1 | #ifndef __HALTON_H
|
---|
2 | #define __HALTON_H
|
---|
3 |
|
---|
4 | #include <iostream>
|
---|
5 |
|
---|
6 |
|
---|
7 | /** Assert whether the argument is a prime number.
|
---|
8 | @param number the number to be checked
|
---|
9 | */
|
---|
10 | inline bool IsPrime(const int number)
|
---|
11 | {
|
---|
12 | bool isIt = true;
|
---|
13 |
|
---|
14 | for(int i = 2; i < number; ++ i)
|
---|
15 | {
|
---|
16 | if(number % i == 0)
|
---|
17 | {
|
---|
18 | isIt = false;
|
---|
19 | break;
|
---|
20 | }
|
---|
21 | }
|
---|
22 |
|
---|
23 | if(number == 2)
|
---|
24 | {
|
---|
25 | isIt = false;
|
---|
26 | }
|
---|
27 |
|
---|
28 | return isIt;
|
---|
29 | }
|
---|
30 |
|
---|
31 |
|
---|
32 | /**
|
---|
33 | Find the nth prime number.
|
---|
34 | @param index the ordinal position in the sequence
|
---|
35 | */
|
---|
36 | inline int FindPrime(const int index)
|
---|
37 | {
|
---|
38 |
|
---|
39 | const int primes[] = {-1, 1, 3, 5, 7, 11, 13};
|
---|
40 | if (index <= 6)
|
---|
41 | return primes[index];
|
---|
42 |
|
---|
43 | int prime = 1;
|
---|
44 | int found = 1;
|
---|
45 | while(found != index) {
|
---|
46 | prime += 2;
|
---|
47 | if(IsPrime(prime) == true) {
|
---|
48 | found++;
|
---|
49 | }
|
---|
50 | }
|
---|
51 | return prime;
|
---|
52 | }
|
---|
53 |
|
---|
54 |
|
---|
55 | inline float halton(float baseRec, float prev)
|
---|
56 | {
|
---|
57 | float r = 1.0f - prev;
|
---|
58 |
|
---|
59 | if (baseRec < r)
|
---|
60 | return prev + baseRec;
|
---|
61 |
|
---|
62 | float h = baseRec;
|
---|
63 |
|
---|
64 | float hh;
|
---|
65 |
|
---|
66 | do
|
---|
67 | {
|
---|
68 | hh = h;
|
---|
69 | h *= baseRec;
|
---|
70 | } while (h > r);
|
---|
71 |
|
---|
72 | return prev + hh + h - 1.0f;
|
---|
73 | }
|
---|
74 |
|
---|
75 |
|
---|
76 | template<int T> struct Halton
|
---|
77 | {
|
---|
78 | static float _invBases[T];
|
---|
79 | float _prev[T];
|
---|
80 |
|
---|
81 | public:
|
---|
82 |
|
---|
83 | void Reset()
|
---|
84 | {
|
---|
85 | for (int i=0; i < T; i++)
|
---|
86 | _prev[i] = 0;
|
---|
87 | }
|
---|
88 |
|
---|
89 | Halton(const bool initializeBases)
|
---|
90 | {
|
---|
91 | for (int i=0; i < T; i++)
|
---|
92 | {
|
---|
93 | int base = FindPrime(i+1);
|
---|
94 |
|
---|
95 | if (base == 1)
|
---|
96 | base++;
|
---|
97 | _invBases[i] = 1.0f/base;
|
---|
98 | }
|
---|
99 | }
|
---|
100 |
|
---|
101 | Halton()
|
---|
102 | {
|
---|
103 | Reset();
|
---|
104 | }
|
---|
105 |
|
---|
106 | void GetNext(float *a)
|
---|
107 | {
|
---|
108 | for (int i=0; i < T; i++)
|
---|
109 | {
|
---|
110 | a[i] = halton(_invBases[i], _prev[i]);
|
---|
111 | _prev[i] = a[i];
|
---|
112 | }
|
---|
113 | }
|
---|
114 |
|
---|
115 | };
|
---|
116 |
|
---|
117 | struct Halton2
|
---|
118 | {
|
---|
119 | static float _invBases[2];
|
---|
120 | float _prev[2];
|
---|
121 |
|
---|
122 | public:
|
---|
123 |
|
---|
124 | void Reset()
|
---|
125 | {
|
---|
126 | _prev[0] =_prev[1] = 0;
|
---|
127 | }
|
---|
128 |
|
---|
129 | Halton2()
|
---|
130 | {
|
---|
