1 | #ifndef _SimpleVec_h__
|
---|
2 | #define _SimpleVec_h__
|
---|
3 |
|
---|
4 |
|
---|
5 | #include <math.h>
|
---|
6 | #include <vector>
|
---|
7 | #include <iostream>
|
---|
8 |
|
---|
9 |
|
---|
10 | /** Vector class.
|
---|
11 | */
|
---|
12 | class SimpleVec
|
---|
13 | {
|
---|
14 | public:
|
---|
15 |
|
---|
16 | ///////////
|
---|
17 | //-- members;
|
---|
18 |
|
---|
19 | float x;
|
---|
20 | float y;
|
---|
21 | float z;
|
---|
22 |
|
---|
23 |
|
---|
24 | /////////////////////////
|
---|
25 |
|
---|
26 | void SetX(float q) { x = q; }
|
---|
27 | void SetY(float q) { y = q; }
|
---|
28 | void SetZ(float q) { z = q; }
|
---|
29 |
|
---|
30 | float GetX() const { return x; }
|
---|
31 | float GetY() const { return y; }
|
---|
32 | float GetZ() const { return z; }
|
---|
33 |
|
---|
34 |
|
---|
35 | //////////////
|
---|
36 | //-- constructors
|
---|
37 |
|
---|
38 | SimpleVec() { }
|
---|
39 |
|
---|
40 | SimpleVec(float x, float y, float z): x(x), y(y), z(z)
|
---|
41 | {}
|
---|
42 |
|
---|
43 | explicit SimpleVec(float v): x(v), y(v), z(v){}
|
---|
44 | /** Copy constructor.
|
---|
45 | */
|
---|
46 | SimpleVec(const SimpleVec &v): x(v.x), y(v.y), z(v.z)
|
---|
47 | {}
|
---|
48 |
|
---|
49 | // Functions to get at the std::vector components
|
---|
50 | float& operator[] (const int inx)
|
---|
51 | {
|
---|
52 | return (&x)[inx];
|
---|
53 | }
|
---|
54 |
|
---|
55 | operator const float*() const
|
---|
56 | {
|
---|
57 | return (const float*) this;
|
---|
58 | }
|
---|
59 |
|
---|
60 | const float &operator[] (const int inx) const
|
---|
61 | {
|
---|
62 | return *(&x + inx);
|
---|
63 | }
|
---|
64 |
|
---|
65 | void ExtractVerts(float *px, float *py, int which) const;
|
---|
66 |
|
---|
67 | void SetValue(float a, float b, float c)
|
---|
68 | {
|
---|
69 | x = a; y = b; z = c;
|
---|
70 | }
|
---|
71 |
|
---|
72 | void SetValue(float a)
|
---|
73 | {
|
---|
74 | x = y = z = a;
|
---|
75 | }
|
---|
76 |
|
---|
77 |
|
---|
78 | /** Returns the axis, where the std::vector has the largest value.
|
---|
79 | */
|
---|
80 | int DrivingAxis(void) const;
|
---|
81 | /** returns the axis, where the std::vector has the smallest value
|
---|
82 | */
|
---|
83 | int TinyAxis(void) const;
|
---|
84 | /** Returns largest component in this vector
|
---|
85 | */
|
---|
86 | inline float MaxComponent(void) const
|
---|
87 | {
|
---|
88 | return (x > y) ? ( (x > z) ? x : z) : ( (y > z) ? y : z);
|
---|
89 | }
|
---|
90 | /** Returns copy of this vector where all components are positiv.
|
---|
91 | */
|
---|
92 | inline SimpleVec Abs(void) const
|
---|
93 | {
|
---|
94 | return SimpleVec(fabs(x), fabs(y), fabs(z));
|
---|
95 | }
|
---|
96 | /** normalizes the std::vector of unit size corresponding to given std::vector
|
---|
97 | */
|
---|
98 | inline void Normalize();
|
---|
99 | /** Returns false if this std::vector has a nan component.
|
---|
100 | */
|
---|
101 | bool CheckValidity() const;
|
---|
102 | /**
|
---|
103 | Find a right handed coordinate system with (*this) being
|
---|
104 | the z-axis. For a right-handed system, U x V = (*this) holds.
