1 | #include "Matrix4x4.h"
|
---|
2 | #include "Vector3.h"
|
---|
3 | #include "AxisAlignedBox3.h"
|
---|
4 |
|
---|
5 |
|
---|
6 | using namespace std;
|
---|
7 |
|
---|
8 |
|
---|
9 | namespace CHCDemoEngine
|
---|
10 | {
|
---|
11 |
|
---|
12 | Matrix4x4::Matrix4x4()
|
---|
13 | {}
|
---|
14 |
|
---|
15 |
|
---|
16 | Matrix4x4::Matrix4x4(const Vector3 &a, const Vector3 &b, const Vector3 &c)
|
---|
17 | {
|
---|
18 | // first index is column [x], the second is row [y]
|
---|
19 | x[0][0] = a.x;
|
---|
20 | x[1][0] = b.x;
|
---|
21 | x[2][0] = c.x;
|
---|
22 | x[3][0] = 0.0f;
|
---|
23 |
|
---|
24 | x[0][1] = a.y;
|
---|
25 | x[1][1] = b.y;
|
---|
26 | x[2][1] = c.y;
|
---|
27 | x[3][1] = 0.0f;
|
---|
28 |
|
---|
29 | x[0][2] = a.z;
|
---|
30 | x[1][2] = b.z;
|
---|
31 | x[2][2] = c.z;
|
---|
32 | x[3][2] = 0.0f;
|
---|
33 |
|
---|
34 | x[0][3] = 0.0f;
|
---|
35 | x[1][3] = 0.0f;
|
---|
36 | x[2][3] = 0.0f;
|
---|
37 | x[3][3] = 1.0f;
|
---|
38 | }
|
---|
39 |
|
---|
40 |
|
---|
41 | void Matrix4x4::SetColumns(const Vector3 &a, const Vector3 &b, const Vector3 &c)
|
---|
42 | {
|
---|
43 | // first index is column [x], the second is row [y]
|
---|
44 | x[0][0] = a.x;
|
---|
45 | x[1][0] = a.y;
|
---|
46 | x[2][0] = a.z;
|
---|
47 | x[3][0] = 0.0f;
|
---|
48 |
|
---|
49 | x[0][1] = b.x;
|
---|
50 | x[1][1] = b.y;
|
---|
51 | x[2][1] = b.z;
|
---|
52 | x[3][1] = 0.0f;
|
---|
53 |
|
---|
54 | x[0][2] = c.x;
|
---|
55 | x[1][2] = c.y;
|
---|
56 | x[2][2] = c.z;
|
---|
57 | x[3][2] = 0.0f;
|
---|
58 |
|
---|
59 | x[0][3] = 0.0f;
|
---|
60 | x[1][3] = 0.0f;
|
---|
61 | x[2][3] = 0.0f;
|
---|
62 | x[3][3] = 1.0f;
|
---|
63 | }
|
---|
64 |
|
---|
65 | // full constructor
|
---|
66 | Matrix4x4::Matrix4x4(float x11, float x12, float x13, float x14,
|
---|
67 | float x21, float x22, float x23, float x24,
|
---|
68 | float x31, float x32, float x33, float x34,
|
---|
69 | float x41, float x42, float x43, float x44)
|
---|
70 | {
|
---|
71 | // first index is column [x], the second is row [y]
|
---|
72 | x[0][0] = x11;
|
---|
73 | x[1][0] = x12;
|
---|
74 | x[2][0] = x13;
|
---|
75 | x[3][0] = x14;
|
---|
76 |
|
---|
77 | x[0][1] = x21;
|
---|
78 | x[1][1] = x22;
|
---|
79 | x[2][1] = x23;
|
---|
80 | x[3][1] = x24;
|
---|
81 |
|
---|
82 | x[0][2] = x31;
|
---|
83 | x[1][2] = x32;
|
---|
84 | x[2][2] = x33;
|
---|
85 | x[3][2] = x34;
|
---|
86 |
|
---|
87 | x[0][3] = x41;
|
---|
88 | x[1][3] = x42;
|
---|
89 | x[2][3] = x43;
|
---|
90 | x[3][3] = x44;
|
---|
91 | }
|
---|
92 |
|
---|
93 |
|
---|
94 | float Matrix4x4::Det3x3() const
|
---|
95 | {
|
---|
96 | return (x[0][0]*x[1][1]*x[2][2] + \
|
---|
97 | x[1][0]*x[2][1]*x[0][2] + \
|
---|
98 | x[2][0]*x[0][1]*x[1][2] - \
|
---|
99 | x[2][0]*x[1][1]*x[0][2] - \
|
---|
100 | x[0][0]*x[2][1]*x[1][2] - \
|
---|
101 | x[1][0]*x[0][1]*x[2][2]);
|
---|
102 | }
|
---|
103 |
|
---|
104 |
|
---|
105 |
|
---|
106 | // inverse matrix computation gauss_jacobiho method .. from N.R. in C
|
---|
107 | // if matrix is regular = computatation successfull = returns 0
|
---|
108 | // in case of singular matrix returns 1
|
---|
109 | int Matrix4x4::Invert()
|
---|
110 | {
|
---|
