[2197] | 1 | // Graphics Programming Methods
|
---|
| 2 | // An Effective kd-tree Implementation
|
---|
| 3 | // László Szécsi
|
---|
| 4 | // 2003.
|
---|
| 5 |
|
---|
| 6 | // implementation of kd-tree methods
|
---|
| 7 |
|
---|
| 8 | #include "dxstdafx.h"
|
---|
| 9 | #include "KDTree.hpp"
|
---|
| 10 | #include <iostream>
|
---|
| 11 |
|
---|
| 12 | bool KDTree::traverse (const Ray& ray, HitRec& hitRec, float minT, float maxT)
|
---|
| 13 | {
|
---|
| 14 | // handle dirs parallel to axis here in advance
|
---|
| 15 | // will not need to check later for every node;
|
---|
| 16 | Vector dirInverts;
|
---|
| 17 | for(int i=0; i<3; i++)
|
---|
| 18 | dirInverts[i] = 1.0f / ray.dir[i];
|
---|
| 19 |
|
---|
| 20 | // hitRec.object = NULL;
|
---|
| 21 | hitRec.isIntersect = false;
|
---|
| 22 | hitRec.depth = FLT_MAX;
|
---|
| 23 |
|
---|
| 24 | float rayMin = minT;
|
---|
| 25 | float rayMax = maxT;
|
---|
| 26 |
|
---|
| 27 | unsigned int tNode = 0;
|
---|
| 28 | signed int stackPointer = -1;
|
---|
| 29 |
|
---|
| 30 | unsigned int leftChild;
|
---|
| 31 | unsigned int rightChild;
|
---|
| 32 |
|
---|
| 33 | for(;;)
|
---|
| 34 | {
|
---|
| 35 | bool isLeaf = !followChildren(tNode, leftChild, rightChild);
|
---|
| 36 |
|
---|
| 37 | if(isLeaf) // node is a leaf
|
---|
| 38 | {
|
---|
| 39 | Intersectable** leafList = ((Intersectable***)nodeTable)[tNode];
|
---|
| 40 | if(leafList) // leaf contains some objects
|
---|
| 41 | {
|
---|
| 42 | // first 4 bytes of leafList contains the length
|
---|
| 43 | unsigned int leafListLength = (unsigned int)*leafList;
|
---|
| 44 | Intersectable** leafListEnd = ++leafList + leafListLength;
|
---|
| 45 | for (Intersectable** objectIterator = leafList; objectIterator < leafListEnd; objectIterator++) {
|
---|
| 46 | if((*objectIterator) == forbidden) continue;
|
---|
| 47 | float depth;
|
---|
| 48 | // check if this test was already done
|
---|
| 49 | if (ray.id != (*objectIterator)->lastTestedRayId)
|
---|
| 50 | (*objectIterator)->intersect (ray, depth, minT, maxT);
|
---|
| 51 | else
|
---|
| 52 | depth = (*objectIterator)->lastTestedRayResult.depth;
|
---|
| 53 | // intersection is acceptable only if it is within the node volume
|
---|
| 54 | if ((*objectIterator)->lastTestedRayResult.isIntersect &&
|
---|
| 55 | depth < hitRec.depth &&
|
---|
| 56 | depth > rayMin - epsilon &&
|
---|
| 57 | depth < rayMax + epsilon)
|
---|
| 58 | hitRec = (*objectIterator)->lastTestedRayResult;
|
---|
| 59 | }
|
---|
| 60 |
|
---|
| 61 | if(hitRec.isIntersect)
|
---|
| 62 | return true;
|
---|
| 63 | else
|
---|
| 64 | if(stackPointer >= 0)
|
---|
| 65 | {
|
---|
| 66 | //have not found anything on this branch, pop the other one from stack
|
---|
| 67 | rayMin = traverseStack[stackPointer].rayMin;
|
---|
| 68 | rayMax = traverseStack[stackPointer].rayMax;
|
---|
| 69 | tNode = traverseStack[stackPointer].tNode;
|
---|
| 70 | stackPointer--;
|
---|
| 71 | }
|
---|
| 72 | else
|
---|
| 73 | return false;
|
---|
| 74 | }
|
---|
| 75 | else
|
---|
| 76 | {
|
---|
| 77 | //leaf is empty
|
---|
| 78 | if(stackPointer >= 0)
|
---|
| 79 | {
|
---|
| 80 | rayMin = traverseStack[stackPointer].rayMin;
|
---|
| 81 | rayMax = traverseStack[stackPointer].rayMax;
|
---|
| 82 | tNode = traverseStack[stackPointer].tNode;
|
---|
| 83 | stackPointer--;
|
---|
| 84 | }
|
---|
| 85 | else
|
---|
| 86 | return false;
|
---|
| 87 | }
|
---|
| 88 | }
|
---|
| 89 | else //not a leaf, go deeper
|
---|
| 90 | {
|
---|
| 91 | // gather cutting plane information from the nodeTable
|
---|
| 92 | float nodeValue = nodeTable[tNode];
|
---|
| 93 | unsigned char axis = *(unsigned int*)(&nodeValue) & 0x00000003;
|
---|
| 94 | unsigned int bitfield = *(unsigned int*)(&nodeValue) & 0xfffffffc;
|
---|
| 95 | float cutPlane = *(float*)(&bitfield);
|
---|
| 96 |
|
---|
| 97 | float origCoord = ray.origin[axis];
|
---|
| 98 | float dirCoord = dirInverts[axis];
|
---|
| 99 |
|
---|
| 100 | // calculate cutting plane - ray intersection distance 't'
|
---|
| 101 | register float t = (cutPlane - origCoord) * dirCoord;
|
---|
| 102 |
|
---|
| 103 | // find the child volume nearer to the origin
|
---|
| 104 | unsigned int nearNode = rightChild;
|
---|
| 105 | unsigned int farNode = leftChild;
|
---|
| 106 | if(origCoord + epsilon < cutPlane)
|
---|
| 107 | {
|
---|
| 108 | nearNode = leftChild;
|
---|
| 109 | farNode = rightChild;
|
---|
| 110 | }
|
---|
| 111 | else
|
---|
| 112 | if( origCoord < cutPlane + epsilon ) // origin is on the plane
|
---|
| 113 | if( dirCoord < 0 ) // direction decides
|
---|
| 114 | {
|
---|
| 115 | tNode = leftChild; continue;
|
---|
| 116 | }
|
---|
| 117 | else
|
---|
| 118 | {
|
---|
| 119 | tNode = rightChild; continue;
|
---|
| 120 | }
|
---|
| 121 |
|
---|
| 122 | if(t <= 0 || rayMax + epsilon < t )
|
---|