|
---|
105 | This implementation is here to avoid inconsistence and confusion
|
---|
106 | when construction coordinate systems using ArbitraryNormal():
|
---|
107 | In fact:
|
---|
108 | V = ArbitraryNormal(N);
|
---|
109 | U = CrossProd(V,N);
|
---|
110 | constructs a right-handed coordinate system as well, BUT:
|
---|
111 | 1) bugs can be introduced if one mistakenly constructs a
|
---|
112 | left handed sytems e.g. by doing
|
---|
113 | U = ArbitraryNormal(N);
|
---|
114 | V = CrossProd(U,N);
|
---|
115 | 2) this implementation gives non-negative base vectors
|
---|
116 | for (*this)==(0,0,1) | (0,1,0) | (1,0,0), which is
|
---|
117 | good for debugging and is not the case with the implementation
|
---|
118 | using ArbitraryNormal()
|
---|
119 |
|
---|
120 | ===> Using ArbitraryNormal() for constructing coord systems
|
---|
121 | is obsoleted by this method (<JK> 12/20/03).
|
---|
122 | */
|
---|
123 | void RightHandedBase(SimpleVec& U, SimpleVec& V) const;
|
---|
124 |
|
---|
125 |
|
---|
126 | // Unary operators
|
---|
127 |
|
---|
128 | SimpleVec operator+ () const;
|
---|
129 | SimpleVec operator- () const;
|
---|
130 |
|
---|
131 | // Assignment operators
|
---|
132 |
|
---|
133 | SimpleVec& operator+= (const SimpleVec &A);
|
---|
134 | SimpleVec& operator-= (const SimpleVec &A);
|
---|
135 | SimpleVec& operator*= (const SimpleVec &A);
|
---|
136 | SimpleVec& operator*= (float A);
|
---|
137 | SimpleVec& operator/= (float A);
|
---|
138 |
|
---|
139 | static inline SimpleVec UNIT_X() { return SimpleVec(1, 0, 0); }
|
---|
140 | static inline SimpleVec UNIT_Y() { return SimpleVec(0, 1, 0); }
|
---|
141 | static inline SimpleVec UNIT_Z() { return SimpleVec(0, 0, 1); }
|
---|
142 | static inline SimpleVec ZERO() { return SimpleVec(0, 0, 0); }
|
---|
143 |
|
---|
144 |
|
---|
145 | //////////
|
---|
146 | //-- friends
|
---|
147 |
|
---|
148 | /**
|
---|
149 | ===> Using ArbitraryNormal() for constructing coord systems
|
---|
150 | ===> is obsoleted by RightHandedBase() method (<JK> 12/20/03).
|
---|
151 |
|
---|
152 | Return an arbitrary normal to `v'.
|
---|
153 | In fact it tries v x (0,0,1) an if the result is too small,
|
---|
154 | it definitely does v x (0,1,0). It will always work for
|
---|
155 | non-degenareted std::vector and is much faster than to use
|
---|
156 | TangentVectors.
|
---|
157 |
|
---|
158 | @param v(in) The std::vector we want to find normal for.
|
---|
159 | @return The normal std::vector to v.
|
---|
160 | */
|
---|
161 | friend inline SimpleVec ArbitraryNormal(const SimpleVec &v);
|
---|
162 |
|
---|
163 | /// Transforms a std::vector to the global coordinate frame.
|
---|
164 | /**
|
---|
165 | Given a local coordinate frame (U,V,N) (i.e. U,V,N are
|
---|
166 | the x,y,z axes of the local coordinate system) and
|
---|
167 | a std::vector 'loc' in the local coordiante system, this
|
---|
168 | function returns a the coordinates of the same std::vector
|
---|
169 | in global frame (i.e. frame (1,0,0), (0,1,0), (0,0,1).
|
---|
170 | */
|
---|
171 | friend inline SimpleVec ToGlobalFrame(const SimpleVec& loc,
|
---|
172 | const SimpleVec& U,
|
---|
173 | const SimpleVec& V,
|
---|
174 | const SimpleVec& N);
|
---|
175 |
|
---|
176 | /// Transforms a std::vector to a local coordinate frame.