111 | int indxc[4],indxr[4],ipiv[4];
|
---|
112 | int i,icol,irow,j,k,l,ll,n;
|
---|
113 | float big,dum,pivinv,temp;
|
---|
114 | // satisfy the compiler
|
---|
115 | icol = irow = 0;
|
---|
116 |
|
---|
117 | // the size of the matrix
|
---|
118 | n = 4;
|
---|
119 |
|
---|
120 | for ( j = 0 ; j < n ; j++) /* zero pivots */
|
---|
121 | ipiv[j] = 0;
|
---|
122 |
|
---|
123 | for ( i = 0; i < n; i++)
|
---|
124 | {
|
---|
125 | big = 0.0;
|
---|
126 | for (j = 0 ; j < n ; j++)
|
---|
127 | if (ipiv[j] != 1)
|
---|
128 | for ( k = 0 ; k<n ; k++)
|
---|
129 | {
|
---|
130 | if (ipiv[k] == 0)
|
---|
131 | {
|
---|
132 | if (fabs(x[k][j]) >= big)
|
---|
133 | {
|
---|
134 | big = fabs(x[k][j]);
|
---|
135 | irow = j;
|
---|
136 | icol = k;
|
---|
137 | }
|
---|
138 | }
|
---|
139 | else
|
---|
140 | if (ipiv[k] > 1)
|
---|
141 | return 1; /* singular matrix */
|
---|
142 | }
|
---|
143 | ++(ipiv[icol]);
|
---|
144 | if (irow != icol)
|
---|
145 | {
|
---|
146 | for ( l = 0 ; l<n ; l++)
|
---|
147 | {
|
---|
148 | temp = x[l][icol];
|
---|
149 | x[l][icol] = x[l][irow];
|
---|
150 | x[l][irow] = temp;
|
---|
151 | }
|
---|
152 | }
|
---|
153 | indxr[i] = irow;
|
---|
154 | indxc[i] = icol;
|
---|
155 | if (x[icol][icol] == 0.0)
|
---|
156 | return 1; /* singular matrix */
|
---|
157 |
|
---|
158 | pivinv = 1.0f / x[icol][icol];
|
---|
159 | x[icol][icol] = 1.0f ;
|
---|
160 | for ( l = 0 ; l<n ; l++)
|
---|
161 | x[l][icol] = x[l][icol] * pivinv ;
|
---|
162 |
|
---|
163 | for (ll = 0 ; ll < n ; ll++)
|
---|
164 | if (ll != icol)
|
---|
165 | {
|
---|
166 | dum = x[icol][ll];
|
---|
167 | x[icol][ll] = 0.0;
|
---|
168 | for ( l = 0 ; l<n ; l++)
|
---|
169 | x[l][ll] = x[l][ll] - x[l][icol] * dum ;
|
---|
170 | }
|
---|
171 | }
|
---|
172 | for ( l = n; l--; )
|
---|
173 | {
|
---|
174 | if (indxr[l] != indxc[l])
|
---|
175 | for ( k = 0; k<n ; k++)
|
---|
176 | {
|
---|
177 | temp = x[indxr[l]][k];
|
---|
178 | x[indxr[l]][k] = x[indxc[l]][k];
|
---|
179 | x[indxc[l]][k] = temp;
|
---|
180 | }
|
---|
181 | }
|
---|
182 |
|
---|
183 | return 0 ; // matrix is regular .. inversion has been succesfull
|
---|
184 | }
|
---|
185 |
|
---|
186 |
|
---|
187 | // Invert the given matrix using the above inversion routine.
|
---|
188 | Matrix4x4 Invert(const Matrix4x4& M)
|
---|
189 | {
|
---|
190 | Matrix4x4 InvertMe = M;
|
---|
191 | InvertMe.Invert();
|
---|
192 | return InvertMe;
|
---|
193 | }
|
---|
194 |
|
---|
195 |
|
---|
196 | // Transpose the matrix.
|
---|
197 | void Matrix4x4::Transpose()
|
---|
198 | {
|
---|
199 | for (int i = 0; i < 4; i++)
|
---|
200 | for (int j = i; j < 4; j++)
|
---|
201 | if (i != j) {
|
---|
202 | float temp = x[i][j];
|
---|
203 | x[i][j] = x[j][i];
|
---|
204 | x[j][i] = temp;
|
---|
205 | }
|
---|
206 | }
|
---|
207 |
|
---|
208 |
|
---|
209 | // Transpose the given matrix using the transpose routine above.
|
---|
210 | Matrix4x4 Transpose(const Matrix4x4& M)
|
---|
211 | {
|
---|
212 | Matrix4x4 TransposeMe = M;
|
---|
213 | TransposeMe.Transpose();
|
---|
214 | return TransposeMe;
|
---|
215 | }
|
---|
216 |
|
---|
217 |
|
---|
218 | // Construct an identity matrix.