| 123 | // whole interval on near cell
|
---|
| 124 | tNode = nearNode;
|
---|
| 125 | else
|
---|
| 126 | {
|
---|
| 127 | if(t < rayMin - epsilon)
|
---|
| 128 | // whole interval on far cell
|
---|
| 129 | tNode = farNode;
|
---|
| 130 | else
|
---|
| 131 | {
|
---|
| 132 | // both cells
|
---|
| 133 | // push far branch to stack
|
---|
| 134 | stackPointer++;
|
---|
| 135 | traverseStack[stackPointer].rayMin = t;
|
---|
| 136 | traverseStack[stackPointer].rayMax = rayMax;
|
---|
| 137 | traverseStack[stackPointer].tNode = farNode;
|
---|
| 138 | // near branch is next to traverse
|
---|
| 139 | tNode = nearNode;
|
---|
| 140 | rayMax = t;
|
---|
| 141 | }
|
---|
| 142 | }
|
---|
| 143 | }
|
---|
| 144 | }
|
---|
| 145 | return false;
|
---|
| 146 | }
|
---|
| 147 |
|
---|
| 148 | bool KDTree::traverseBackSide (const Ray& ray, HitRec& hitRec, float minT, float maxT)
|
---|
| 149 | {
|
---|
| 150 | // handle dirs parallel to axis here in advance
|
---|
| 151 | // will not need to check later for every node;
|
---|
| 152 | Vector dirInverts;
|
---|
| 153 | for(int i=0; i<3; i++)
|
---|
| 154 | dirInverts[i] = 1.0f / ray.dir[i];
|
---|
| 155 |
|
---|
| 156 | // hitRec.object = NULL;
|
---|
| 157 | hitRec.isIntersect = false;
|
---|
| 158 | hitRec.depth = FLT_MAX;
|
---|
| 159 |
|
---|
| 160 | float rayMin = minT;
|
---|
| 161 | float rayMax = maxT;
|
---|
| 162 |
|
---|
| 163 | unsigned int tNode = 0;
|
---|
| 164 | signed int stackPointer = -1;
|
---|
| 165 |
|
---|
| 166 | unsigned int leftChild;
|
---|
| 167 | unsigned int rightChild;
|
---|
| 168 |
|
---|
| 169 | for(;;)
|
---|
| 170 | {
|
---|
| 171 | bool isLeaf = !followChildren(tNode, leftChild, rightChild);
|
---|
| 172 |
|
---|
| 173 | if(isLeaf) // node is a leaf
|
---|
| 174 | {
|
---|
| 175 | Intersectable** leafList = ((Intersectable***)nodeTable)[tNode];
|
---|
| 176 | if(leafList) // leaf contains some objects
|
---|
| 177 | {
|
---|
| 178 | // first 4 bytes of leafList contains the length
|
---|
| 179 | unsigned int leafListLength = (unsigned int)*leafList;
|
---|
| 180 | Intersectable** leafListEnd = ++leafList + leafListLength;
|
---|
| 181 | for (Intersectable** objectIterator = leafList; objectIterator < leafListEnd; objectIterator++) {
|
---|
| 182 | // if((*objectIterator) == forbidden) continue;
|
---|
| 183 | float depth;
|
---|
| 184 | // check if this test was already done
|
---|
| 185 | if (ray.id != (*objectIterator)->lastTestedRayId)
|
---|
| 186 | (*objectIterator)->intersectBackSide (ray, depth, minT, maxT);
|
---|
| 187 | else
|
---|
| 188 | depth = (*objectIterator)->lastTestedRayResult.depth;
|
---|
| 189 | // intersection is acceptable only if it is within the node volume
|
---|
| 190 | if ((*objectIterator)->lastTestedRayResult.isIntersect &&
|
---|
| 191 | depth < hitRec.depth &&
|
---|
| 192 | depth > rayMin - epsilon &&
|
---|
| 193 | depth < rayMax + epsilon)
|
---|
| 194 | hitRec = (*objectIterator)->lastTestedRayResult;
|
---|
| 195 | }
|
---|
| 196 |
|
---|
| 197 | if(hitRec.isIntersect)
|
---|
| 198 | return true;
|
---|
| 199 | else
|
---|
| 200 | if(stackPointer >= 0)
|
---|
| 201 | {
|
---|
| 202 | //have not found anything on this branch, pop the other one from stack
|
---|
| 203 | rayMin = traverseStack[stackPointer].rayMin;
|
---|
| 204 | rayMax = traverseStack[stackPointer].rayMax;
|
---|
| 205 | tNode = traverseStack[stackPointer].tNode;
|
---|
| 206 | stackPointer--;
|
---|
| 207 | }
|
---|
| 208 | else
|
---|
| 209 | return false;
|
---|
| 210 | }
|
---|
| 211 | else
|
---|
| 212 | {
|
---|
| 213 | //leaf is empty
|
---|
| 214 | if(stackPointer >= 0)
|
---|
| 215 | {
|
---|
| 216 | rayMin = traverseStack[stackPointer].rayMin;
|
---|
| 217 | rayMax = traverseStack[stackPointer].rayMax;
|
---|
| 218 | tNode = traverseStack[stackPointer].tNode;
|
---|
| 219 | stackPointer--;
|
---|
| 220 | }
|
---|
| 221 | else
|
---|
| 222 | return false;
|
---|
| 223 | }
|
---|
| 224 | }
|
---|
| 225 | else //not a leaf, go deeper
|
---|
| 226 | {
|
---|
| 227 | // gather cutting plane information from the nodeTable
|
---|
| 228 | float nodeValue = nodeTable[tNode];
|
---|
| 229 | unsigned char axis = *(unsigned int*)(&nodeValue) & 0x00000003;
|
---|
| 230 | unsigned int bitfield = *(unsigned int*)(&nodeValue) & 0xfffffffc;
|
---|
| 231 | float cutPlane = *(float*)(&bitfield);
|
---|
| 232 |
|
---|
| 233 | float origCoord = ray.origin[axis];
|
---|
| 234 | float dirCoord = dirInverts[axis];
|
---|
| 235 |
|
---|
| 236 | // calculate cutting plane - ray intersection distance 't'
|
---|
| 237 | register float t = (cutPlane - origCoord) * dirCoord;
|
---|
| 238 |
|
---|
| 239 | // find the child volume nearer to the origin
|
---|
| 240 | unsigned int nearNode = rightChild;
|
---|
| 241 | unsigned int farNode = leftChild;
|
---|
| 242 | if(origCoord + epsilon < cutPlane)