|
---|
177 | /**
|
---|
178 | Given a local coordinate frame (U,V,N) (i.e. U,V,N are
|
---|
179 | the x,y,z axes of the local coordinate system) and
|
---|
180 | a std::vector 'loc' in the global coordiante system, this
|
---|
181 | function returns a the coordinates of the same std::vector
|
---|
182 | in the local frame.
|
---|
183 | */
|
---|
184 | friend inline SimpleVec ToLocalFrame(const SimpleVec& loc,
|
---|
185 | const SimpleVec& U,
|
---|
186 | const SimpleVec& V,
|
---|
187 | const SimpleVec& N);
|
---|
188 |
|
---|
189 | /// the magnitude=size of the std::vector
|
---|
190 | friend inline float Magnitude(const SimpleVec &v);
|
---|
191 | /// the squared magnitude of the std::vector .. for efficiency in some cases
|
---|
192 | friend inline float SqrMagnitude(const SimpleVec &v);
|
---|
193 | /// Magnitude(v1-v2)
|
---|
194 | friend inline float Distance(const SimpleVec &v1, const SimpleVec &v2);
|
---|
195 | /// SqrMagnitude(v1-v2)
|
---|
196 | friend inline float SqrDistance(const SimpleVec &v1, const SimpleVec &v2);
|
---|
197 | /// creates the std::vector of unit size corresponding to given std::vector
|
---|
198 | friend inline SimpleVec Normalize(const SimpleVec &A);
|
---|
199 |
|
---|
200 |
|
---|
201 | // construct view vectors .. DirAt is the main viewing direction
|
---|
202 | // Viewer is the coordinates of viewer location, UpL is the std::vector.
|
---|
203 | friend void ViewVectors(const SimpleVec &DirAt,
|
---|
204 | const SimpleVec &Viewer,
|
---|
205 | const SimpleVec &UpL,
|
---|
206 | SimpleVec &ViewV,
|
---|
207 | SimpleVec &ViewU,
|
---|
208 | SimpleVec &ViewN);
|
---|
209 |
|
---|
210 | // Given the intersection point `P', you have available normal `N'
|
---|
211 | // of unit length. Let us suppose the incoming ray has direction `D'.
|
---|
212 | // Then we can construct such two vectors `U' and `V' that
|
---|
213 | // `U',`N', and `D' are coplanar, and `V' is perpendicular
|
---|
214 | // to the vectors `N','D', and `V'. Then 'N', 'U', and 'V' create
|
---|
215 | // the orthonormal base in space R3.
|
---|
216 | friend void TangentVectors(SimpleVec &U, SimpleVec &V, // output
|
---|
217 | const SimpleVec &normal, // input
|
---|
218 | const SimpleVec &dirIncoming);
|
---|
219 |
|
---|
220 |
|
---|
221 | // Binary operators
|
---|
222 |
|
---|
223 | friend inline SimpleVec operator+ (const SimpleVec &A, const SimpleVec &B);
|
---|
224 | friend inline SimpleVec operator- (const SimpleVec &A, const SimpleVec &B);
|
---|
225 | friend inline SimpleVec operator* (const SimpleVec &A, const SimpleVec &B);
|
---|
226 | friend inline SimpleVec operator* (const SimpleVec &A, float B);
|
---|
227 | friend inline SimpleVec operator* (float A, const SimpleVec &B);
|
---|
228 | friend inline SimpleVec operator/ (const SimpleVec &A, const SimpleVec &B);
|
---|
229 |
|
---|
230 | friend inline int operator< (const SimpleVec &A, const SimpleVec &B);