|
---|
219 | Matrix4x4 IdentityMatrix()
|
---|
220 | {
|
---|
221 | Matrix4x4 M;
|
---|
222 |
|
---|
223 | for (int i = 0; i < 4; i++)
|
---|
224 | for (int j = 0; j < 4; j++)
|
---|
225 | M.x[i][j] = (i == j) ? 1.0f : 0.0f;
|
---|
226 | return M;
|
---|
227 | }
|
---|
228 |
|
---|
229 |
|
---|
230 | // Construct a zero matrix.
|
---|
231 | Matrix4x4 ZeroMatrix()
|
---|
232 | {
|
---|
233 | Matrix4x4 M;
|
---|
234 | for (int i = 0; i < 4; i++)
|
---|
235 | for (int j = 0; j < 4; j++)
|
---|
236 | M.x[i][j] = 0;
|
---|
237 | return M;
|
---|
238 | }
|
---|
239 |
|
---|
240 | // Construct a translation matrix given the location to translate to.
|
---|
241 | Matrix4x4
|
---|
242 | TranslationMatrix(const Vector3& Location)
|
---|
243 | {
|
---|
244 | Matrix4x4 M = IdentityMatrix();
|
---|
245 | M.x[3][0] = Location.x;
|
---|
246 | M.x[3][1] = Location.y;
|
---|
247 | M.x[3][2] = Location.z;
|
---|
248 | return M;
|
---|
249 | }
|
---|
250 |
|
---|
251 | // Construct a rotation matrix. Rotates Angle radians about the
|
---|
252 | // X axis.
|
---|
253 | Matrix4x4
|
---|
254 | RotationXMatrix(float Angle)
|
---|
255 | {
|
---|
256 | Matrix4x4 M = IdentityMatrix();
|
---|
257 | float Cosine = cos(Angle);
|
---|
258 | float Sine = sin(Angle);
|
---|
259 | M.x[1][1] = Cosine;
|
---|
260 | M.x[2][1] = -Sine;
|
---|
261 | M.x[1][2] = Sine;
|
---|
262 | M.x[2][2] = Cosine;
|
---|
263 | return M;
|
---|
264 | }
|
---|
265 |
|
---|
266 | // Construct a rotation matrix. Rotates Angle radians about the
|
---|
267 | // Y axis.
|
---|
268 | Matrix4x4 RotationYMatrix(float angle)
|
---|
269 | {
|
---|
270 | Matrix4x4 m = IdentityMatrix();
|
---|
271 |
|
---|
272 | float cosine = cos(angle);
|
---|
273 | float sine = sin(angle);
|
---|
274 |
|
---|
275 | m.x[0][0] = cosine;
|
---|
276 | m.x[2][0] = -sine;
|
---|
277 | m.x[0][2] = sine;
|
---|
278 | m.x[2][2] = cosine;
|
---|
279 |
|
---|
280 | return m;
|
---|
281 | }
|
---|
282 |
|
---|
283 |
|
---|
284 | // Construct a rotation matrix. Rotates Angle radians about the
|
---|
285 | // Z axis.
|
---|
286 | Matrix4x4 RotationZMatrix(float angle)
|
---|
287 | {
|
---|
288 | Matrix4x4 m = IdentityMatrix();
|
---|
289 |
|
---|
290 | float cosine = cos(angle);
|
---|
291 | float sine = sin(angle);
|
---|
292 |
|
---|
293 | m.x[0][0] = cosine;
|
---|
294 | m.x[1][0] = -sine;
|
---|
295 | m.x[0][1] = sine;
|
---|
296 | m.x[1][1] = cosine;
|
---|
297 |
|
---|
298 | return m;
|
---|
299 | }
|
---|
300 |
|
---|
301 |
|
---|
302 | // Construct a yaw-pitch-roll rotation matrix. Rotate Yaw
|
---|
303 | // radians about the XY axis, rotate Pitch radians in the
|
---|
304 | // plane defined by the Yaw rotation, and rotate Roll radians
|
---|
305 | // about the axis defined by the previous two angles.
|
---|
306 | Matrix4x4 RotationYPRMatrix(float Yaw, float Pitch, float Roll)
|
---|
307 | {
|
---|
308 | Matrix4x4 M;
|
---|
309 | float ch = cos(Yaw);
|
---|
310 | float sh = sin(Yaw);
|
---|
311 | float cp = cos(Pitch);
|
---|
312 | float sp = sin(Pitch);
|
---|
313 | float cr = cos(Roll);
|
---|
314 | float sr = sin(Roll);
|
---|
315 |
|
---|
316 | M.x[0][0] = ch * cr + sh * sp * sr;
|
---|
317 | M.x[1][0] = -ch * sr + sh * sp * cr;
|
---|
318 | M.x[2][0] = sh * cp;
|
---|
319 | M.x[0][1] = sr * cp;
|
---|
320 | M.x[1][1] = cr * cp;
|
---|
321 | M.x[2][1] = -sp;
|
---|
322 | M.x[0][2] = -sh * cr - ch * sp * sr;
|
---|
323 | M.x[1][2] = sr * sh + ch * sp * cr;
|
---|
324 | M.x[2][2] = ch * cp;
|
---|
325 | for (int i = 0; i < 4; i++)
|
---|
326 | M.x[3][i] = M.x[i][3] = 0;
|
---|
327 | M.x[3][3] = 1;
|
---|
328 |
|
---|
329 | return M;
|
---|
330 | }
|
---|
331 |
|
---|
332 | // Construct a rotation of a given angle about a given axis.
