1 | #include "dxstdafx.h"
|
---|
2 | #include "trianglemesh.h"
|
---|
3 | #include "Radion.hpp"
|
---|
4 |
|
---|
5 | TriangleMesh::TriangleMesh(Material* material, unsigned short* indexBuffer, unsigned int nFaces,
|
---|
6 | FlexVertexArray& vertexBuffer, unsigned int nVertices)
|
---|
7 | {
|
---|
8 | this->material = material;
|
---|
9 | nMeshVertices = nVertices;
|
---|
10 | nMeshPatches = nFaces;
|
---|
11 |
|
---|
12 | meshVertices = new Vector[nMeshVertices];
|
---|
13 | normals = new Vector[nMeshVertices];
|
---|
14 | texCoords = new Vector[nMeshVertices];
|
---|
15 | for(int u=0; u < nMeshVertices; u++)
|
---|
16 | {
|
---|
17 | meshVertices[u] = vertexBuffer[u].pos();
|
---|
18 | normals[u] = vertexBuffer[u].normal();
|
---|
19 | texCoords[u] = vertexBuffer[u].tex0();
|
---|
20 | }
|
---|
21 |
|
---|
22 | meshPatches = new Patch[nMeshPatches];
|
---|
23 |
|
---|
24 | int pup = 0;
|
---|
25 | int p = 0;
|
---|
26 | for(p = 0; p < nMeshPatches; p++)
|
---|
27 | {
|
---|
28 | meshPatches[p].vertexIndices[0] = indexBuffer[pup++];
|
---|
29 | meshPatches[p].vertexIndices[1] = indexBuffer[pup++];
|
---|
30 | meshPatches[p].vertexIndices[2] = indexBuffer[pup++];
|
---|
31 | }
|
---|
32 | //calculate normals
|
---|
33 | for(p = 0; p < nMeshPatches; p++)
|
---|
34 | {
|
---|
35 | meshPatches[p].flatNormal = (
|
---|
36 | meshVertices[meshPatches[p].vertexIndices[0]] -
|
---|
37 | meshVertices[meshPatches[p].vertexIndices[1]]
|
---|
38 | )
|
---|
39 | &&
|
---|
40 | (
|
---|
41 | meshVertices[meshPatches[p].vertexIndices[0]] -
|
---|
42 | meshVertices[meshPatches[p].vertexIndices[2]]
|
---|
43 | );
|
---|
44 | meshPatches[p].flatNormal.normalize();
|
---|
45 | normals[meshPatches[p].vertexIndices[0]] += meshPatches[p].flatNormal;
|
---|
46 | normals[meshPatches[p].vertexIndices[1]] += meshPatches[p].flatNormal;
|
---|
47 | normals[meshPatches[p].vertexIndices[2]] += meshPatches[p].flatNormal;
|
---|
48 | meshPatches[p].hyperPlaneShiftOffset =
|
---|
49 | meshVertices[meshPatches[p].vertexIndices[0]] *
|
---|
50 | meshPatches[p].flatNormal;
|
---|
51 |
|
---|
52 | Vector A[3];
|
---|
53 | A[0] = meshVertices[meshPatches[p].vertexIndices[0]];
|
---|
54 | A[1] = meshVertices[meshPatches[p].vertexIndices[1]];
|
---|
55 | A[2] = meshVertices[meshPatches[p].vertexIndices[2]];
|
---|
56 | float t4 = A[0][0]*A[1][1];
|
---|
57 | float t6 = A[0][0]*A[1][2];
|
---|
58 | float t8 = A[0][1]*A[1][0];
|
---|
59 | float t10 = A[0][2]*A[1][0];
|
---|
60 | float t12 = A[0][1]*A[2][0];
|
---|
61 | float t14 = A[0][2]*A[2][0];
|
---|
62 | float t17 = 1/(t4*A[2][2]-t6*A[2][1]-t8*A[2][2]+t10*A[2][1]+t12*A[1][2]-t14*A[1][1]);
|
---|
63 |
|
---|
64 | // if(_isnan (t17) )
|
---|
65 | // AfxMessageBox("mtx inversion gbz");
|
---|
66 |
|
---|
67 | Vector* m = meshPatches[p].inverseVertexMatrix;
|
---|
68 |
|
---|
69 | m[0][0] = (A[1][1]*A[2][2]-A[1][2]*A[2][1])*t17;
|
---|