|
---|
231 | friend inline int operator<= (const SimpleVec &A, const SimpleVec &B);
|
---|
232 |
|
---|
233 | friend inline SimpleVec operator/ (const SimpleVec &A, float B);
|
---|
234 | friend inline int operator== (const SimpleVec &A, const SimpleVec &B);
|
---|
235 | friend inline float DotProd(const SimpleVec &A, const SimpleVec &B);
|
---|
236 | friend inline SimpleVec CrossProd (const SimpleVec &A, const SimpleVec &B);
|
---|
237 |
|
---|
238 | friend std::ostream& operator<< (std::ostream &s, const SimpleVec &A);
|
---|
239 | friend std::istream& operator>> (std::istream &s, SimpleVec &A);
|
---|
240 |
|
---|
241 | friend void Minimize(SimpleVec &min, const SimpleVec &candidate);
|
---|
242 | friend void Maximize(SimpleVec &max, const SimpleVec &candidate);
|
---|
243 |
|
---|
244 | friend inline int EpsilonEqualV3(const SimpleVec &v1, const SimpleVec &v2, float thr);
|
---|
245 | friend inline int EpsilonEqualV3(const SimpleVec &v1, const SimpleVec &v2);
|
---|
246 | };
|
---|
247 |
|
---|
248 |
|
---|
249 | inline SimpleVec ArbitraryNormal(const SimpleVec &N)
|
---|
250 | {
|
---|
251 | float dist2 = N.x * N.x + N.y * N.y;
|
---|
252 |
|
---|
253 | if (dist2 > 0.0001f)
|
---|
254 | {
|
---|
255 | float inv_size = 1.0f / sqrtf(dist2);
|
---|
256 | return SimpleVec(N.y * inv_size, -N.x * inv_size, 0); // N x (0,0,1)
|
---|
257 | }
|
---|
258 |
|
---|
259 | float inv_size = 1.0f / sqrtf(N.z * N.z + N.x * N.x);
|
---|
260 | return SimpleVec(-N.z * inv_size, 0, N.x * inv_size); // N x (0,1,0)
|
---|
261 | }
|
---|
262 |
|
---|
263 |
|
---|
264 |
|
---|
265 | inline float Magnitude(const SimpleVec &v)
|
---|
266 | {
|
---|
267 | return sqrtf(v.x * v.x + v.y * v.y + v.z * v.z);
|
---|
268 | }
|
---|
269 |
|
---|
270 |
|
---|
271 | inline float SqrMagnitude(const SimpleVec &v)
|
---|
272 | {
|
---|
273 | return v.x * v.x + v.y * v.y + v.z * v.z;
|
---|
274 | }
|
---|
275 |
|
---|
276 |
|
---|
277 | inline float Distance(const SimpleVec &v1, const SimpleVec &v2)
|
---|
278 | {
|
---|
279 | //return sqrtf(sqrt(v1.x - v2.x) + sqrt(v1.y - v2.y) + sqrt(v1.z - v2.z));
|
---|
280 | return Magnitude(v1 - v2);
|
---|
281 | }
|
---|
282 |
|
---|
283 |
|
---|
284 | inline float SqrDistance(const SimpleVec &v1, const SimpleVec &v2)
|
---|
285 | {
|
---|
286 | //return sqrt(v1.x - v2.x) + sqrt(v1.y - v2.y) + sqrt(v1.z - v2.z);
|
---|
287 | return SqrMagnitude(v1 - v2);
|
---|
288 | }
|
---|
289 |
|
---|
290 |
|
---|
291 | inline SimpleVec Normalize(const SimpleVec &A)
|
---|
292 | {
|
---|
293 | return A * (1.0f / Magnitude(A));
|
---|
294 | }
|
---|
295 |
|
---|
296 |
|
---|
297 | inline float DotProd(const SimpleVec &A, const SimpleVec &B)
|
---|
298 | {
|
---|
299 | return A.x * B.x + A.y * B.y + A.z * B.z;
|
---|
300 | }
|
---|
301 |
|
---|
302 |
|
---|
303 | // angle between two vectors with respect to a surface normal in the