|
---|
| 243 | {
|
---|
| 244 | nearNode = leftChild;
|
---|
| 245 | farNode = rightChild;
|
---|
| 246 | }
|
---|
| 247 | else
|
---|
| 248 | if( origCoord < cutPlane + epsilon ) // origin is on the plane
|
---|
| 249 | if( dirCoord < 0 ) // direction decides
|
---|
| 250 | {
|
---|
| 251 | tNode = leftChild; continue;
|
---|
| 252 | }
|
---|
| 253 | else
|
---|
| 254 | {
|
---|
| 255 | tNode = rightChild; continue;
|
---|
| 256 | }
|
---|
| 257 |
|
---|
| 258 | if(t <= 0 || rayMax + epsilon < t )
|
---|
| 259 | // whole interval on near cell
|
---|
| 260 | tNode = nearNode;
|
---|
| 261 | else
|
---|
| 262 | {
|
---|
| 263 | if(t < rayMin - epsilon)
|
---|
| 264 | // whole interval on far cell
|
---|
| 265 | tNode = farNode;
|
---|
| 266 | else
|
---|
| 267 | {
|
---|
| 268 | // both cells
|
---|
| 269 | // push far branch to stack
|
---|
| 270 | stackPointer++;
|
---|
| 271 | traverseStack[stackPointer].rayMin = t;
|
---|
| 272 | traverseStack[stackPointer].rayMax = rayMax;
|
---|
| 273 | traverseStack[stackPointer].tNode = farNode;
|
---|
| 274 | // near branch is next to traverse
|
---|
| 275 | tNode = nearNode;
|
---|
| 276 | rayMax = t;
|
---|
| 277 | }
|
---|
| 278 | }
|
---|
| 279 | }
|
---|
| 280 | }
|
---|
| 281 | return false;
|
---|
| 282 | }
|
---|
| 283 |
|
---|
| 284 | void KDTree::deleteLeaves(unsigned int nodeID)
|
---|
| 285 | {
|
---|
| 286 | unsigned int rc;
|
---|
| 287 | unsigned int lc;
|
---|
| 288 | if(!followChildren(nodeID, lc, rc))
|
---|
| 289 | {
|
---|
| 290 | Intersectable** leafList = *(Intersectable***)&nodeTable[nodeID];
|
---|
| 291 | if(leafList)
|
---|
| 292 | {
|
---|
| 293 | delete leafList;
|
---|
| 294 | return;
|
---|
| 295 | }
|
---|
| 296 | return;
|
---|
| 297 | }
|
---|
| 298 | deleteLeaves(lc);
|
---|
| 299 | deleteLeaves(rc);
|
---|
| 300 | }
|
---|
| 301 |
|
---|
| 302 | bool KDTree::followChildren(unsigned int& parent, unsigned int &leftChild, unsigned int &rightChild)
|
---|
| 303 | {
|
---|
| 304 | unsigned int subPos = parent & nCacheLineNodes; // position within cache line
|
---|
| 305 | unsigned int supPos = parent & ~nCacheLineNodes; // cache line index
|
---|
| 306 | unsigned int leafBit = ((*(unsigned int *)&nodeTable[parent | nCacheLineNodes]) >> subPos) & 0x1;
|
---|
| 307 | if(leafBit) // node is a leaf, has no children
|
---|
| 308 | return false; // leftChild & rightChild unchanged
|
---|
| 309 | subPos = (subPos << 1) + 1; // index of left child
|
---|
| 310 | if(subPos >= nCacheLineNodes) // out of cache line, node is pointer node
|
---|
| 311 | {
|
---|
| 312 | parent = ((unsigned int*)nodeTable)[parent]; // follow pointer
|
---|
| 313 | subPos = parent & nCacheLineNodes; // same procedure with new parent node
|
---|
| 314 | supPos = parent & ~nCacheLineNodes; // referenced node cannot be leaf
|
---|
| 315 | subPos = (subPos << 1) + 1; // or pointer node
|
---|
| 316 | }
|
---|
| 317 | leftChild = (parent & ~nCacheLineNodes) | subPos; // recombine parent and node address
|
---|
| 318 | rightChild = (parent & ~nCacheLineNodes) | subPos + 1;
|
---|
| 319 | return true;
|
---|
| 320 | }
|
---|
| 321 |
|
---|
| 322 | // retrieve would-have-been child nodes of a leaf node, if they are not in a last row
|
---|
| 323 | bool KDTree::getFreeNodes(unsigned int leaf, unsigned int& leftFree, unsigned int& rightFree)
|
---|
| 324 | {
|
---|
| 325 | unsigned int subPos = leaf & nCacheLineNodes; // position within cache line
|
---|
| 326 | unsigned int supPos = leaf & ~nCacheLineNodes; // cache line index
|
---|
| 327 | subPos = (subPos << 1) + 1; // index of left child position
|
---|
| 328 | if(subPos < nCacheLineNodes) // within cache line, may have free children positions
|
---|
| 329 | {
|
---|
| 330 | unsigned int grandSubPos = ((subPos + 1) << 1) + 2; // rightmost grandchild
|
---|
| 331 | if(grandSubPos >= nCacheLineNodes) // children are on last row
|
---|
| 332 | return false; // not suitable for free nodes
|
---|
| 333 | leftFree = (leaf & ~nCacheLineNodes) | subPos;
|
---|
| 334 | rightFree = (leaf & ~nCacheLineNodes) | subPos + 1;
|
---|
| 335 | return true;
|
---|
| 336 | }
|
---|
| 337 | else
|
---|
| 338 | return false; // leaf is on last row, has no free children
|
---|
| 339 | }
|
---|
| 340 |
|
---|
| 341 | bool KDTree::isLeaf(unsigned int xnode)
|
---|
| 342 | {
|
---|
| 343 | return ((*(unsigned int *)&nodeTable[xnode | nCacheLineNodes]) >> (xnode & nCacheLineNodes)) & 0x1;
|
---|
| 344 | }
|
---|
| 345 |
|
---|
| 346 | float KDTree::getBoundValue(unsigned int * extremeIndex, unsigned char axis)
|
---|
| 347 | {
|
---|
| 348 | //if Most Significant Bit of 'extremeIndex' is 1, take the maximum
|
---|
| 349 | //if Most Significant Bit of 'extremeIndex' is 0, take the minimum
|
---|
| 350 | unsigned int index = *extremeIndex;
|
---|
| 351 | return (index & 0x80000000)?