70 | m[1][0] = -(A[0][1]*A[2][2]-A[0][2]*A[2][1])*t17;
|
---|
71 | m[2][0] = -(-A[0][1]*A[1][2]+A[0][2]*A[1][1])*t17;
|
---|
72 | m[0][1] = -(A[1][0]*A[2][2]-A[1][2]*A[2][0])*t17;
|
---|
73 | m[1][1] = (A[0][0]*A[2][2]-t14)*t17;
|
---|
74 | m[2][1] = -(t6-t10)*t17;
|
---|
75 | m[0][2] = -(-A[1][0]*A[2][1]+A[1][1]*A[2][0])*t17;
|
---|
76 | m[1][2] = -(A[0][0]*A[2][1]-t12)*t17;
|
---|
77 | m[2][2] = (t4-t8)*t17;
|
---|
78 |
|
---|
79 | meshPatches[p].bbox.minPoint = meshVertices[meshPatches[p].vertexIndices[0]];
|
---|
80 | meshPatches[p].bbox.minPoint <= meshVertices[meshPatches[p].vertexIndices[1]];
|
---|
81 | meshPatches[p].bbox.minPoint <= meshVertices[meshPatches[p].vertexIndices[2]];
|
---|
82 |
|
---|
83 | meshPatches[p].bbox.maxPoint = meshVertices[meshPatches[p].vertexIndices[0]];
|
---|
84 | meshPatches[p].bbox.maxPoint >= meshVertices[meshPatches[p].vertexIndices[1]];
|
---|
85 | meshPatches[p].bbox.maxPoint >= meshVertices[meshPatches[p].vertexIndices[2]];
|
---|
86 | }
|
---|
87 | for(int n=0; n<nMeshVertices; n++)
|
---|
88 | {
|
---|
89 | normals[n].normalize();
|
---|
90 | }
|
---|
91 | Intersectable** objs = new Intersectable*[nMeshPatches];
|
---|
92 | for(int t=0; t<nMeshPatches; t++)
|
---|
93 | objs[t] = meshPatches + t;
|
---|
94 | meshTree = new KDTree(objs, nMeshPatches);
|
---|
95 | bbox = meshTree->getBoundingBox();
|
---|
96 | delete objs;
|
---|
97 |
|
---|
98 | buildAreaTree();
|
---|
99 | }
|
---|
100 |
|
---|
101 | TriangleMesh::TriangleMesh(std::istream& isc, Material** materialTable, int nMaterials)
|
---|
102 | {
|
---|
103 | char keyword[100];
|
---|
104 | isc >> keyword; //material
|
---|
105 | isc >> keyword;
|
---|
106 | for(int i=0; i < nMaterials; i++)
|
---|
107 | {
|
---|
108 | material = materialTable[i];
|
---|
109 | if(strcmp(keyword, material->getName()) == 0) break;
|
---|
110 | }
|
---|
111 | isc >> keyword;
|
---|
112 | isc >> nMeshVertices;
|
---|
113 | meshVertices = new Vector[nMeshVertices];
|
---|
114 | normals = new Vector[nMeshVertices];
|
---|
115 | for(int v=0; v<nMeshVertices; v++)
|
---|
116 | {
|
---|
117 | float a, b, c;
|
---|
118 | isc >> a >> b >> c;
|
---|
119 | // meshVertices[v] = Vector(a + (0.1f * (float)rand() / RAND_MAX),
|
---|
120 | // b + (0.1f * (float)rand() / RAND_MAX),
|
---|
121 | // c + (0.1f * (float)rand() / RAND_MAX));
|
---|
122 | meshVertices[v] = Vector(a , b, c);
|
---|
123 | normals[v].clear();
|
---|
124 | }
|
---|
125 | bbox.minPoint = meshVertices[0];
|
---|
126 | bbox.maxPoint = meshVertices[0];
|
---|
127 | for(int w=1; w<nMeshVertices; w++)
|
---|
128 | {
|
---|
129 | bbox.minPoint <= meshVertices[w];
|
---|
130 | bbox.maxPoint >= meshVertices[w];
|
---|
131 | }
|
---|
132 | isc >> keyword;
|
---|
133 | isc >> nMeshPatches;
|
---|
134 | meshPatches = new Patch[nMeshPatches];
|
---|
135 | int p;
|
---|
136 | for(p = 0; p < nMeshPatches; p++)
|
---|
137 | {
|
---|
