[896] | 1 | // Graphics Programming Methods |
---|
| 2 | // An Effective kd-tree Implementation |
---|
| 3 | // László Szécsi |
---|
| 4 | // 2003.
|
---|
| 5 |
|
---|
| 6 | // template class for a min-heap
|
---|
| 7 | // E must define operators for comparison
|
---|
| 8 |
|
---|
| 9 | #pragma once
|
---|
| 10 |
|
---|
| 11 | template < class E >
|
---|
| 12 | class Heap
|
---|
| 13 | {
|
---|
| 14 | public:
|
---|
| 15 | Heap ( int maxNumber);
|
---|
| 16 | ~Heap ();
|
---|
| 17 |
|
---|
| 18 | inline bool insert ( const E &newElement );
|
---|
| 19 | inline E removeMin ();
|
---|
| 20 | inline E getMin ();
|
---|
| 21 |
|
---|
| 22 | inline int isEmpty () const;
|
---|
| 23 | inline int isFull () const;
|
---|
| 24 |
|
---|
| 25 | private:
|
---|
| 26 | // Data members
|
---|
| 27 | int maxSize, // Maximum number of elements in the heap
|
---|
| 28 | size; // Actual number of elements in the heap
|
---|
| 29 | E *element; // Array containing the heap elements
|
---|
| 30 | };
|
---|
| 31 |
|
---|
| 32 | template<class E>
|
---|
| 33 | Heap<E>::Heap( int maxNumber)
|
---|
| 34 | {
|
---|
| 35 | maxSize = maxNumber;
|
---|
| 36 | size = 0;
|
---|
| 37 | element = new E [maxSize];
|
---|
| 38 | }
|
---|
| 39 |
|
---|
| 40 | template <class E>
|
---|
| 41 | Heap<E>::~Heap()
|
---|
| 42 | {
|
---|
| 43 | delete [] element;
|
---|
| 44 | }
|
---|
| 45 |
|
---|
| 46 | template<class E>
|
---|
| 47 | bool Heap<E>::insert(const E & newElement)
|
---|
| 48 | {
|
---|
| 49 | int currpos = size;
|
---|
| 50 | int parentpos = (size -1)/2;
|
---|
| 51 | int isPosition = 0;
|
---|
| 52 | if ( isFull() )
|
---|
| 53 | {
|
---|
| 54 | return false;
|
---|
| 55 | }
|
---|
| 56 | // Inserts newElement into the heap;
|
---|
| 57 | element[size] = newElement;
|
---|
| 58 | size ++;
|
---|
| 59 |
|
---|
| 60 | // if newElement is lower, move it upward
|
---|
| 61 | while ( currpos > 0 && !isPosition)
|
---|
| 62 | {
|
---|
| 63 | if ( element[currpos] >= element[parentpos] )
|
---|
| 64 | isPosition = 1;
|
---|
| 65 | else
|
---|
| 66 | {
|
---|
| 67 | element[currpos] = element[parentpos];
|
---|
| 68 | element[parentpos] = newElement;
|
---|
| 69 | currpos = parentpos;
|
---|
| 70 | parentpos = ( currpos -1 )/2 ;
|
---|
| 71 | }
|
---|
| 72 | }
|
---|
| 73 | return true;
|
---|
| 74 | }
|
---|
| 75 |
|
---|
| 76 | template<class E>
|
---|
| 77 | E Heap<E>::getMin()
|
---|
| 78 | {
|
---|
| 79 | return element[0];
|
---|
| 80 | }
|
---|
| 81 |
|
---|
| 82 | template<class E>
|
---|
| 83 | E Heap<E>::removeMin()
|
---|
| 84 | {
|
---|
| 85 | E delItem, temp;
|
---|
| 86 | int currpos, lpos, rpos, isPosition = 0;
|
---|
| 87 | if ( isEmpty() )
|
---|
| 88 | {
|
---|
| 89 | exit(1);
|
---|
| 90 | }
|
---|
| 91 |
|
---|
| 92 | // removes the root
|
---|
| 93 | delItem = element[0];
|
---|
| 94 | size --;
|
---|
| 95 |
|
---|
| 96 | // replace the root with the bottom right-most element
|
---|
| 97 | element[0] = element[size];
|
---|
| 98 | temp = element[0];
|
---|
| 99 |
|
---|
| 100 | // set the current position and left and right child positions
|
---|
| 101 | currpos = 0;
|
---|
| 102 | lpos = 2*currpos + 1;
|
---|
| 103 | rpos = 2*currpos + 2;
|
---|
| 104 |
|
---|
| 105 | // if the replacement is not proper, move it downward until the
|
---|
| 106 | // the properties that define a min-heap are restored
|
---|
| 107 | while ( size > currpos+1 && !isPosition )
|
---|
| 108 | {
|
---|
| 109 | temp = element[currpos];
|
---|
| 110 | if ( rpos < size )
|
---|
| 111 | {
|
---|
| 112 | if ( element[currpos] > element[lpos] ||
|
---|
| 113 | element[currpos] > element[rpos] )
|
---|
| 114 | {
|
---|
| 115 | if ( element[lpos] < element[rpos] )
|
---|
| 116 | {
|
---|
| 117 | element[currpos] = element[lpos];
|
---|
| 118 | element[lpos] = temp;
|
---|
| 119 | currpos = lpos;
|
---|
| 120 | }
|
---|
| 121 | else
|
---|
| 122 | {
|
---|
| 123 | element[currpos] = element[rpos];
|
---|
| 124 | element[rpos] = temp;
|
---|
| 125 | currpos = rpos;
|
---|
| 126 | }
|
---|
| 127 | }
|
---|
| 128 | }
|
---|
| 129 | else if ( lpos < size && element[lpos] < element[currpos] )
|
---|
| 130 | {
|
---|
| 131 | element[currpos] = element[lpos];
|
---|
| 132 | element[lpos] = temp;
|
---|
| 133 | currpos = lpos;
|
---|
| 134 | }
|
---|
| 135 | temp = element[currpos];
|
---|
| 136 | lpos = 2*currpos +1;
|
---|
| 137 | rpos = 2*currpos +2;
|
---|
| 138 |
|
---|
| 139 | if ( (lpos >= size)
|
---|
| 140 | ||
|
---|
| 141 | element[currpos] <= element[lpos]
|
---|
| 142 | &&
|
---|
| 143 | element[currpos] <= element[rpos])
|
---|
| 144 | isPosition = 1;
|
---|
| 145 | }
|
---|
| 146 | return delItem;
|
---|
| 147 | }
|
---|
| 148 |
|
---|
| 149 | template<class E>
|
---|
| 150 | int Heap<E>:: isEmpty() const
|
---|
| 151 | {
|
---|
| 152 | return size==0;
|
---|
| 153 | }
|
---|
| 154 |
|
---|
| 155 | template<class E>
|
---|
| 156 | int Heap<E>::isFull() const
|
---|
| 157 | {
|
---|
| 158 | return size == maxSize;
|
---|
| 159 | }
|
---|
| 160 |
|
---|