|
---|
| 352 | (objects[ index & 0x7fffffff]->bbox.maxPoint[axis]):
|
---|
| 353 | (objects[ index & 0x7fffffff]->bbox.minPoint[axis]);
|
---|
| 354 | }
|
---|
| 355 |
|
---|
| 356 | void KDTree::build(unsigned int nodeID, unsigned int* boundsArray, unsigned int nObjects, BoundingBox& limits, unsigned char axisNmask)
|
---|
| 357 | {
|
---|
| 358 | //separate the axisNmask parameter to axis and mask
|
---|
| 359 | unsigned char axis = axisNmask & 07;
|
---|
| 360 | unsigned char mask = axisNmask & 070;
|
---|
| 361 |
|
---|
| 362 | //calculate some values for the cost function
|
---|
| 363 | float costBase; // area of face perpendicular to axis
|
---|
| 364 | float costSteep; // half of circumference of face perpendicular to axis
|
---|
| 365 | // surface area / 2 = costBase + costSteep * (length of edge parallel to axis)
|
---|
| 366 | // cost = #(objects within volume) * surface area / 2
|
---|
| 367 | switch(axis)
|
---|
| 368 | {
|
---|
| 369 | case 0:
|
---|
| 370 | costBase = (limits.maxPoint.z - limits.minPoint.z)
|
---|
| 371 | * (limits.maxPoint.y - limits.minPoint.y);
|
---|
| 372 | costSteep = (limits.maxPoint.z - limits.minPoint.z)
|
---|
| 373 | + (limits.maxPoint.y - limits.minPoint.y);
|
---|
| 374 | break;
|
---|
| 375 | case 1:
|
---|
| 376 | costBase = (limits.maxPoint.x - limits.minPoint.x)
|
---|
| 377 | * (limits.maxPoint.z - limits.minPoint.z);
|
---|
| 378 | costSteep = (limits.maxPoint.x - limits.minPoint.x)
|
---|
| 379 | + (limits.maxPoint.z - limits.minPoint.z);
|
---|
| 380 | break;
|
---|
| 381 | case 2:
|
---|
| 382 | costBase = (limits.maxPoint.x - limits.minPoint.x)
|
---|
| 383 | * (limits.maxPoint.y - limits.minPoint.y);
|
---|
| 384 | costSteep = (limits.maxPoint.x - limits.minPoint.x)
|
---|
| 385 | + (limits.maxPoint.y - limits.minPoint.y);
|
---|
| 386 | break;
|
---|
| 387 | }
|
---|
| 388 |
|
---|
| 389 | // references to extrema (corresponding to 'axis') of node volume
|
---|
| 390 | float& limiMin = axis?((axis==1)?limits.minPoint.y:limits.minPoint.z):limits.minPoint.x;
|
---|
| 391 | float& limiMax = axis?((axis==1)?limits.maxPoint.y:limits.maxPoint.z):limits.maxPoint.x;
|
---|
| 392 |
|
---|
| 393 | //sort the the extrema of the objects
|
---|
| 394 | //we will need this to find the best splitting plane
|
---|
| 395 | quickSort(boundsArray, boundsArray + (nObjects << 1) - 1, axis);
|
---|
| 396 |
|
---|
| 397 | // the following code section could be used to find the spatial and object medians
|
---|
| 398 | // either to implement a simpler and less effective subdivision rule
|
---|
| 399 | // or to restrict optimum search to the median interval (between two median)
|
---|
| 400 | //***************************************************************************
|
---|
| 401 | // find the value for the spatial median.... easy
|
---|
| 402 | // float spatialMedian = (limiMax + limiMin) / 2.0f;
|
---|
| 403 | //find the position in the array corresponding to the spatial median value
|
---|
| 404 | // unsigned int* spatialMedianPosition = findBound(boundsArray, nObjects << 1, spatialMedian, axis);
|
---|
| 405 | //find object median position (middle of array, surprise-surprise), and value
|
---|
| 406 | // unsigned int* objectMedianPosition = boundsArray + nObjects;
|
---|
| 407 | // float objectMedian = getBoundValue(objectMedianPosition, axis);
|
---|
| 408 | //****************************************************************************
|
---|
| 409 |
|
---|
| 410 | // find the value for the left and right "cutting off empty space" (COES) planes
|
---|
| 411 | // remember the object extrema are already sorted
|
---|
| 412 | float leftCoesCut = objects[boundsArray[0] & 0x7fffffff]->bbox.minPoint[axis];
|
---|
| 413 | float rightCoesCut = objects[boundsArray[(nObjects << 1)-1] & 0x7fffffff]->bbox.maxPoint[axis];
|
---|
| 414 |
|
---|
| 415 | if(rightCoesCut > limiMax)
|
---|
| 416 | rightCoesCut = limiMax;
|
---|
| 417 | if(leftCoesCut < limiMin)
|
---|
| 418 | leftCoesCut = limiMin;
|
---|
| 419 |
|
---|
| 420 | // find the estimated cost of ray casting after COES
|
---|
| 421 | float leftCoesCutCost = ((limiMax - leftCoesCut) * costSteep + costBase) * (nObjects);
|
---|
| 422 | float rightCoesCutCost = ((rightCoesCut - limiMin) * costSteep + costBase) * (nObjects);
|
---|
| 423 | // take care of numerical accuracy problems that arise when
|
---|
| 424 | // limiMin == limiMax (possible and allowed)
|
---|
| 425 | if(leftCoesCutCost < 0) leftCoesCutCost = FLT_MAX;
|
---|
| 426 | if(rightCoesCutCost < 0) rightCoesCutCost = FLT_MAX;
|
---|
| 427 |
|
---|
| 428 | // creep through array, evaluate cost for every possible cut,
|
---|
| 429 | // maintaining the counters for intersected and completely passed objects
|
---|
| 430 | int leftCount = 0; // objects on the left of current cut
|
---|
| 431 | int intersectedCount = 0; // object intersected by current cut
|
---|
| 432 |
|
---|
| 433 | // we may limit the search to a partition of the array, eg. the median interval
|
---|
| 434 | unsigned int* searchIntervalStart;
|
---|
| 435 | unsigned int* searchIntervalEnd;
|
---|
| 436 |
|
---|
| 437 | // full range optimum search
|
---|
| 438 | searchIntervalStart = boundsArray + 1;
|
---|
| 439 | searchIntervalEnd = boundsArray + (nObjects << 1) - 1;
|
---|
| 440 |
|
---|