138 | signed int ai, bi, ci;
|
---|
139 | isc >> ai >> bi >> ci;
|
---|
140 | // if(di < 0)
|
---|
141 | {
|
---|
142 | meshPatches[p].vertexIndices[0] = ai;
|
---|
143 | meshPatches[p].vertexIndices[1] = bi;
|
---|
144 | meshPatches[p].vertexIndices[2] = ci;
|
---|
145 | }
|
---|
146 | /* else //quad, tessellate
|
---|
147 | {
|
---|
148 | meshPatches[p].vertexIndices[0] = ai;
|
---|
149 | meshPatches[p].vertexIndices[1] = bi;
|
---|
150 | meshPatches[p].vertexIndices[2] = ci;
|
---|
151 | p++;
|
---|
152 | meshPatches[p].vertexIndices[0] = ai;
|
---|
153 | meshPatches[p].vertexIndices[1] = ci;
|
---|
154 | meshPatches[p].vertexIndices[2] = di;
|
---|
155 | isc >> ai; //final -1
|
---|
156 | }*/
|
---|
157 | }
|
---|
158 | //calculate normals
|
---|
159 | for(p = 0; p < nMeshPatches; p++)
|
---|
160 | {
|
---|
161 | meshPatches[p].flatNormal = (
|
---|
162 | meshVertices[meshPatches[p].vertexIndices[0]] -
|
---|
163 | meshVertices[meshPatches[p].vertexIndices[1]]
|
---|
164 | )
|
---|
165 | &&
|
---|
166 | (
|
---|
167 | meshVertices[meshPatches[p].vertexIndices[0]] -
|
---|
168 | meshVertices[meshPatches[p].vertexIndices[2]]
|
---|
169 | );
|
---|
170 | meshPatches[p].flatNormal.normalize();
|
---|
171 | normals[meshPatches[p].vertexIndices[0]] += meshPatches[p].flatNormal;
|
---|
172 | normals[meshPatches[p].vertexIndices[1]] += meshPatches[p].flatNormal;
|
---|
173 | normals[meshPatches[p].vertexIndices[2]] += meshPatches[p].flatNormal;
|
---|
174 | meshPatches[p].hyperPlaneShiftOffset =
|
---|
175 | meshVertices[meshPatches[p].vertexIndices[0]] *
|
---|
176 | meshPatches[p].flatNormal;
|
---|
177 |
|
---|
178 | Vector A[3];
|
---|
179 | A[0] = meshVertices[meshPatches[p].vertexIndices[0]];
|
---|
180 | A[1] = meshVertices[meshPatches[p].vertexIndices[1]];
|
---|
181 | A[2] = meshVertices[meshPatches[p].vertexIndices[2]];
|
---|
182 | float t4 = A[0][0]*A[1][1];
|
---|
183 | float t6 = A[0][0]*A[1][2];
|
---|
184 | float t8 = A[0][1]*A[1][0];
|
---|
185 | float t10 = A[0][2]*A[1][0];
|
---|
186 | float t12 = A[0][1]*A[2][0];
|
---|
187 | float t14 = A[0][2]*A[2][0];
|
---|
188 | float t17 = 1/(t4*A[2][2]-t6*A[2][1]-t8*A[2][2]+t10*A[2][1]+t12*A[1][2]-t14*A[1][1]);
|
---|
189 |
|
---|
190 | // if(_isnan (t17) )
|
---|
191 | // AfxMessageBox("mtx inversion gbz");
|
---|
192 |
|
---|
193 | Vector* m = meshPatches[p].inverseVertexMatrix;
|
---|
194 |
|
---|
195 | m[0][0] = (A[1][1]*A[2][2]-A[1][2]*A[2][1])*t17;
|
---|
196 | m[1][0] = -(A[0][1]*A[2][2]-A[0][2]*A[2][1])*t17;
|
---|
197 | m[2][0] = -(-A[0][1]*A[1][2]+A[0][2]*A[1][1])*t17;
|
---|
198 | m[0][1] = -(A[1][0]*A[2][2]-A[1][2]*A[2][0])*t17;
|
---|
199 | m[1][1] = (A[0][0]*A[2][2]-t14)*t17;
|
---|
200 | m[2][1] = -(t6-t10)*t17;
|
---|
201 | m[0][2] = -(-A[1][0]*A[2][1]+A[1][1]*A[2][0])*t17;
|
---|
202 | m[1][2] = -(A[0][0]*A[2][1]-t12)*t17;
|
---|
203 | m[2][2] = (t4-t8)*t17;
|
---|
204 |
|
---|