131 | _invBases[0] = 1.0f / 2;
|
---|
132 | _invBases[1] = 1.0f / 3;
|
---|
133 | Reset();
|
---|
134 | }
|
---|
135 |
|
---|
136 | void GetNext(float &a, float &b)
|
---|
137 | {
|
---|
138 | a = halton(_invBases[0], _prev[0]);
|
---|
139 | b = halton(_invBases[1], _prev[1]);
|
---|
140 |
|
---|
141 | _prev[0] = a;
|
---|
142 | _prev[1] = b;
|
---|
143 | }
|
---|
144 | };
|
---|
145 |
|
---|
146 |
|
---|
147 |
|
---|
148 | struct HaltonSequence
|
---|
149 | {
|
---|
150 | public:
|
---|
151 | int index;
|
---|
152 |
|
---|
153 | static int sPregeneratedDim;
|
---|
154 | static int sPregeneratedNumber;
|
---|
155 | static float *sPregeneratedValues;
|
---|
156 |
|
---|
157 | // special construtor for pregenerating static halton sequences
|
---|
158 | HaltonSequence(const int dim, const int number);
|
---|
159 |
|
---|
160 | HaltonSequence(): index(1) {}
|
---|
161 |
|
---|
162 | void Reset()
|
---|
163 | {
|
---|
164 | index = 1;
|
---|
165 | }
|
---|
166 |
|
---|
167 | void
|
---|
168 | GetNext(const int dimensions, float *p);
|
---|
169 |
|
---|
170 | void GenerateNext()
|
---|
171 | {
|
---|
172 | ++ index;
|
---|
173 | }
|
---|
174 |
|
---|
175 | double GetNumber(const int dimension)
|
---|
176 | {
|
---|
177 | int base = FindPrime(dimension);
|
---|
178 | if(base == 1) {
|
---|
179 | base++; //The first dimension uses base 2.
|
---|
180 | }
|
---|
181 |
|
---|
182 | int _p1 = base;
|
---|
183 | float _ip1 = 1.0f/base;
|
---|
184 | float p, u=0.0f;
|
---|
185 | int kk, a;
|
---|
186 |
|
---|
187 | // the first coordinate
|
---|
188 | for (p = _ip1, kk = index ; kk ; p *= _ip1, kk /= _p1)
|
---|
189 | if ((a = kk % _p1))
|
---|
190 | u += a * p;
|
---|
191 |
|
---|
192 | return u;
|
---|
193 | }
|
---|
194 |
|
---|
195 | /**
|
---|
196 | Returns the nth number in the sequence, taken from a specified dimension.
|
---|
197 | @param index the ordinal position in the sequence
|
---|
198 | @param dimension the dimension
|
---|
199 | */
|
---|
200 | double GetNumberOld(const int dimension)
|
---|
201 | {
|
---|
202 | int base = FindPrime(dimension);
|
---|
203 | if(base == 1)
|
---|
204 | {
|
---|
205 | ++ base; //The first dimension uses base 2.
|
---|
206 | }
|
---|
207 |
|
---|
208 | double remainder;
|
---|
209 | double output = 0.0;
|
---|
210 | double fraction = 1.0 / (double)base;
|
---|
211 | int N1 = 0;
|
---|
212 | int copyOfIndex = index;
|
---|
213 |
|
---|
214 | if ((base >= 2) && (index >= 1))
|
---|
215 | {
|
---|
216 | while(copyOfIndex > 0)
|
---|
217 | {
|
---|
218 | N1 = (copyOfIndex / base);
|
---|
219 | remainder = copyOfIndex % base;
|
---|
220 | output += fraction * remainder;
|
---|
221 | copyOfIndex = (int)(copyOfIndex / base);
|
---|
222 | fraction /= (double)base;
|
---|
223 | }
|
---|
224 | return output;
|
---|
225 | }
|
---|
226 | else
|
---|
227 | {
|
---|
228 | std::cerr<<"Error generating Halton sequence."<<std::endl;
|
---|
229 | exit(1);
|
---|
230 | }
|
---|
231 | }
|
---|
232 | };
|
---|
233 |
|
---|
234 |
|
---|
235 | #endif
|
---|