| 441 | // these three variable identify the best cut found so far:
|
---|
| 442 | float minimumCostFound;
|
---|
| 443 | float minimumCostCut;
|
---|
| 444 | unsigned int* minimumCostPosition;
|
---|
| 445 |
|
---|
| 446 | // is left or right COES better? the better is our best candidate to start with
|
---|
| 447 | int minimumIntersected = 0;
|
---|
| 448 | int minimumLeft = 0;
|
---|
| 449 | if(leftCoesCutCost < rightCoesCutCost)
|
---|
| 450 | {
|
---|
| 451 | minimumCostFound = leftCoesCutCost;
|
---|
| 452 | minimumCostPosition = boundsArray;
|
---|
| 453 | minimumCostCut = leftCoesCut;
|
---|
| 454 | minimumIntersected = 0;
|
---|
| 455 | minimumLeft = 0;
|
---|
| 456 | }
|
---|
| 457 | else
|
---|
| 458 | {
|
---|
| 459 | minimumCostFound = rightCoesCutCost;
|
---|
| 460 | minimumCostPosition = boundsArray + (nObjects << 1);
|
---|
| 461 | minimumCostCut = rightCoesCut;
|
---|
| 462 | minimumIntersected = 0;
|
---|
| 463 | minimumLeft = nObjects;
|
---|
| 464 | }
|
---|
| 465 |
|
---|
| 466 | // creep up to the search interval... count objects
|
---|
| 467 | unsigned int* trace = boundsArray;
|
---|
| 468 | for(; trace< searchIntervalStart; trace++ )
|
---|
| 469 | {
|
---|
| 470 | if(*trace & 0x80000000)
|
---|
| 471 | {
|
---|
| 472 | intersectedCount--;
|
---|
| 473 | leftCount++;
|
---|
| 474 | }
|
---|
| 475 | else
|
---|
| 476 | intersectedCount++;
|
---|
| 477 | }
|
---|
| 478 | // evaluate the cost function, if better is found keep it
|
---|
| 479 | for(; trace< searchIntervalEnd; trace++ )
|
---|
| 480 | {
|
---|
| 481 | float cut = getBoundValue(trace, axis);
|
---|
| 482 | float costIfCutHere;
|
---|
| 483 | if(*trace & 0x80000000)
|
---|
| 484 | {
|
---|
| 485 | intersectedCount--;
|
---|
| 486 | leftCount++;
|
---|
| 487 | costIfCutHere =
|
---|
| 488 | (leftCount+intersectedCount) * ((cut - limiMin) * costSteep + costBase) +
|
---|
| 489 | (nObjects - leftCount) * ((limiMax - cut) * costSteep + costBase);
|
---|
| 490 | if(leftCount == 0 || leftCount + intersectedCount == nObjects )
|
---|
| 491 | costIfCutHere = FLT_MAX;
|
---|
| 492 | if(costIfCutHere < minimumCostFound ){
|
---|
| 493 | minimumCostFound = costIfCutHere;
|
---|
| 494 | minimumCostPosition = trace + 1;
|
---|
| 495 | minimumIntersected = intersectedCount;
|
---|
| 496 | minimumLeft = leftCount;
|
---|
| 497 | minimumCostCut = cut;
|
---|
| 498 | }
|
---|
| 499 | }
|
---|
| 500 | else
|
---|
| 501 | {
|
---|
| 502 | costIfCutHere =
|
---|
| 503 | (leftCount+intersectedCount) * ((cut - limiMin) * costSteep + costBase) +
|
---|
| 504 | (nObjects - leftCount) * ((limiMax - cut) * costSteep + costBase);
|
---|
| 505 | if(leftCount == 0 || leftCount + intersectedCount == nObjects)
|
---|
| 506 | costIfCutHere = FLT_MAX;
|
---|
| 507 | if(costIfCutHere < minimumCostFound)
|
---|
| 508 | {
|
---|
| 509 | minimumCostFound = costIfCutHere;
|
---|
| 510 | minimumCostPosition = trace;
|
---|
| 511 | minimumIntersected = intersectedCount;
|
---|
| 512 | minimumLeft = leftCount;
|
---|
| 513 | minimumCostCut = cut;
|
---|
| 514 | }
|
---|
| 515 | intersectedCount++;
|
---|
| 516 | }
|
---|
| 517 |
|
---|
| 518 | }
|
---|
| 519 |
|
---|
| 520 | // automatic termination, based on the cost estimation
|
---|
| 521 | if( minimumCostFound * 1.0001 >= nObjects * ((limiMax - limiMin) * costSteep + costBase))
|
---|
| 522 | {
|
---|
| 523 | // no appropriate splitting found, mark this axis as failed
|
---|
| 524 | mask |= (010 << axis);
|
---|
| 525 | if(mask != 070 && (nObjects != 1 || minimumCostFound < 10.0))
|
---|
| 526 | {
|
---|
| 527 | //if there is still a hopeful axis, do not split here, go on with another direction
|
---|
| 528 | do{ axis = (axis + 1)%3;
|
---|
| 529 | }while(mask & (010 << axis));
|
---|
| 530 | build(nodeID, boundsArray, nObjects, limits, mask | axis);
|
---|
| 531 | return;
|
---|
| 532 | }
|
---|
| 533 | // if all 3 have axes have already failed, stop here, make a leaf
|
---|
| 534 | // save leaf length and objects list
|
---|
| 535 | Intersectable** leafList = new Intersectable*[nObjects+1];
|
---|
| 536 | Intersectable** leafLoader = leafList;
|
---|
| 537 | *(unsigned int*)leafLoader = nObjects;
|
---|
| 538 | leafLoader++;
|
---|
| 539 | for(unsigned int* bubo = boundsArray;bubo < boundsArray + (nObjects << 1);bubo++)
|
---|
| 540 | if(!(*bubo & 0x80000000))
|
---|
| 541 | {
|
---|
| 542 | *leafLoader = *(objects + *bubo);
|
---|
| 543 | leafLoader++;
|
---|
| 544 | }
|
---|
| 545 | // make the node contain a pointer to the list
|
---|
| 546 | ((Intersectable ***)nodeTable)[nodeID] = leafList;
|
---|
| 547 | delete boundsArray;
|
---|
| 548 | //mark the node as a leaf
|
---|
| 549 | ((unsigned int*)nodeTable)[nodeID | nCacheLineNodes] |= (0x1 << (nodeID & nCacheLineNodes));
|
---|
| 550 | //add orphaned nodes to free node list
|
---|
| 551 | unsigned int lFree;
|
---|
| 552 | unsigned int rFree;
|
---|
| 553 | if(getFreeNodes(nodeID, lFree, rFree))
|
---|
| 554 | {
|
---|
| 555 | freeNodes->insert(lFree);
|
---|
| 556 | freeNodes->insert(rFree);
|
---|
| 557 | }
|
---|
| 558 | return;
|
---|
| 559 | }
|
---|
| 560 | // grant another chance to previously failed directions:
|
---|
| 561 | mask = 00;
|
---|
| 562 | // insert a back-pointer if necessary
|
---|
| 563 | nodeID = makePointer(nodeID);
|
---|