|
---|
304 | // range [0 .. 2 * pi]
|
---|
305 | inline float Angle(const SimpleVec &A, const SimpleVec &B, const SimpleVec &norm)
|
---|
306 | {
|
---|
307 | SimpleVec cross = CrossProd(A, B);
|
---|
308 |
|
---|
309 | float signedAngle;
|
---|
310 |
|
---|
311 | if (DotProd(cross, norm) > 0)
|
---|
312 | signedAngle = atan2(-Magnitude(CrossProd(A, B)), DotProd(A, B));
|
---|
313 | else
|
---|
314 | signedAngle = atan2(Magnitude(CrossProd(A, B)), DotProd(A, B));
|
---|
315 |
|
---|
316 | if (signedAngle < 0)
|
---|
317 | return 2 * 3.145f + signedAngle;
|
---|
318 |
|
---|
319 | return signedAngle;
|
---|
320 | }
|
---|
321 |
|
---|
322 |
|
---|
323 | inline SimpleVec SimpleVec::operator+() const
|
---|
324 | {
|
---|
325 | return *this;
|
---|
326 | }
|
---|
327 |
|
---|
328 |
|
---|
329 | inline SimpleVec SimpleVec::operator-() const
|
---|
330 | {
|
---|
331 | return SimpleVec(-x, -y, -z);
|
---|
332 | }
|
---|
333 |
|
---|
334 |
|
---|
335 | inline SimpleVec &SimpleVec::operator+=(const SimpleVec &A)
|
---|
336 | {
|
---|
337 | x += A.x; y += A.y; z += A.z;
|
---|
338 | return *this;
|
---|
339 | }
|
---|
340 |
|
---|
341 |
|
---|
342 | inline SimpleVec& SimpleVec::operator-=(const SimpleVec &A)
|
---|
343 | {
|
---|
344 | x -= A.x; y -= A.y; z -= A.z;
|
---|
345 |
|
---|
346 | return *this;
|
---|
347 | }
|
---|
348 |
|
---|
349 |
|
---|
350 | inline SimpleVec& SimpleVec::operator*= (float A)
|
---|
351 | {
|
---|
352 | x *= A; y *= A; z *= A;
|
---|
353 | return *this;
|
---|
354 | }
|
---|
355 |
|
---|
356 |
|
---|
357 | inline SimpleVec& SimpleVec::operator/=(float A)
|
---|
358 | {
|
---|
359 | float a = 1.0f / A;
|
---|
360 |
|
---|
361 | x *= a; y *= a; z *= a;
|
---|
362 |
|
---|
363 | return *this;
|
---|
364 | }
|
---|
365 |
|
---|
366 |
|
---|
367 | inline SimpleVec& SimpleVec::operator*= (const SimpleVec &A)
|
---|
368 | {
|
---|
369 | x *= A.x; y *= A.y; z *= A.z;
|
---|
370 | return *this;
|
---|
371 | }
|
---|
372 |
|
---|
373 |
|
---|
374 | inline SimpleVec operator+ (const SimpleVec &A, const SimpleVec &B)
|
---|
375 | {
|
---|
376 | return SimpleVec(A.x + B.x, A.y + B.y, A.z + B.z);
|
---|
377 | }
|
---|
378 |
|
---|
379 |
|
---|
380 | inline SimpleVec operator- (const SimpleVec &A, const SimpleVec &B)
|
---|
381 | {
|
---|
382 | return SimpleVec(A.x - B.x, A.y - B.y, A.z - B.z);
|
---|
383 | }
|
---|
384 |
|
---|
385 |
|
---|
386 | inline SimpleVec operator* (const SimpleVec &A, const SimpleVec &B)
|
---|
387 | {
|
---|
388 | return SimpleVec(A.x * B.x, A.y * B.y, A.z * B.z);
|
---|
389 | }
|
---|
390 |
|
---|
391 |
|
---|
392 | inline SimpleVec operator* (const SimpleVec &A, float B)
|
---|
393 | {
|
---|
394 | return SimpleVec(A.x * B, A.y * B, A.z * B);
|
---|
395 | }
|
---|
396 |
|
---|
397 |
|
---|
398 | inline SimpleVec operator* (float A, const SimpleVec &B)
|
---|
399 | {
|
---|