205 | meshPatches[p].bbox.minPoint = meshVertices[meshPatches[p].vertexIndices[0]];
|
---|
206 | meshPatches[p].bbox.minPoint <= meshVertices[meshPatches[p].vertexIndices[1]];
|
---|
207 | meshPatches[p].bbox.minPoint <= meshVertices[meshPatches[p].vertexIndices[2]];
|
---|
208 |
|
---|
209 | meshPatches[p].bbox.maxPoint = meshVertices[meshPatches[p].vertexIndices[0]];
|
---|
210 | meshPatches[p].bbox.maxPoint >= meshVertices[meshPatches[p].vertexIndices[1]];
|
---|
211 | meshPatches[p].bbox.maxPoint >= meshVertices[meshPatches[p].vertexIndices[2]];
|
---|
212 | }
|
---|
213 | for(int n=0; n<nMeshVertices; n++)
|
---|
214 | {
|
---|
215 | normals[n].normalize();
|
---|
216 | }
|
---|
217 | Intersectable** objs = new Intersectable*[nMeshPatches];
|
---|
218 | for(int t=0; t<nMeshPatches; t++)
|
---|
219 | objs[t] = meshPatches + t;
|
---|
220 | meshTree = new KDTree(objs, nMeshPatches);
|
---|
221 | bbox = meshTree->getBoundingBox();
|
---|
222 | delete objs;
|
---|
223 | }
|
---|
224 |
|
---|
225 | void TriangleMesh::getTransformedBoundingBox(const Transformation& tf, BoundingBox& bb)
|
---|
226 | {
|
---|
227 | Vector tfdvec;
|
---|
228 | tf.transformPoint(meshVertices[0], tfdvec);
|
---|
229 | bb.minPoint = tfdvec;
|
---|
230 | bb.maxPoint = tfdvec;
|
---|
231 | for(int w=1; w<nMeshVertices; w++)
|
---|
232 | {
|
---|
233 | tf.transformPoint(meshVertices[w], tfdvec);
|
---|
234 | bb.minPoint <= tfdvec;
|
---|
235 | bb.maxPoint >= tfdvec;
|
---|
236 | }
|
---|
237 | bb.minPoint.x -= 0.01;
|
---|
238 | bb.minPoint.y -= 0.01;
|
---|
239 | bb.minPoint.z -= 0.01;
|
---|
240 | bb.maxPoint.x += 0.01;
|
---|
241 | bb.maxPoint.y += 0.01;
|
---|
242 | bb.maxPoint.z += 0.01;
|
---|
243 | }
|
---|
244 |
|
---|
245 | bool TriangleMesh::Patch::intersectBackSide (const Ray& ray, float& depth, float rayMin, float rayMax)
|
---|
246 | {
|
---|
247 | lastTestedRayId = ray.id;
|
---|
248 | lastTestedRayResult.isIntersect = false;
|
---|
249 |
|
---|
250 | float cosa = flatNormal * ray.dir;
|
---|
251 | if (cosa < 0.00001f) // front facing triangle
|
---|
252 | return false;
|
---|
253 |
|
---|
254 | float originDistOnNormal = -(flatNormal * ray.origin);
|
---|
255 | depth = (hyperPlaneShiftOffset + originDistOnNormal) / cosa;
|
---|
256 | if (depth < 0.01f)
|
---|
257 | return false;
|
---|
258 |
|
---|
259 | Vector hitPoint = ray.origin;
|
---|
260 | hitPoint.addScaled(depth, ray.dir);
|
---|
261 |
|
---|
262 | float baryA = hitPoint * inverseVertexMatrix[0];
|
---|
263 | if(baryA < -0.0001f) return false;
|
---|
264 | float baryB = hitPoint * inverseVertexMatrix[1];
|
---|
265 | if(baryB < -0.0001f) return false;
|
---|
266 | float baryC = hitPoint * inverseVertexMatrix[2];
|
---|
267 | if(baryC < -0.0001f) return false;
|
---|
268 |
|
---|
269 | if(ray.isShadowRay)
|
---|
270 | {
|
---|
271 | //faster way to tell
|
---|
272 | lastTestedRayResult.isIntersect = true;