| 564 | // store the splitting plane value in the node
|
---|
| 565 | unsigned int bitfield = *(unsigned int*)(&minimumCostCut) & 0xfffffffc | axis;
|
---|
| 566 | nodeTable[nodeID] = *(float*)(&bitfield);
|
---|
| 567 | // mark node as a non-leaf node
|
---|
| 568 | *(unsigned int*)&nodeTable[nodeID | nCacheLineNodes] &= ~(0x1 << (nodeID & nCacheLineNodes));
|
---|
| 569 |
|
---|
| 570 | currentDepth++; if(currentDepth > depth) depth = currentDepth;
|
---|
| 571 |
|
---|
| 572 | // allocate child nodes, pass the objects on to them
|
---|
| 573 | unsigned int leftChildMade;
|
---|
| 574 | unsigned int rightChildMade;
|
---|
| 575 |
|
---|
| 576 | // handle the two branches, the one with less objects first
|
---|
| 577 | bool firstBranch = false;
|
---|
| 578 | bool rightBranchHasMoreObjects = (minimumLeft << 1) + minimumIntersected < nObjects;
|
---|
| 579 | followChildren(nodeID, leftChildMade, rightChildMade);
|
---|
| 580 | do
|
---|
| 581 | {
|
---|
| 582 | firstBranch = !firstBranch;
|
---|
| 583 | if(firstBranch && rightBranchHasMoreObjects
|
---|
| 584 | || !firstBranch && !rightBranchHasMoreObjects)
|
---|
| 585 | {
|
---|
| 586 | // left branch
|
---|
| 587 | if(minimumLeft + minimumIntersected)
|
---|
| 588 | {
|
---|
| 589 | // branch has objects
|
---|
| 590 | // create new object extrema array
|
---|
| 591 | BoundingBox diver = limits;
|
---|
| 592 | limiMax = minimumCostCut;
|
---|
| 593 | unsigned int * leftChildBounds = new unsigned int[(minimumLeft + minimumIntersected) << 1];
|
---|
| 594 | unsigned int* copycatLeft = leftChildBounds;
|
---|
| 595 | unsigned int* snoop = boundsArray;
|
---|
| 596 | for(; snoop < minimumCostPosition; snoop++)
|
---|
| 597 | {
|
---|
| 598 | // for every mimimum left of cutting plane
|
---|
| 599 | if(!(*snoop & 0x80000000))
|
---|
| 600 | {
|
---|
| 601 | // add one for the mimimum
|
---|
| 602 | *copycatLeft = *snoop;
|
---|
| 603 | copycatLeft++;
|
---|
| 604 | // add one for the maximum
|
---|
| 605 | *copycatLeft = *snoop | 0x80000000;
|
---|
| 606 | copycatLeft++;
|
---|
| 607 | }
|
---|
| 608 | }
|
---|
| 609 | unsigned char turnedAxis = axis;
|
---|
| 610 | do{ turnedAxis = (turnedAxis + 1)%3;
|
---|
| 611 | }while(mask & (010 << turnedAxis));
|
---|
| 612 | build(leftChildMade, leftChildBounds, minimumLeft + minimumIntersected, limits, mask | turnedAxis);
|
---|
| 613 | limits = diver;
|
---|
| 614 | }
|
---|
| 615 | else
|
---|
| 616 | {
|
---|
| 617 | // make empty leaf
|
---|
| 618 | unsigned int empty = leftChildMade;
|
---|
| 619 | (unsigned int *&)nodeTable[empty] = 0x0;
|
---|
| 620 | *(unsigned int*)&nodeTable[empty | nCacheLineNodes] |= 0x1 << (empty & nCacheLineNodes);
|
---|
| 621 | // add orphaned nodes to free list
|
---|
| 622 | unsigned int eleLeft;
|
---|
| 623 | unsigned int eleRight;
|
---|
| 624 | if(getFreeNodes(empty, eleLeft, eleRight))
|
---|
| 625 | {
|
---|
| 626 | freeNodes->insert(eleLeft);
|
---|
| 627 | freeNodes->insert(eleRight);
|
---|
| 628 | }
|
---|
| 629 | }
|
---|
| 630 | }
|
---|
| 631 | else
|
---|
| 632 | {
|
---|
| 633 | if(nObjects - minimumLeft)
|
---|
| 634 | {
|
---|
| 635 | BoundingBox diver = limits;
|
---|
| 636 | limiMin = minimumCostCut;
|
---|
| 637 |
|
---|
| 638 | // create new bounds array
|
---|
| 639 | unsigned int * rightChildBounds;
|
---|
| 640 | rightChildBounds = new unsigned int[(nObjects - minimumLeft) << 1 ];
|
---|
| 641 |
|
---|
| 642 | unsigned int* copycatRight = rightChildBounds;
|
---|
| 643 | unsigned int* snoop = minimumCostPosition;
|
---|
| 644 | for(; snoop < boundsArray + (nObjects << 1); snoop++)
|
---|
| 645 | {
|
---|
| 646 | // for every maximum right of cutting plane
|
---|
| 647 | if(*snoop & 0x80000000)
|
---|
| 648 | {
|
---|
| 649 | *copycatRight = *snoop & 0x7fffffff;
|
---|
| 650 | copycatRight++;
|
---|
| 651 | *copycatRight = *snoop;
|
---|
| 652 | copycatRight++;
|
---|
| 653 | }
|
---|
| 654 | }
|
---|
| 655 |
|
---|
| 656 | unsigned int turnedAxis = axis;
|
---|
| 657 | do{ turnedAxis = (turnedAxis + 1)%3;
|
---|
| 658 | }while(mask & (010 << turnedAxis));
|
---|
| 659 | build(rightChildMade, rightChildBounds, nObjects - minimumLeft, limits, mask | turnedAxis);
|
---|
| 660 | limits = diver;
|
---|
| 661 | }
|
---|
| 662 | else
|
---|
| 663 | {
|
---|
| 664 | // empty leaf
|
---|
| 665 | unsigned int empty = rightChildMade;
|
---|
| 666 | (unsigned int *&)nodeTable[empty] = 0x0;
|
---|
| 667 | *(unsigned int*)&nodeTable[empty | nCacheLineNodes] |= 0x1 << (empty & nCacheLineNodes);
|
---|
| 668 | // orphaned nodes
|
---|
| 669 | unsigned int eleLeft;
|
---|
| 670 | unsigned int eleRight;
|
---|
| 671 | if(getFreeNodes(empty, eleLeft, eleRight))
|
---|
| 672 | {
|
---|
| 673 | freeNodes->insert(eleLeft);
|
---|
| 674 | freeNodes->insert(eleRight);
|
---|
| 675 | }
|
---|
| 676 | }
|
---|
| 677 | }
|
---|
| 678 | }while(firstBranch);
|
---|
| 679 | currentDepth--;
|
---|
| 680 | delete boundsArray;
|
---|
| 681 | }
|
---|
| 682 |
|
---|
| 683 | void KDTree::quickSort(unsigned int *lo0, unsigned int* hi0, unsigned char axis)
|
---|
| 684 | {
|
---|
| 685 | if ( hi0 > lo0)
|
---|
| 686 | {
|
---|
| 687 | unsigned int* lo = lo0;
|
---|
| 688 | unsigned int* hi = hi0;
|
---|
| 689 |
|
---|
| 690 | // establish partition element as the midpoint of the array.