|
---|
333 | // Derived from Eric Haines's SPD (Standard Procedural
|
---|
334 | // Database).
|
---|
335 | Matrix4x4 RotationAxisMatrix(const Vector3& axis, float angle)
|
---|
336 | {
|
---|
337 | Matrix4x4 M;
|
---|
338 |
|
---|
339 | float cosine = cos(angle);
|
---|
340 | float sine = sin(angle);
|
---|
341 | float one_minus_cosine = 1 - cosine;
|
---|
342 |
|
---|
343 | M.x[0][0] = axis.x * axis.x + (1.0f - axis.x * axis.x) * cosine;
|
---|
344 | M.x[0][1] = axis.x * axis.y * one_minus_cosine + axis.z * sine;
|
---|
345 | M.x[0][2] = axis.x * axis.z * one_minus_cosine - axis.y * sine;
|
---|
346 | M.x[0][3] = 0;
|
---|
347 |
|
---|
348 | M.x[1][0] = axis.x * axis.y * one_minus_cosine - axis.z * sine;
|
---|
349 | M.x[1][1] = axis.y * axis.y + (1.0f - axis.y * axis.y) * cosine;
|
---|
350 | M.x[1][2] = axis.y * axis.z * one_minus_cosine + axis.x * sine;
|
---|
351 | M.x[1][3] = 0;
|
---|
352 |
|
---|
353 | M.x[2][0] = axis.x * axis.z * one_minus_cosine + axis.y * sine;
|
---|
354 | M.x[2][1] = axis.y * axis.z * one_minus_cosine - axis.x * sine;
|
---|
355 | M.x[2][2] = axis.z * axis.z + (1.0f - axis.z * axis.z) * cosine;
|
---|
356 | M.x[2][3] = 0;
|
---|
357 |
|
---|
358 | M.x[3][0] = 0;
|
---|
359 | M.x[3][1] = 0;
|
---|
360 | M.x[3][2] = 0;
|
---|
361 | M.x[3][3] = 1;
|
---|
362 |
|
---|
363 | return M;
|
---|
364 | }
|
---|
365 |
|
---|
366 |
|
---|
367 | // Constructs the rotation matrix that rotates 'vec1' to 'vec2'
|
---|
368 | Matrix4x4 RotationVectorsMatrix(const Vector3 &vecStart, const Vector3 &vecTo)
|
---|
369 | {
|
---|
370 | Vector3 vec = CrossProd(vecStart, vecTo);
|
---|
371 |
|
---|
372 | if (Magnitude(vec) > Limits::Small) {
|
---|
373 | // vector exist, compute angle
|
---|
374 | float angle = acos(DotProd(vecStart, vecTo));
|
---|
375 | // normalize for sure
|
---|
376 | vec.Normalize();
|
---|
377 | return RotationAxisMatrix(vec, angle);
|
---|
378 | }
|
---|
379 |
|
---|
380 | // opposite or colinear vectors
|
---|
381 | Matrix4x4 ret = IdentityMatrix();
|
---|
382 | if (DotProd(vecStart, vecTo) < 0.0f)
|
---|
383 | ret *= -1.0f; // opposite vectors
|
---|
384 |
|
---|
385 | return ret;
|
---|
386 | }
|
---|
387 |
|
---|
388 |
|
---|
389 | // Construct a scale matrix given the X, Y, and Z parameters
|
---|
390 | // to scale by. To scale uniformly, let X==Y==Z.
|
---|
391 | Matrix4x4 ScaleMatrix(float X, float Y, float Z)
|
---|
392 | {
|
---|
393 | Matrix4x4 M = IdentityMatrix();
|
---|
394 |
|
---|
395 | M.x[0][0] = X;
|
---|
396 | M.x[1][1] = Y;
|
---|
397 | M.x[2][2] = Z;
|
---|
398 |
|
---|
399 | return M;
|
---|
400 | }
|
---|
401 |
|
---|
402 |
|
---|
403 | // Construct a rotation matrix that makes the x, y, z axes
|
---|
404 | // correspond to the vectors given.
|
---|
405 | Matrix4x4 GenRotation(const Vector3 &x, const Vector3 &y, const Vector3 &z)
|
---|
406 | {
|
---|
407 | Matrix4x4 M = IdentityMatrix();
|
---|
408 |
|
---|
409 | // x y
|
---|
410 | M.x[0][0] = x.x;
|
---|
411 | M.x[1][0] = x.y;
|
---|
412 | M.x[2][0] = x.z;
|
---|
413 |
|
---|
414 | M.x[0][1] = y.x;
|
---|
415 | M.x[1][1] = y.y;
|
---|
416 | M.x[2][1] = y.z;
|
---|
417 |
|
---|
418 | M.x[0][2] = z.x;
|
---|
419 | M.x[1][2] = z.y;
|
---|
420 | M.x[2][2] = z.z;
|
---|
421 |
|
---|
422 | return M;
|
---|
423 | }
|
---|
424 |
|
---|
425 | // Construct a quadric matrix. After Foley et al. pp. 528-529.
