile vs_2_0 SpecularReflectionVS();
|
---|
280 | PixelShader = compile ps_3_0 MultipleReflectionPS();
|
---|
281 | }
|
---|
282 | }
|
---|