1 | #include "SampleGenerator.h"
|
---|
2 | #include "common.h"
|
---|
3 |
|
---|
4 |
|
---|
5 | using namespace std;
|
---|
6 | using namespace CHCDemoEngine;
|
---|
7 |
|
---|
8 | HaltonSequence SphericalSampleGenerator3::sHalton;
|
---|
9 | HaltonSequence PoissonDiscSampleGenerator2::sHalton;
|
---|
10 | HaltonSequence RandomSampleGenerator2::sHalton;
|
---|
11 | HaltonSequence QuadraticDiscSampleGenerator2::sHalton;
|
---|
12 |
|
---|
13 |
|
---|
14 | SampleGenerator::SampleGenerator(int numSamples, float radius):
|
---|
15 | mNumSamples(numSamples), mRadius(radius)
|
---|
16 | {}
|
---|
17 |
|
---|
18 |
|
---|
19 | PoissonDiscSampleGenerator2::PoissonDiscSampleGenerator2(int numSamples, float radius):
|
---|
20 | SampleGenerator(numSamples, radius)
|
---|
21 | {}
|
---|
22 |
|
---|
23 |
|
---|
24 | void PoissonDiscSampleGenerator2::Generate(float *samples) const
|
---|
25 | {
|
---|
26 | // this is a hacky poisson sampling generator which does random dart-throwing on a disc.
|
---|
27 | // as a savety criterium, the min distance requirement is relaxed if we are not
|
---|
28 | // able to place any dart for a number of tries
|
---|
29 | // the solution is a possion sampling with respect to the adjusted min distance
|
---|
30 | // better solutions have been proposed, i.e., using hierarchical sampling
|
---|
31 | const float maxTries = 1000;
|
---|
32 | const float f_reduction = 0.9f;
|
---|
33 |
|
---|
34 | //static HaltonSequence halton;
|
---|
35 | float r[2];
|
---|
36 |
|
---|
37 | // generates poisson distribution on disc
|
---|
38 | // start with some threshold. best case: all samples lie on the circumference
|
---|
39 | //const float minDist = 2.0f * mRadius / sqrt((float)mNumSamples);
|
---|
40 | const float eps = 0.2f;
|
---|
41 | const float minDist = 2.0f * mRadius * M_PI * (1.0f - eps) / (float)mNumSamples;
|
---|
42 | float sqrMinDist = minDist * minDist;
|
---|
43 |
|
---|
44 | //cout << "minDist before= " << minDist << endl;
|
---|
45 | Sample2 *s = (Sample2 *)samples;
|
---|
46 |
|
---|
47 | int totalTries = 0;
|
---|
48 |
|
---|
49 | // check if on disc
|
---|
50 | for (int i = 0; i < mNumSamples; ++ i)
|
---|
51 | {
|
---|
52 | int tries = 0;
|
---|
53 |
|
---|
54 | // repeat until valid sample was found
|
---|
55 | while (1)
|
---|
56 | {
|
---|
57 | ++ tries;
|
---|
58 | ++ totalTries;
|
---|
59 |
|
---|
60 | // note: should use halton, but seems somewhat broken
|
---|
61 | //r[0] = RandomValue(.0f, mRadius);
|
---|
62 | //r[1] = RandomValue(.0f, mRadius);
|
---|
63 | sHalton.GetNext(2, r);
|
---|
64 |
|
---|
65 | // scale to -1 .. 1
|
---|
66 | const float rx = r[0] * 2.0f - 1.0f;
|
---|
67 | const float ry = r[1] * 2.0f - 1.0f;
|
---|
68 |
|
---|
69 | // check if in disk, else exit early
|
---|
70 | const float distanceSquared = rx * rx + ry * ry;
|
---|
71 |
|
---|
72 | if ((rx * rx + ry * ry > mRadius * mRadius)
|
---|
73 | // also avoid case that sample exactly in center
|
---|
74 | || (distanceSquared <= 1e-3f)
|
---|
75 | )
|
---|
76 | continue;
|
---|
77 |
|
---|
78 | bool sampleValid = true;
|
---|
79 |
|
---|
80 | // check poisson property
|
---|
81 | for (int j = 0; ((j < i) && sampleValid); ++ j)
|
---|
82 | {
|
---|
83 | const float dist =
|
---|
84 | (s[j].x - rx) * (s[j].x - rx) +
|
---|
85 | (s[j].y - ry) * (s[j].y - ry);
|
---|
86 |
|
---|
87 | if (dist < sqrMinDist)
|
---|
88 | sampleValid = false;
|
---|
89 | }
|
---|
90 |
|
---|
91 | if (sampleValid)
|
---|
92 | {
|
---|
93 | s[i].x = rx;
|
---|
94 | s[i].y = ry;
|
---|
95 | break;
|
---|
96 | }
|
---|
97 |
|
---|
98 | if (tries > maxTries)
|
---|
99 | {
|
---|
100 | sqrMinDist *= f_reduction;
|
---|
101 | tries = 0;
|