|
---|
426 | Matrix4x4
|
---|
427 | QuadricMatrix(float a, float b, float c, float d, float e,
|
---|
428 | float f, float g, float h, float j, float k)
|
---|
429 | {
|
---|
430 | Matrix4x4 M;
|
---|
431 |
|
---|
432 | M.x[0][0] = a; M.x[0][1] = d; M.x[0][2] = f; M.x[0][3] = g;
|
---|
433 | M.x[1][0] = d; M.x[1][1] = b; M.x[1][2] = e; M.x[1][3] = h;
|
---|
434 | M.x[2][0] = f; M.x[2][1] = e; M.x[2][2] = c; M.x[2][3] = j;
|
---|
435 | M.x[3][0] = g; M.x[3][1] = h; M.x[3][2] = j; M.x[3][3] = k;
|
---|
436 |
|
---|
437 | return M;
|
---|
438 | }
|
---|
439 |
|
---|
440 | // Construct various "mirror" matrices, which flip coordinate
|
---|
441 | // signs in the various axes specified.
|
---|
442 | Matrix4x4
|
---|
443 | MirrorX()
|
---|
444 | {
|
---|
445 | Matrix4x4 M = IdentityMatrix();
|
---|
446 | M.x[0][0] = -1;
|
---|
447 | return M;
|
---|
448 | }
|
---|
449 |
|
---|
450 | Matrix4x4
|
---|
451 | MirrorY()
|
---|
452 | {
|
---|
453 | Matrix4x4 M = IdentityMatrix();
|
---|
454 | M.x[1][1] = -1;
|
---|
455 | return M;
|
---|
456 | }
|
---|
457 |
|
---|
458 | Matrix4x4
|
---|
459 | MirrorZ()
|
---|
460 | {
|
---|
461 | Matrix4x4 M = IdentityMatrix();
|
---|
462 | M.x[2][2] = -1;
|
---|
463 | return M;
|
---|
464 | }
|
---|
465 |
|
---|
466 | Matrix4x4
|
---|
467 | RotationOnly(const Matrix4x4& x)
|
---|
468 | {
|
---|
469 | Matrix4x4 M = x;
|
---|
470 | M.x[3][0] = M.x[3][1] = M.x[3][2] = 0;
|
---|
471 | return M;
|
---|
472 | }
|
---|
473 |
|
---|
474 | // Add corresponding elements of the two matrices.
|
---|
475 | Matrix4x4&
|
---|
476 | Matrix4x4::operator+= (const Matrix4x4& A)
|
---|
477 | {
|
---|
478 | for (int i = 0; i < 4; i++)
|
---|
479 | for (int j = 0; j < 4; j++)
|
---|
480 | x[i][j] += A.x[i][j];
|
---|
481 | return *this;
|
---|
482 | }
|
---|
483 |
|
---|
484 | // Subtract corresponding elements of the matrices.
|
---|
485 | Matrix4x4&
|
---|
486 | Matrix4x4::operator-= (const Matrix4x4& A)
|
---|
487 | {
|
---|
488 | for (int i = 0; i < 4; i++)
|
---|
489 | for (int j = 0; j < 4; j++)
|
---|
490 | x[i][j] -= A.x[i][j];
|
---|
491 | return *this;
|
---|
492 | }
|
---|
493 |
|
---|
494 | // Scale each element of the matrix by A.
|
---|
495 | Matrix4x4&
|
---|
496 | Matrix4x4::operator*= (float A)
|
---|
497 | {
|
---|
498 | for (int i = 0; i < 4; i++)
|
---|
499 | for (int j = 0; j < 4; j++)
|
---|
500 | x[i][j] *= A;
|
---|
501 | return *this;
|
---|
502 | }
|
---|
503 |
|
---|
504 | // Multiply two matrices.
|
---|
505 | Matrix4x4&
|
---|
506 | Matrix4x4::operator*= (const Matrix4x4& A)
|
---|
507 | {
|
---|
508 | Matrix4x4 ret = *this;
|
---|
509 |
|
---|
510 | for (int i = 0; i < 4; i++)
|
---|
511 | for (int j = 0; j < 4; j++) {
|
---|
512 | float subt = 0;
|
---|
513 | for (int k = 0; k < 4; k++)
|
---|
514 | subt += ret.x[i][k] * A.x[k][j];
|
---|
515 | x[i][j] = subt;
|
---|
516 | }
|
---|
517 | return *this;
|
---|
518 | }
|
---|
519 |
|
---|
520 | // Add corresponding elements of the matrices.
|
---|
521 | Matrix4x4
|
---|
522 | operator+ (const Matrix4x4& A, const Matrix4x4& B)
|
---|
523 | {
|
---|
524 | Matrix4x4 ret;
|
---|
525 |
|
---|
526 | for (int i = 0; i < 4; i++)
|
---|
527 | for (int j = 0; j < 4; j++)
|
---|
528 | ret.x[i][j] = A.x[i][j] + B.x[i][j];
|
---|
529 | return ret;
|
---|
530 | }
|
---|
531 |
|
---|
532 | // Subtract corresponding elements of the matrices.