|
---|
273 | lastTestedRayResult.depth = depth;
|
---|
274 | return true;
|
---|
275 | }
|
---|
276 |
|
---|
277 | lastTestedRayResult.normal.setScaled(baryA, meshNormals[vertexIndices[0]]);
|
---|
278 | lastTestedRayResult.normal.addScaled(baryB, meshNormals[vertexIndices[1]]);
|
---|
279 | lastTestedRayResult.normal.addScaled(baryC, meshNormals[vertexIndices[2]]);
|
---|
280 |
|
---|
281 | lastTestedRayResult.texUV.setScaled(baryA, meshTexCoords[vertexIndices[0]]);
|
---|
282 | lastTestedRayResult.texUV.addScaled(baryB, meshTexCoords[vertexIndices[1]]);
|
---|
283 | lastTestedRayResult.texUV.addScaled(baryC, meshTexCoords[vertexIndices[2]]);
|
---|
284 |
|
---|
285 | lastTestedRayResult.isIntersect = true;
|
---|
286 | lastTestedRayResult.depth = depth;
|
---|
287 | lastTestedRayResult.point = hitPoint;
|
---|
288 | lastTestedRayResult.object = this;
|
---|
289 | return true;
|
---|
290 | }
|
---|
291 |
|
---|
292 | bool TriangleMesh::Patch::intersect (const Ray& ray, float& depth, float rayMin, float rayMax)
|
---|
293 | {
|
---|
294 | lastTestedRayId = ray.id;
|
---|
295 | lastTestedRayResult.isIntersect = false;
|
---|
296 |
|
---|
297 | float cosa = flatNormal * ray.dir;
|
---|
298 | if (cosa > -0.00001f) // back facing triangle
|
---|
299 | return false;
|
---|
300 |
|
---|
301 | float originDistOnNormal = -(flatNormal * ray.origin);
|
---|
302 | depth = (hyperPlaneShiftOffset + originDistOnNormal) / cosa;
|
---|
303 | if (depth < 0.0f)
|
---|
304 | return false;
|
---|
305 |
|
---|
306 | Vector hitPoint = ray.origin;
|
---|
307 | hitPoint.addScaled(depth, ray.dir);
|
---|
308 |
|
---|
309 | float baryA = hitPoint * inverseVertexMatrix[0];
|
---|
310 | if(baryA < -0.1f) return false;
|
---|
311 | float baryB = hitPoint * inverseVertexMatrix[1];
|
---|
312 | if(baryB < -0.1f) return false;
|
---|
313 | float baryC = hitPoint * inverseVertexMatrix[2];
|
---|
314 | if(baryC < -0.1f) return false;
|
---|
315 |
|
---|
316 | if(ray.isShadowRay)
|
---|
317 | {
|
---|
318 | //faster way to tell
|
---|
319 | lastTestedRayResult.isIntersect = true;
|
---|
320 | lastTestedRayResult.depth = depth;
|
---|
321 | return true;
|
---|
322 | }
|
---|
323 |
|
---|
324 | lastTestedRayResult.normal.setScaled(baryA, meshNormals[vertexIndices[0]]);
|
---|
325 | lastTestedRayResult.normal.addScaled(baryB, meshNormals[vertexIndices[1]]);
|
---|
326 | lastTestedRayResult.normal.addScaled(baryC, meshNormals[vertexIndices[2]]);
|
---|
327 | // lastTestedRayResult.normal = flatNormal;
|
---|
328 |
|
---|
329 | lastTestedRayResult.texUV.setScaled(baryA, meshTexCoords[vertexIndices[0]]);
|
---|
330 | lastTestedRayResult.texUV.addScaled(baryB, meshTexCoords[vertexIndices[1]]);
|
---|
331 | lastTestedRayResult.texUV.addScaled(baryC, meshTexCoords[vertexIndices[2]]);
|
---|
332 |
|
---|
333 | lastTestedRayResult.isIntersect = true;
|
---|
334 | lastTestedRayResult.depth = depth;