---|
102 | }
|
---|
103 | }
|
---|
104 | }
|
---|
105 |
|
---|
106 | //cout << "minDist after= " << sqrt(sqrMinDist) << " #tries: " << totalTries << endl;
|
---|
107 | }
|
---|
108 |
|
---|
109 |
|
---|
110 | RandomSampleGenerator2::RandomSampleGenerator2(int numSamples, float radius):
|
---|
111 | SampleGenerator(numSamples, radius)
|
---|
112 | {}
|
---|
113 |
|
---|
114 |
|
---|
115 | void RandomSampleGenerator2::Generate(float *samples) const
|
---|
116 | {
|
---|
117 | Sample2 *s = (Sample2 *)samples;
|
---|
118 |
|
---|
119 | int numSamples = 0;
|
---|
120 |
|
---|
121 | float r[2];
|
---|
122 |
|
---|
123 | while (numSamples < mNumSamples)
|
---|
124 | {
|
---|
125 | //r[0] = RandomValue(-mRadius, mRadius);
|
---|
126 | //r[1] = RandomValue(-mRadius, mRadius);
|
---|
127 | sHalton.GetNext(2, r);
|
---|
128 |
|
---|
129 | const float rx = r[0] * 2.0f - 1.0f;
|
---|
130 | const float ry = r[1] * 2.0f - 1.0f;
|
---|
131 |
|
---|
132 | // check if in disk, else exit early
|
---|
133 | if (rx * rx + ry * ry > mRadius * mRadius)
|
---|
134 | continue;
|
---|
135 |
|
---|
136 | s[numSamples].x = rx;
|
---|
137 | s[numSamples].y = ry;
|
---|
138 |
|
---|
139 | ++ numSamples;
|
---|
140 | }
|
---|
141 | }
|
---|
142 |
|
---|
143 |
|
---|
144 | SphericalSampleGenerator3::SphericalSampleGenerator3(int numSamples, float radius):
|
---|
145 | SampleGenerator(numSamples, radius)
|
---|
146 | {}
|
---|
147 |
|
---|
148 |
|
---|
149 | void SphericalSampleGenerator3::Generate(float *samples) const
|
---|
150 | {
|
---|
151 | float r[2];
|
---|
152 | Sample3 *s = (Sample3 *)samples;
|
---|
153 |
|
---|
154 | for (int i = 0; i < mNumSamples; ++ i)
|
---|
155 | {
|
---|
156 | r[0] = RandomValue(0, 1);
|
---|
157 | r[1] = RandomValue(0, 1);
|
---|
158 |
|
---|
159 | //sHalton.GetNext(2, r);
|
---|
160 |
|
---|
161 | // create stratified samples over sphere
|
---|
162 | const float theta = 2.0f * acos(sqrt(1.0f - r[0]));
|
---|
163 | const float phi = 2.0f * M_PI * r[1];
|
---|
164 |
|
---|
165 | s[i].x = mRadius * sin(theta) * cos(phi);
|
---|
166 | s[i].y = mRadius * sin(theta) * sin(phi);
|
---|
167 | s[i].z = mRadius * cos(theta);
|
---|
168 | }
|
---|
169 | }
|
---|
170 |
|
---|
171 |
|
---|
172 | QuadraticDiscSampleGenerator2::QuadraticDiscSampleGenerator2(int numSamples, float radius):
|
---|
173 | SampleGenerator(numSamples, radius)
|
---|
174 | {}
|
---|
175 |
|
---|
176 |
|
---|
177 | void QuadraticDiscSampleGenerator2::Generate(float *samples) const
|
---|
178 | {
|
---|
179 | #if 0
|
---|
180 | float r[2];
|
---|
181 | Sample2 *s = (Sample2 *)samples;
|
---|
182 |
|
---|
183 | for (int i = 0; i < mNumSamples; ++ i)
|
---|
184 | {
|
---|
185 | //r[0] = samples[i * 2];
|
---|
186 | //r[1] = samples[i * 2 + 1];
|
---|
187 | sHalton.GetNext(2, r);
|
---|
188 |
|
---|
189 | // create samples over disc: the sample density
|
---|
190 | // decreases quadratically with the distance to the origin
|
---|
191 | s[i].x = mRadius * r[1] * sin(2.0f * M_PI * r[0]);
|
---|
192 | s[i].y = mRadius * r[1] * cos(2.0f * M_PI * r[0]);
|
---|
193 | }
|
---|
194 | #else
|
---|
195 |
|
---|
196 | PoissonDiscSampleGenerator2 poisson(mNumSamples, 1.0f);
|
---|
197 | poisson.Generate(samples);
|
---|
198 |
|
---|
199 | Sample2 *s = (Sample2 *)samples;
|
---|
200 |
|
---|
201 | // multiply with lenght to get quadratic dependence on the distance
|
---|
202 | for (int i = 0; i < mNumSamples; ++ i)
|
---|
203 | {
|
---|
204 | Sample2 &spl = s[i];
|
---|
205 |
|
---|
206 | float len = sqrt(spl.x * spl.x + spl.y * spl.y);
|
---|
207 | spl.x *= len * mRadius;
|
---|
208 | spl.y *= len * mRadius;
|
---|
209 | }
|
---|
210 | #endif
|
---|
211 | } |
---|