|
---|
533 | Matrix4x4
|
---|
534 | operator- (const Matrix4x4& A, const Matrix4x4& B)
|
---|
535 | {
|
---|
536 | Matrix4x4 ret;
|
---|
537 |
|
---|
538 | for (int i = 0; i < 4; i++)
|
---|
539 | for (int j = 0; j < 4; j++)
|
---|
540 | ret.x[i][j] = A.x[i][j] - B.x[i][j];
|
---|
541 | return ret;
|
---|
542 | }
|
---|
543 |
|
---|
544 | // Multiply matrices.
|
---|
545 | Matrix4x4
|
---|
546 | operator* (const Matrix4x4& A, const Matrix4x4& B)
|
---|
547 | {
|
---|
548 | Matrix4x4 ret;
|
---|
549 |
|
---|
550 | for (int i = 0; i < 4; i++)
|
---|
551 | for (int j = 0; j < 4; j++) {
|
---|
552 | float subt = 0;
|
---|
553 | for (int k = 0; k < 4; k++)
|
---|
554 | subt += A.x[i][k] * B.x[k][j];
|
---|
555 | ret.x[i][j] = subt;
|
---|
556 | }
|
---|
557 | return ret;
|
---|
558 | }
|
---|
559 |
|
---|
560 | // Transform a vector by a matrix.
|
---|
561 | Vector3
|
---|
562 | operator* (const Matrix4x4& M, const Vector3& v)
|
---|
563 | {
|
---|
564 | Vector3 ret;
|
---|
565 | float denom;
|
---|
566 |
|
---|
567 | ret.x = v.x * M.x[0][0] + v.y * M.x[1][0] + v.z * M.x[2][0] + M.x[3][0];
|
---|
568 | ret.y = v.x * M.x[0][1] + v.y * M.x[1][1] + v.z * M.x[2][1] + M.x[3][1];
|
---|
569 | ret.z = v.x * M.x[0][2] + v.y * M.x[1][2] + v.z * M.x[2][2] + M.x[3][2];
|
---|
570 | denom = v.x * M.x[0][3] + v.y * M.x[1][3] + v.z * M.x[2][3] + M.x[3][3];
|
---|
571 |
|
---|
572 | if (denom != 1.0)
|
---|
573 | ret /= denom;
|
---|
574 | return ret;
|
---|
575 | }
|
---|
576 |
|
---|
577 |
|
---|
578 | Vector3 Matrix4x4::Transform(float &w, const Vector3 &v, float h) const
|
---|
579 | {
|
---|
580 | Vector3 ret;
|
---|
581 |
|
---|
582 | ret.x = v.x * x[0][0] + v.y * x[1][0] + v.z * x[2][0] + h * x[3][0];
|
---|
583 | ret.y = v.x * x[0][1] + v.y * x[1][1] + v.z * x[2][1] + h * x[3][1];
|
---|
584 | ret.z = v.x * x[0][2] + v.y * x[1][2] + v.z * x[2][2] + h * x[3][2];
|
---|
585 | w = v.x * x[0][3] + v.y * x[1][3] + v.z * x[2][3] + h * x[3][3];
|
---|
586 |
|
---|
587 | return ret;
|
---|
588 | }
|
---|
589 |
|
---|
590 |
|
---|
591 | // Apply the rotation portion of a matrix to a vector.
|
---|
592 | Vector3
|
---|
593 | RotateOnly(const Matrix4x4& M, const Vector3& v)
|
---|
594 | {
|
---|
595 | Vector3 ret;
|
---|
596 | float denom;
|
---|
597 |
|
---|
598 | ret.x = v.x * M.x[0][0] + v.y * M.x[1][0] + v.z * M.x[2][0];
|
---|
599 | ret.y = v.x * M.x[0][1] + v.y * M.x[1][1] + v.z * M.x[2][1];
|
---|
600 | ret.z = v.x * M.x[0][2] + v.y * M.x[1][2] + v.z * M.x[2][2];
|
---|
601 | denom = M.x[0][3] + M.x[1][3] + M.x[2][3] + M.x[3][3];
|
---|
602 | if (denom != 1.0)
|
---|
603 | ret /= denom;
|
---|
604 | return ret;
|
---|
605 | }
|
---|
606 |
|
---|
607 | // Scale each element of the matrix by B.
|
---|
608 | Matrix4x4
|
---|
609 | operator* (const Matrix4x4& A, float B)
|
---|
610 | {
|
---|
611 | Matrix4x4 ret;
|
---|
612 |
|
---|
613 | for (int i = 0; i < 4; i++)
|
---|
614 | for (int j = 0; j < 4; j++)
|
---|
615 | ret.x[i][j] = A.x[i][j] * B;
|
---|
616 | return ret;
|
---|
617 | }
|
---|
618 |
|
---|
619 | // Overloaded << for C++-style output.
