1 | #pragma once
|
---|
2 | #include "light.hpp"
|
---|
3 |
|
---|
4 | class SquareLight :
|
---|
5 | public Light
|
---|
6 | {
|
---|
7 | Vector edge1; |
---|
8 | Vector edge2; |
---|
9 | public: |
---|
10 | Vector polyNodes[4]; |
---|
11 | unsigned int nPolyNodes; |
---|
12 | |
---|
13 | SquareLight(Vector* nodes, int nNodes, const Vector& radiance) |
---|
14 | { |
---|
15 | if(nNodes < 3) exit(-1); |
---|
16 | nPolyNodes = nNodes; |
---|
17 | for(int i=0; i<nPolyNodes; i++) |
---|
18 | polyNodes[i] = nodes[i]; |
---|
19 | Vector a; a.setDifference(nodes[0], nodes[1]); |
---|
20 | Vector b; b.setDifference(nodes[0], nodes[2]); |
---|
21 | edge1 = a; |
---|
22 | edge2.setDifference(nodes[0], nodes[nNodes-1]); |
---|
23 | this->direction.setCrossProduct(b, a); |
---|
24 | this->direction.normalize(); |
---|
25 | this->radiance = radiance; |
---|
26 | luminance = radiance.r + radiance.g + radiance.b; |
---|
27 | this->position.clear(); |
---|
28 | for(int c=0; c<nNodes; c++) |
---|
29 | this->position += nodes[c]; |
---|
30 | this->position *= 1.0f / (float)nNodes; |
---|
31 | |
---|
32 | area = sqrt(edge1.norm2() * edge2.norm2()); |
---|
33 | power = radiance; |
---|
34 | power *= area; |
---|
35 | } |
---|
36 | float getFormFactor(const Vector& lookpoint, const Vector& normal) const |
---|
37 | { |
---|
38 | Vector ffxcd, dif[4], cutRemains[5];
|
---|
39 | ffxcd.clear();
|
---|
40 | float acc = 0.0f;
|
---|
41 |
|
---|
42 | bool in[4];
|
---|
43 | for(int iCutter=0; iCutter<4; iCutter++)
|
---|
44 | {
|
---|
45 | dif[iCutter].setDifference(polyNodes[iCutter], lookpoint);
|
---|
46 | dif[iCutter].normalize();
|
---|
47 | in[iCutter] = (dif[iCutter] * normal > 0.0f);
|
---|
48 | }
|
---|
49 | int nRemain = 0;
|
---|
50 | for(int iGutter=0;iGutter<4;iGutter++)
|
---|
51 | {
|
---|
52 | int ta = iGutter & 3;
|
---|
53 | int tb = (iGutter + 1) & 3;
|
---|
54 | if(in[ta])
|
---|
55 | {
|
---|
56 | cutRemains[nRemain++] = dif[ta];
|
---|
57 | if(!in[tb])
|
---|
58 | {
|
---|
59 | Vector cutEdgePlaneNormal;
|
---|
60 | cutEdgePlaneNormal.setCrossProduct(dif[ta],dif[tb]);
|
---|
61 | cutEdgePlaneNormal.normalize();
|
---|
62 | cutRemains[nRemain].setCrossProduct(cutEdgePlaneNormal, normal);
|
---|
63 | cutRemains[nRemain++].normalize();
|
---|
64 | }
|
---|
65 | }
|
---|
66 | else
|
---|
67 | if(in[tb])
|
---|
68 | {
|
---|
69 | Vector cutEdgePlaneNormal;
|
---|
70 | cutEdgePlaneNormal.setCrossProduct(dif[ta],dif[tb]);
|
---|
71 | cutEdgePlaneNormal.normalize();
|
---|
72 | cutRemains[nRemain].setCrossProduct(normal, cutEdgePlaneNormal);
|
---|
73 | cutRemains[nRemain++].normalize();
|
---|
74 | }
|
---|
75 | }
|
---|
76 |
|
---|
77 | if(nRemain == 0) return 0.0f;
|
---|
78 |
|
---|
79 | for(int pir = 0; pir < nRemain; pir++)
|
---|
80 | {
|
---|
81 | Vector rxr; rxr.setCrossProduct(cutRemains[pir], cutRemains[(pir + 1)%nRemain]);
|
---|
82 | float sinb = rxr.norm();
|
---|
83 | rxr *= 1.0f / sinb;
|
---|
84 | float alfa = asinf(sinb);
|
---|
85 | if(cutRemains[pir] * cutRemains[(pir + 1)%nRemain] < 0.0f)
|
---|
86 | alfa = 3.14f - alfa;
|
---|
87 | rxr *= alfa;
|
---|
88 | // ffxcd += rxr;
|
---|
89 | acc += rxr * normal;
|
---|
90 | }
|
---|
91 | return acc * 0.5f;
|
---|
92 | // return ffxcd * normal * 0.5f;
|
---|
93 | } |
---|
94 | Vector getSample() const |
---|
95 | { |
---|
96 | Vector ret = polyNodes[0]; |
---|
97 | ret.addScaled(-(float)rand() / RAND_MAX, edge1 ); |
---|
98 | ret.addScaled(-(float)rand() / RAND_MAX, edge2 ); |
---|
99 | return ret; |
---|
100 | }
|
---|
101 | bool isPossiblyVisible(const Vector& point) const
|
---|
102 | {
|
---|
103 | Vector diff; diff.setDifference(point, position);
|
---|
104 | return diff * direction > 0;
|
---|
105 | }
|
---|
106 | };
|
---|