|
---|
335 | lastTestedRayResult.point = hitPoint;
|
---|
336 | return true;
|
---|
337 | }
|
---|
338 |
|
---|
339 | void TriangleMesh::Patch::sampleSurface(Radion& radion)
|
---|
340 | {
|
---|
341 | Vector u = meshVertices[vertexIndices[1]] - meshVertices[vertexIndices[0]];
|
---|
342 | Vector v = meshVertices[vertexIndices[2]] - meshVertices[vertexIndices[0]];
|
---|
343 | double r1 = (double)rand() / RAND_MAX;
|
---|
344 | double r2 = (double)rand() / RAND_MAX;
|
---|
345 | if(r1 + r2 > 1.0)
|
---|
346 | {
|
---|
347 | r1 = 1.0 - r1;
|
---|
348 | r2 = 1.0 - r2;
|
---|
349 | }
|
---|
350 | radion.position = meshVertices[vertexIndices[0]] + u * r1 + v * r2;
|
---|
351 | float baryA = (r1 + r2) * 0.5f;
|
---|
352 | float baryB = (1.0f - r1) * 0.5f;
|
---|
353 | float baryC = (1.0f - r2) * 0.5f;
|
---|
354 |
|
---|
355 | radion.normal.setScaled(baryA, meshNormals[vertexIndices[0]]);
|
---|
356 | radion.normal.addScaled(baryB, meshNormals[vertexIndices[1]]);
|
---|
357 | radion.normal.addScaled(baryC, meshNormals[vertexIndices[2]]);
|
---|
358 |
|
---|
359 | radion.radiance.setScaled(baryA, meshTexCoords[vertexIndices[0]]);
|
---|
360 | radion.radiance.addScaled(baryB, meshTexCoords[vertexIndices[1]]);
|
---|
361 | radion.radiance.addScaled(baryC, meshTexCoords[vertexIndices[2]]);
|
---|
362 |
|
---|
363 | if(radion.radiance.norm2() < 0.00001)
|
---|
364 | bool mijafa = true;
|
---|
365 |
|
---|
366 | // radion.radiance.z = getSurfaceArea();
|
---|
367 | }
|
---|
368 |
|
---|
369 | Vector* TriangleMesh::Patch::meshVertices = 0x0;
|
---|
370 | Vector* TriangleMesh::Patch::meshNormals = 0x0;
|
---|
371 | Vector* TriangleMesh::Patch::meshTexCoords = 0x0;
|
---|
372 |
|
---|
373 | bool TriangleMesh::intersect (const Ray& ray, float& depth, float rayMin, float rayMax)
|
---|
374 | {
|
---|
375 | lastTestedRayId = ray.id;
|
---|
376 | lastTestedRayResult.isIntersect = false;
|
---|
377 | Patch::meshNormals = normals;
|
---|
378 | Patch::meshTexCoords = texCoords;
|
---|
379 | HitRec hitRec;
|
---|
380 | meshTree->traverse(ray, hitRec, rayMin, rayMax);
|
---|
381 | lastTestedRayResult = hitRec;
|
---|
382 | lastTestedRayResult.material = this->material;
|
---|
383 | depth = lastTestedRayResult.depth;
|
---|
384 | lastTestedRayResult.object = this;
|
---|
385 | return lastTestedRayResult.isIntersect;
|
---|
386 | }
|
---|
387 |
|
---|
388 | bool TriangleMesh::intersectBackSide (const Ray& ray, float& depth, float rayMin, float rayMax)
|
---|
389 | {
|
---|
390 | lastTestedRayId = ray.id;
|
---|
391 | lastTestedRayResult.isIntersect = false;
|
---|
392 | Patch::meshNormals = normals;
|
---|
393 | HitRec hitRec;
|
---|
394 | meshTree->traverseBackSide(ray, hitRec, rayMin, rayMax);
|
---|
395 | // meshTree->forbidden = hitRec.object;
|
---|
396 | lastTestedRayResult = hitRec;
|
---|
397 | lastTestedRayResult.material = this->material;
|
---|