|
---|
620 | ostream&
|
---|
621 | operator<< (ostream& s, const Matrix4x4& M)
|
---|
622 | {
|
---|
623 | for (int i = 0; i < 4; i++) { // y
|
---|
624 | for (int j = 0; j < 4; j++) { // x
|
---|
625 | // x y
|
---|
626 | s << M.x[j][i];
|
---|
627 | }
|
---|
628 | s << '\n';
|
---|
629 | }
|
---|
630 | return s;
|
---|
631 | }
|
---|
632 |
|
---|
633 |
|
---|
634 | Vector3 PlaneRotate(const Matrix4x4& tform, const Vector3& p)
|
---|
635 | {
|
---|
636 | // I sure hope that matrix is invertible...
|
---|
637 | Matrix4x4 use = Transpose(Invert(tform));
|
---|
638 |
|
---|
639 | return RotateOnly(use, p);
|
---|
640 | }
|
---|
641 |
|
---|
642 | // Transform a normal
|
---|
643 | Vector3 TransformNormal(const Matrix4x4& tform, const Vector3& n)
|
---|
644 | {
|
---|
645 | Matrix4x4 use = NormalTransformMatrix(tform);
|
---|
646 |
|
---|
647 | return RotateOnly(use, n);
|
---|
648 | }
|
---|
649 |
|
---|
650 |
|
---|
651 | Matrix4x4 NormalTransformMatrix(const Matrix4x4 &tform)
|
---|
652 | {
|
---|
653 | Matrix4x4 m = tform;
|
---|
654 | // for normal translation vector must be zero!
|
---|
655 | m.x[3][0] = m.x[3][1] = m.x[3][2] = 0.0;
|
---|
656 | // I sure hope that matrix is invertible...
|
---|
657 | return Transpose(Invert(m));
|
---|
658 | }
|
---|
659 |
|
---|
660 |
|
---|
661 | Vector3 GetTranslation(const Matrix4x4 &M)
|
---|
662 | {
|
---|
663 | return Vector3(M.x[3][0], M.x[3][1], M.x[3][2]);
|
---|
664 | }
|
---|
665 |
|
---|
666 |
|
---|
667 | Matrix4x4 GetFittingProjectionMatrix(const AxisAlignedBox3 &box)
|
---|
668 | {
|
---|
669 | Matrix4x4 m;
|
---|
670 |
|
---|
671 | m.x[0][0] = 2.0f / (box.Max()[0] - box.Min()[0]);
|
---|
672 | m.x[0][1] = .0f;
|
---|
673 | m.x[0][2] = .0f;
|
---|
674 | m.x[0][3] = .0f;
|
---|
675 |
|
---|
676 | m.x[1][0] = .0f;
|
---|
677 | m.x[1][1] = 2.0f / (box.Max()[1] - box.Min()[1]);
|
---|
678 | m.x[1][2] = .0f;
|
---|
679 | m.x[1][3] = .0f;
|
---|
680 |
|
---|
681 | m.x[2][0] = .0f;
|
---|
682 | m.x[2][1] = .0f;
|
---|
683 | m.x[2][2] = 2.0f / (box.Max()[2] - box.Min()[2]);
|
---|
684 | m.x[2][3] = .0f;
|
---|
685 |
|
---|
686 | m.x[3][0] = -(box.Max()[0] + box.Min()[0]) / (box.Max()[0] - box.Min()[0]);
|
---|
687 | m.x[3][1] = -(box.Max()[1] + box.Min()[1]) / (box.Max()[1] - box.Min()[1]);
|
---|
688 | m.x[3][2] = -(box.Max()[2] + box.Min()[2]) / (box.Max()[2] - box.Min()[2]);
|
---|
689 | m.x[3][3] = 1.0f;
|
---|
690 |
|
---|
691 | return m;
|
---|
692 | }
|
---|
693 |
|
---|
694 |
|
---|
695 | /** The resultig matrix that is equal to the result of glFrustum
|
---|
696 | */
|
---|
697 | Matrix4x4 GetFrustum(float left, float right,
|
---|
698 | float bottom, float top,
|
---|
699 | float near, float far)
|
---|
700 | {
|
---|
701 | Matrix4x4 m;
|
---|
702 |
|
---|
703 | const float xDif = 1.0f / (right - left);
|
---|
704 | const float yDif = 1.0f / (top - bottom);
|
---|
705 | const float zDif = 1.0f / (near - far);
|
---|
706 |
|
---|
707 | m.x[0][0] = 2.0f * near * xDif;
|
---|
708 | m.x[0][1] = .0f;
|
---|
709 | m.x[0][2] = .0f;
|
---|
710 | m.x[0][3] = .0f;
|
---|
711 |
|
---|
712 | m.x[1][0] = .0f;
|
---|
713 | m.x[1][1] = 2.0f * near * yDif;
|
---|
714 | m.x[1][2] = .0f;
|
---|
715 | m.x[1][3] = .0f;
|
---|
716 |
|
---|
717 | m.x[2][0] = (right + left) * xDif;