|
---|
| 691 | unsigned int* midPos =
|
---|
| 692 | lo0 + ( ((unsigned int)hi0 - (unsigned int)lo0) / sizeof(unsigned int) / 2);
|
---|
| 693 | unsigned int midIndex = *midPos;
|
---|
| 694 |
|
---|
| 695 | // loop through the array until indices cross
|
---|
| 696 | while( lo <= hi )
|
---|
| 697 | {
|
---|
| 698 | // find the first element that is greater than or equal to
|
---|
| 699 | // the partition element starting from the left Index.
|
---|
| 700 | // getBoundValue(lo, axis) < mid ) && *lo != midIndex)
|
---|
| 701 | while( ( lo < hi0 ) && ( compare(*lo, midIndex, axis)))
|
---|
| 702 | ++lo;
|
---|
| 703 |
|
---|
| 704 | // find an element that is smaller than or equal to
|
---|
| 705 | // the partition element starting from the right Index.
|
---|
| 706 | //( getBoundValue(hi, axis) > mid ) && *hi != midIndex)
|
---|
| 707 | while( ( hi > lo0 ) && ( compare(midIndex, *hi, axis)))
|
---|
| 708 | --hi;
|
---|
| 709 | // if the indices have not crossed, swap
|
---|
| 710 | if( lo <= hi )
|
---|
| 711 | {
|
---|
| 712 | unsigned int temp = *lo;
|
---|
| 713 | *lo = *hi;
|
---|
| 714 | *hi = temp;
|
---|
| 715 | ++lo;
|
---|
| 716 | --hi;
|
---|
| 717 | }
|
---|
| 718 | }
|
---|
| 719 | // If the right index has not reached the left side of array
|
---|
| 720 | // must now sort the left partition.
|
---|
| 721 | if( lo0 < hi )
|
---|
| 722 | quickSort( lo0, hi, axis);
|
---|
| 723 | // If the left index has not reached the right side of array
|
---|
| 724 | // must now sort the right partition.
|
---|
| 725 | if( lo < hi0 )
|
---|
| 726 | quickSort( lo, hi0, axis);
|
---|
| 727 | }
|
---|
| 728 | }
|
---|
| 729 |
|
---|
| 730 | KDTree::KDTree (Intersectable** iObjects, int nObjects){
|
---|
| 731 | // take parameters
|
---|
| 732 | this->nObjects = nObjects;
|
---|
| 733 | objects = iObjects;
|
---|
| 734 |
|
---|
| 735 | // determine bounding box
|
---|
| 736 | createBoundingBox (iObjects, nObjects);
|
---|
| 737 |
|
---|
| 738 | // determine error because of 21 bits mantissa representaion
|
---|
| 739 | float largest = 0.0f;
|
---|
| 740 | for(int i=0; i<3; i++)
|
---|
| 741 | if( boundingBox.maxPoint[i] > largest)
|
---|
| 742 | largest = boundingBox.maxPoint[i];
|
---|
| 743 | for(int o=0; o<3; o++)
|
---|
| 744 | if( - boundingBox.minPoint[o] > largest)
|
---|
| 745 | largest = - boundingBox.minPoint[o];
|
---|
| 746 | epsilon = largest / 524288.0f; // e = X * 2^19
|
---|
| 747 |
|
---|
| 748 | // set up memory structure constants
|
---|
| 749 | nCacheLineBytes = KDTREE_CACHE_LINE_BYTES;
|
---|
| 750 | // a cache line has 2^n - 1 nodes, plus 4 bytes (1 node) for leaf bits
|
---|
| 751 | nCacheLineNodes = nCacheLineBytes / sizeof(float) - 1;
|
---|
| 752 |
|
---|
| 753 | // size of cache line memory pool
|
---|
| 754 | maxNCacheLines = nObjects * 16 / nCacheLineNodes + 1;
|
---|
| 755 | // cache lines already allocated
|
---|
| 756 | nCacheLines = 1;
|
---|
| 757 |
|
---|
| 758 | unsigned int maxPossibleFree = maxNCacheLines * nCacheLineNodes / 2;
|
---|
| 759 | // allocate free nodes heap
|
---|
| 760 | freeNodes = new Heap<unsigned int>(maxPossibleFree);
|
---|
| 761 |
|
---|
| 762 | // allocate cache line memory pool (large size, will be shrinked after the build)
|
---|
| 763 | // nodes in cache line pool + offset correction
|
---|
| 764 | poolNodeTable = (float*)malloc(sizeof(float) *
|
---|
| 765 | ( maxNCacheLines * (nCacheLineNodes + 1) + nCacheLineNodes + 1 ));
|
---|
| 766 | nodeTable = (float*)(((unsigned int)poolNodeTable / nCacheLineBytes + 1) * nCacheLineBytes);
|
---|
| 767 |
|
---|
| 768 | // collect the initial object extremes to pass on to the build algorithm
|
---|
| 769 | unsigned int* objectBoundaries = new unsigned int[nObjects << 1];
|
---|
| 770 | for(unsigned int fill=0;fill<nObjects;fill++){
|
---|
| 771 | objectBoundaries[fill << 1] = fill & 0x7fffffff;
|
---|
| 772 | objectBoundaries[(fill << 1) + 1] = fill | 0x80000000;
|
---|
| 773 | }
|
---|
| 774 |
|
---|
| 775 | // GO! GO! GO!