398 | depth = lastTestedRayResult.depth;
|
---|
399 | lastTestedRayResult.object = this;
|
---|
400 | return lastTestedRayResult.isIntersect;
|
---|
401 | }
|
---|
402 |
|
---|
403 | TriangleMesh::~TriangleMesh(void)
|
---|
404 | {
|
---|
405 | delete [] areaTree;
|
---|
406 | delete meshTree;
|
---|
407 | delete meshVertices;
|
---|
408 | delete [] meshPatches;
|
---|
409 | delete normals;
|
---|
410 | delete texCoords;
|
---|
411 | }
|
---|
412 |
|
---|
413 |
|
---|
414 | double TriangleMesh::getPatchArea(unsigned int index)
|
---|
415 | {
|
---|
416 | if(index >= nMeshPatches)
|
---|
417 | return 0;
|
---|
418 | Vector a = meshVertices[meshPatches[index].vertexIndices[1]] -
|
---|
419 | meshVertices[meshPatches[index].vertexIndices[0]];
|
---|
420 | Vector b = meshVertices[meshPatches[index].vertexIndices[2]] -
|
---|
421 | meshVertices[meshPatches[index].vertexIndices[0]];
|
---|
422 | return (a && b).norm();
|
---|
423 | }
|
---|
424 |
|
---|
425 | double TriangleMesh::buildAreaTree(unsigned int u)
|
---|
426 | {
|
---|
427 | if(u >= nAreaTreeNodes)
|
---|
428 | {
|
---|
429 | u -= nAreaTreeNodes;
|
---|
430 | return getPatchArea(u);
|
---|
431 | }
|
---|
432 | areaTree[u] = buildAreaTree(u * 2 + 1) + buildAreaTree(u * 2 + 2);
|
---|
433 | return areaTree[u];
|
---|
434 | }
|
---|
435 |
|
---|
436 | void TriangleMesh::buildAreaTree()
|
---|
437 | {
|
---|
438 | nAreaTreeNodes = 1;
|
---|
439 | while(nAreaTreeNodes < nMeshPatches )
|
---|
440 | nAreaTreeNodes <<= 1;
|
---|
441 | nAreaTreeNodes--;
|
---|
442 | areaTree = new double[nAreaTreeNodes];
|
---|
443 | surfaceArea = buildAreaTree(0);
|
---|
444 | }
|
---|
445 |
|
---|
446 | void TriangleMesh::sampleSurface(unsigned int u, double rnd, Radion& radion)
|
---|
447 | {
|
---|
448 | if(u >= nAreaTreeNodes)
|
---|
449 | {
|
---|
450 | u -= nAreaTreeNodes;
|
---|
451 | if(u >= nMeshPatches)
|
---|
452 | u = 0;
|
---|
453 | meshPatches[u].sampleSurface(radion);
|
---|
454 | return;
|
---|
455 | }
|
---|
456 | float leftweight = 0.0f;
|
---|
457 | if(u * 2 + 1 >= nAreaTreeNodes)
|
---|
458 | leftweight = getPatchArea(u * 2 + 1 - nAreaTreeNodes);
|
---|
459 | else
|
---|
460 | leftweight = areaTree[u * 2 + 1];
|
---|
461 | if(rnd <= leftweight)
|
---|
462 | sampleSurface(u * 2 + 1, rnd, radion);
|
---|
463 | else
|
---|
464 | sampleSurface(u * 2 + 2, rnd - leftweight, radion);
|
---|
465 | }
|
---|
466 |
|
---|
467 | void TriangleMesh::sampleSurface(Radion& radion)
|
---|
468 | {
|
---|
469 | Patch::meshVertices = meshVertices;
|
---|
470 | Patch::meshNormals = normals;
|
---|
471 | Patch::meshTexCoords = texCoords;
|
---|
472 | double rnd = surfaceArea * (double)rand() / RAND_MAX;
|
---|
473 | sampleSurface(0, rnd, radion);
|
---|
474 | radion.radiance.z = surfaceArea;
|
---|
475 | }
|
---|
476 |
|
---|
477 | float TriangleMesh::getSurfaceArea()
|
---|
478 | {
|
---|
479 | return surfaceArea;
|
---|
480 | } |
---|