400 | return SimpleVec(B.x * A, B.y * A, B.z * A);
|
---|
401 | }
|
---|
402 |
|
---|
403 |
|
---|
404 | inline SimpleVec operator/ (const SimpleVec &A, const SimpleVec &B)
|
---|
405 | {
|
---|
406 | return SimpleVec(A.x / B.x, A.y / B.y, A.z / B.z);
|
---|
407 | }
|
---|
408 |
|
---|
409 |
|
---|
410 | inline SimpleVec operator/ (const SimpleVec &A, float B)
|
---|
411 | {
|
---|
412 | float b = 1.0f / B;
|
---|
413 | return SimpleVec(A.x * b, A.y * b, A.z * b);
|
---|
414 | }
|
---|
415 |
|
---|
416 |
|
---|
417 | inline int operator< (const SimpleVec &A, const SimpleVec &B)
|
---|
418 | {
|
---|
419 | return A.x < B.x && A.y < B.y && A.z < B.z;
|
---|
420 | }
|
---|
421 |
|
---|
422 |
|
---|
423 | inline int operator<= (const SimpleVec &A, const SimpleVec &B)
|
---|
424 | {
|
---|
425 | return A.x <= B.x && A.y <= B.y && A.z <= B.z;
|
---|
426 | }
|
---|
427 |
|
---|
428 |
|
---|
429 | // Might replace floating-point == with comparisons of
|
---|
430 | // magnitudes, if needed.
|
---|
431 | inline int operator== (const SimpleVec &A, const SimpleVec &B)
|
---|
432 | {
|
---|
433 | return (A.x == B.x) && (A.y == B.y) && (A.z == B.z);
|
---|
434 | }
|
---|
435 |
|
---|
436 |
|
---|
437 | inline SimpleVec CrossProd (const SimpleVec &A, const SimpleVec &B)
|
---|
438 | {
|
---|
439 | return SimpleVec(A.y * B.z - A.z * B.y,
|
---|
440 | A.z * B.x - A.x * B.z,
|
---|
441 | A.x * B.y - A.y * B.x);
|
---|
442 | }
|
---|
443 |
|
---|
444 |
|
---|
445 | inline void SimpleVec::Normalize()
|
---|
446 | {
|
---|
447 | float sqrmag = x * x + y * y + z * z;
|
---|
448 |
|
---|
449 | if (sqrmag > 0.0f)
|
---|
450 | (*this) *= 1.0f / sqrtf(sqrmag);
|
---|
451 | }
|
---|
452 |
|
---|
453 |
|
---|
454 | // Overload << operator for C++-style output
|
---|
455 | inline std::ostream& operator<< (std::ostream &s, const SimpleVec &A)
|
---|
456 | {
|
---|
457 | return s << "(" << A.x << ", " << A.y << ", " << A.z << ")";
|
---|
458 | }
|
---|
459 |
|
---|
460 |
|
---|
461 | // Overload >> operator for C++-style input
|
---|
462 | inline std::istream& operator>> (std::istream &s, SimpleVec &A)
|
---|
463 | {
|
---|
464 | char a;
|
---|
465 | // read "(x, y, z)"
|
---|
466 | return s >> a >> A.x >> a >> A.y >> a >> A.z >> a;
|
---|
467 | }
|
---|
468 |
|
---|
469 |
|
---|
470 | inline int EpsilonEqualV3(const SimpleVec &v1, const SimpleVec &v2, float thr)
|
---|
471 | {
|
---|
472 | if (fabsf(v1.x-v2.x) > thr)
|
---|
473 | return false;
|
---|
474 | if (fabsf(v1.y-v2.y) > thr)
|
---|
475 | return false;
|
---|
476 | if (fabsf(v1.z-v2.z) > thr)
|
---|
477 | return false;
|
---|
478 |
|
---|
479 | return true;
|
---|
480 | }
|
---|
481 |
|
---|
482 |
|
---|
483 | inline int EpsilonEqualV3(const SimpleVec &v1, const SimpleVec &v2)
|
---|
484 | {
|
---|
485 | return EpsilonEqualV3(v1, v2, 1e-6f);
|
---|
486 | }
|
---|
487 |
|
---|
488 |
|
---|
489 | #endif
|
---|