|
---|
718 | m.x[2][1] = (top + bottom)* yDif;
|
---|
719 | m.x[2][2] = (far + near) * zDif;
|
---|
720 | m.x[2][3] = -1.0f;
|
---|
721 |
|
---|
722 | m.x[3][0] = .0f;
|
---|
723 | m.x[3][1] = .0f;
|
---|
724 | m.x[3][2] = 2.0f * near * far * zDif;
|
---|
725 | m.x[3][3] = .0f;
|
---|
726 |
|
---|
727 | return m;
|
---|
728 | }
|
---|
729 |
|
---|
730 |
|
---|
731 | Matrix4x4 LookAt(const Vector3 &pos, const Vector3 &dir, const Vector3& up)
|
---|
732 | {
|
---|
733 | const Vector3 nDir = Normalize(dir);
|
---|
734 | Vector3 nUp = Normalize(up);
|
---|
735 |
|
---|
736 | Vector3 nRight = Normalize(CrossProd(nDir, nUp));
|
---|
737 | nUp = Normalize(CrossProd(nRight, nDir));
|
---|
738 |
|
---|
739 | Matrix4x4 m(nRight.x, nRight.y, nRight.z, 0,
|
---|
740 | nUp.x, nUp.y, nUp.z, 0,
|
---|
741 | -nDir.x, -nDir.y, -nDir.z, 0,
|
---|
742 | 0, 0, 0, 1);
|
---|
743 |
|
---|
744 | // note: left handed system => we go into positive z
|
---|
745 | m.x[3][0] = -DotProd(nRight, pos);
|
---|
746 | m.x[3][1] = -DotProd(nUp, pos);
|
---|
747 | m.x[3][2] = DotProd(nDir, pos);
|
---|
748 |
|
---|
749 | return m;
|
---|
750 | }
|
---|
751 |
|
---|
752 |
|
---|
753 | /** The resulting matrix is equal to the result of glOrtho
|
---|
754 | */
|
---|
755 | Matrix4x4 GetOrtho(float left, float right, float bottom, float top, float near, float far)
|
---|
756 | {
|
---|
757 | Matrix4x4 m;
|
---|
758 |
|
---|
759 | const float xDif = 1.0f / (right - left);
|
---|
760 | const float yDif = 1.0f / (top - bottom);
|
---|
761 | const float zDif = 1.0f / (far - near);
|
---|
762 |
|
---|
763 | m.x[0][0] = 2.0f * xDif;
|
---|
764 | m.x[0][1] = .0f;
|
---|
765 | m.x[0][2] = .0f;
|
---|
766 | m.x[0][3] = .0f;
|
---|
767 |
|
---|
768 | m.x[1][0] = .0f;
|
---|
769 | m.x[1][1] = 2.0f * yDif;
|
---|
770 | m.x[1][2] = .0f;
|
---|
771 | m.x[1][3] = .0f;
|
---|
772 |
|
---|
773 | m.x[2][0] = .0f;
|
---|
774 | m.x[2][1] = .0f;
|
---|
775 | m.x[2][2] = -2.0f * zDif;
|
---|
776 | m.x[2][3] = .0f;
|
---|
777 |
|
---|
778 | m.x[3][0] = -(right + left) * xDif;
|
---|
779 | m.x[3][1] = -(top + bottom) * yDif;
|
---|
780 | m.x[3][2] = -(far + near) * zDif;
|
---|
781 | m.x[3][3] = 1.0f;
|
---|
782 |
|
---|
783 | return m;
|
---|
784 | }
|
---|
785 |
|
---|
786 | /** The resultig matrix that is equal to the result of gluPerspective
|
---|
787 | */
|
---|
788 | Matrix4x4 GetPerspective(float fov, float aspect, float near, float far)
|
---|
789 | {
|
---|
790 | Matrix4x4 m;
|
---|
791 |
|
---|
792 | const float x = 1.0f / tan(fov * 0.5f);
|
---|
793 | const float zDif = 1.0f / (near - far);
|
---|
794 |
|
---|
795 | m.x[0][0] = x / aspect;
|
---|
796 | m.x[0][1] = .0f;
|
---|
797 | m.x[0][2] = .0f;
|
---|
798 | m.x[0][3] = .0f;
|
---|
799 |
|
---|
800 | m.x[1][0] = .0f;
|
---|
801 | m.x[1][1] = x;
|
---|
802 | m.x[1][2] = .0f;
|
---|
803 | m.x[1][3] = .0f;
|
---|
804 |
|
---|
805 | m.x[2][0] = .0f;
|
---|
806 | m.x[2][1] = .0f;
|
---|
807 | m.x[2][2] = (far + near) * zDif;
|
---|
808 | m.x[2][3] = -1.0f;
|
---|
809 |
|
---|
810 | m.x[3][0] = .0f;
|
---|
811 | m.x[3][1] = .0f;
|
---|
812 | m.x[3][2] = 2.0f *(far * near) * zDif;
|
---|
813 | m.x[3][3] = 0.0f;
|
---|
814 |
|
---|
815 | return m;
|
---|
816 | }
|
---|
817 |
|
---|
818 |
|
---|
819 | } |
---|