|
---|
| 776 | depth = currentDepth = 1;
|
---|
| 777 | build(0, objectBoundaries, nObjects, boundingBox, 0);
|
---|
| 778 | traverseStack = new TraverseStack[depth];
|
---|
| 779 |
|
---|
| 780 | // get rid of garbage
|
---|
| 781 | // decrease cache line memory pool to fit actual memory need
|
---|
| 782 | realloc(poolNodeTable, (nCacheLines + 1) * nCacheLineBytes);
|
---|
| 783 |
|
---|
| 784 | delete freeNodes;
|
---|
| 785 | }
|
---|
| 786 |
|
---|
| 787 | unsigned int* KDTree::findBound(unsigned int *extremeArrayStart, unsigned int nBounds, float loc, unsigned char axis)
|
---|
| 788 | {
|
---|
| 789 | while(nBounds > 1)
|
---|
| 790 | {
|
---|
| 791 | unsigned int wBounds = nBounds >> 1;
|
---|
| 792 | if(getBoundValue(extremeArrayStart+wBounds, axis) < loc)
|
---|
| 793 | {
|
---|
| 794 | extremeArrayStart += wBounds;
|
---|
| 795 | nBounds -= wBounds;
|
---|
| 796 | }
|
---|
| 797 | else
|
---|
| 798 | nBounds = wBounds;
|
---|
| 799 | }
|
---|
| 800 | return extremeArrayStart;
|
---|
| 801 |
|
---|
| 802 | }
|
---|
| 803 |
|
---|
| 804 | /*!this is more complicated then one would predict. rules are:
|
---|
| 805 | - if values are significantly different, no problem
|
---|
| 806 | - the minimum of a patch is smaller than its maximum
|
---|
| 807 | - if a maximum and a minimum are near, the other extrema of the patches decide
|
---|
| 808 | - if all four extrema are near, the 2 ends of a patch have to be simultaneusly
|
---|
| 809 | smaller or bigger than the other two ends
|
---|
| 810 | */
|
---|
| 811 | bool KDTree::compare(unsigned int aIndex, unsigned int bIndex, unsigned char axis)
|
---|
| 812 | {
|
---|
| 813 | unsigned int caIndex = aIndex & 0x7fffffff;
|
---|
| 814 | float aBegin = objects[caIndex]->bbox.minPoint[axis];
|
---|
| 815 | float aEnd = objects[caIndex]->bbox.maxPoint[axis];
|
---|
| 816 | unsigned int cbIndex = bIndex & 0x7fffffff;
|
---|
| 817 | float bBegin = objects[cbIndex]->bbox.minPoint[axis];
|
---|
| 818 | float bEnd = objects[cbIndex]->bbox.maxPoint[axis];
|
---|
| 819 |
|
---|
| 820 | if(aIndex & 0x80000000)
|
---|
| 821 | if(bIndex & 0x80000000)
|
---|
| 822 | {
|
---|
| 823 | if(caIndex == cbIndex)
|
---|
| 824 | return false;
|
---|
| 825 | if(aEnd + epsilon < bEnd)
|
---|
| 826 | return true;
|
---|
| 827 | if(bEnd + epsilon < aEnd)
|
---|
| 828 | return false;
|
---|
| 829 | if(aBegin + epsilon < bBegin)
|
---|
| 830 | return true;
|
---|
| 831 | if(bBegin + epsilon < aBegin)
|
---|
| 832 | return false;
|
---|
| 833 | return caIndex < cbIndex;
|
---|
| 834 | }
|
---|
| 835 | else
|
---|
| 836 | {
|
---|
| 837 | if(caIndex == cbIndex)
|
---|
| 838 | return false;
|
---|
| 839 | if(aEnd + epsilon < bBegin)
|
---|
| 840 | return true;
|
---|
| 841 | if(bBegin + epsilon < aEnd)
|
---|
| 842 | return false;
|
---|
| 843 | if(aBegin + epsilon < bEnd)
|
---|
| 844 | return true;
|
---|
| 845 | return caIndex < cbIndex;
|
---|
| 846 |
|
---|
| 847 | }
|
---|
| 848 | else
|
---|
| 849 | if(bIndex & 0x80000000)
|
---|
| 850 | {
|
---|
| 851 | if(caIndex == cbIndex)
|
---|
| 852 | return true;
|
---|
| 853 | if(bEnd + epsilon < aBegin)
|
---|
| 854 | return false;
|
---|
| 855 | if(aBegin + epsilon < bEnd)
|
---|
| 856 | return true;
|
---|
| 857 | if(bBegin + epsilon < aEnd)
|
---|
| 858 | return false;
|
---|
| 859 | return caIndex + epsilon < cbIndex;
|
---|
| 860 | }
|
---|
| 861 | else
|
---|
| 862 | {
|
---|
| 863 | if(caIndex == cbIndex)
|
---|
| 864 | return false;
|
---|
| 865 | if(aBegin + epsilon < bBegin)
|
---|
| 866 | return true;
|
---|
| 867 | if(bBegin + epsilon < aBegin)
|
---|
| 868 | return false;
|
---|
| 869 | if(aEnd + epsilon < bEnd)
|
---|
| 870 | return true;
|
---|
| 871 | if(bEnd + epsilon < aEnd)
|
---|
| 872 | return false;
|
---|
| 873 | return caIndex < cbIndex;
|
---|
| 874 |
|
---|
| 875 | }
|
---|
| 876 | }
|
---|
| 877 |
|
---|
| 878 | inline unsigned int KDTree::makePointer(unsigned int originalNode)
|
---|
| 879 | {
|
---|
| 880 | unsigned int subPos = originalNode & nCacheLineNodes; // position within cache line
|
---|
| 881 | unsigned int supPos = originalNode & ~nCacheLineNodes; // index of cache line
|
---|
| 882 | subPos = (subPos << 1) + 1; // child position
|
---|
| 883 | if(subPos < nCacheLineNodes) // within cache line
|
---|
| 884 | {
|
---|
| 885 | return originalNode;
|
---|
| 886 | }
|
---|
| 887 | else // find free node
|
---|
| 888 | {
|
---|
| 889 | unsigned int emptyNode;
|
---|
| 890 | if(!freeNodes->isEmpty())
|
---|
| 891 | {
|
---|
| 892 | emptyNode = freeNodes->removeMin();
|
---|
| 893 | }
|
---|
| 894 | else
|
---|
| 895 | {
|
---|
| 896 | //allocate a new cache line
|
---|
| 897 | emptyNode = nCacheLines * (nCacheLineNodes + 1); // root of new cache line
|
---|
| 898 | nCacheLines++;
|
---|
| 899 | if(nCacheLines > maxNCacheLines)
|
---|
| 900 | {
|
---|
| 901 | maxNCacheLines *= 1.1;
|
---|
| 902 | float * largerPoolNodeTable = (float*)malloc(
|
---|
| 903 | sizeof(float) * ( maxNCacheLines * (nCacheLineNodes + 1) + nCacheLineNodes + 1 ));
|
---|
| 904 | float* largerNodeTable = (float*)(((unsigned int)largerPoolNodeTable / nCacheLineBytes + 1) * nCacheLineBytes);
|
---|
| 905 | memcpy(largerNodeTable, nodeTable, nCacheLines * nCacheLineBytes);
|
---|
| 906 | nodeTable = largerNodeTable;
|
---|
| 907 | free(poolNodeTable);
|
---|
| 908 | poolNodeTable = largerPoolNodeTable;
|
---|
| 909 | }
|
---|
| 910 | }
|
---|
| 911 | // mark as non-leaf (being last-row and non-leaf means pointer node)
|
---|
| 912 | *(unsigned int*)&nodeTable[originalNode | nCacheLineNodes] &= ~(0x1 << (originalNode & nCacheLineNodes));
|
---|
| 913 | // insert index of empty node
|
---|
| 914 | ((unsigned int*)nodeTable)[originalNode] = emptyNode;
|
---|
| 915 | return emptyNode;
|
---|
| 916 | }
|
---|
| 917 | }
|
---|