source: GTP/trunk/App/Demos/Vis/FriendlyCulling/src/ShadowMapping.cpp @ 3011

Revision 3011, 17.6 KB checked in by mattausch, 16 years ago (diff)
RevLine 
[2891]1#include "ShadowMapping.h"
2#include "FrameBufferObject.h"
3#include "RenderState.h"
4#include "RenderTraverser.h"
5#include "Light.h"
[2911]6#include "Polygon3.h"
7#include "Polyhedron.h"
8
[2891]9#include <IL/il.h>
10#include <assert.h>
11
[2911]12
[2891]13using namespace std;
14
15
16namespace CHCDemoEngine
17{
18
[2931]19static CGprogram sCgShadowProgram;
20static CGparameter sShadowParam;
[2891]21
[2931]22
[2911]23static Polyhedron *polyhedron = NULL;
[2929]24static Polyhedron *lightPoly = NULL;
[2911]25
26
[2891]27static void PrintGLerror(char *msg)
28{
29        GLenum errCode;
30        const GLubyte *errStr;
31       
32        if ((errCode = glGetError()) != GL_NO_ERROR)
33        {
34                errStr = gluErrorString(errCode);
35                fprintf(stderr,"OpenGL ERROR: %s: %s\n", errStr, msg);
36        }
37}
38
39
[2936]40static Polyhedron *CreatePolyhedron(const Matrix4x4 &lightMatrix,
41                                                                        const AxisAlignedBox3 &sceneBox)
[2931]42{
43        Frustum frustum(lightMatrix);
[2891]44
[2931]45        vector<Plane3> clipPlanes;
[2891]46
[2931]47        for (int i = 0; i < 6; ++ i)
48        {
49                ////////////
50                //-- normalize the coefficients
[2891]51
[2931]52                // the clipping planes look outward the frustum,
53                // so distances > 0 mean that a point is outside
54                const float invLength = -1.0f / Magnitude(frustum.mClipPlanes[i].mNormal);
55
56                frustum.mClipPlanes[i].mD *= invLength;
57                frustum.mClipPlanes[i].mNormal *= invLength;
58        }
59
[2939]60        // first create near plane because of precision issues
61        clipPlanes.push_back(frustum.mClipPlanes[4]);
62
[2931]63        clipPlanes.push_back(frustum.mClipPlanes[0]);
64        clipPlanes.push_back(frustum.mClipPlanes[1]);
65        clipPlanes.push_back(frustum.mClipPlanes[2]);
66        clipPlanes.push_back(frustum.mClipPlanes[3]);
[2936]67        clipPlanes.push_back(frustum.mClipPlanes[5]);
68
[2931]69        return Polyhedron::CreatePolyhedron(clipPlanes, sceneBox);
70}
71
72
[2891]73static void GrabDepthBuffer(float *data, GLuint depthTexture)
74{
75        glEnable(GL_TEXTURE_2D);
76        glBindTexture(GL_TEXTURE_2D, depthTexture);
77
78        glGetTexImage(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, GL_FLOAT, data);
79
80        glBindTexture(GL_TEXTURE_2D, 0);
81        glDisable(GL_TEXTURE_2D);
82}
83
84
85static void ExportDepthBuffer(float *data, int size)
86{
87        ilInit();
88        assert(ilGetError() == IL_NO_ERROR);
89
90        ILstring filename = ILstring("shadow.tga");
91        ilRegisterType(IL_FLOAT);
92
93        const int depth = 1;
94        const int bpp = 1;
95
96        if (!ilTexImage(size, size, depth, bpp, IL_LUMINANCE, IL_FLOAT, data))
97        {
98                cerr << "IL error " << ilGetError() << endl;
99       
100                ilShutDown();
101                assert(ilGetError() == IL_NO_ERROR);
102
103                return;
104        }
105
106        if (!ilSaveImage(filename))
107        {
108                cerr << "TGA write error " << ilGetError() << endl;
109        }
110
111        ilShutDown();
112        assert(ilGetError() == IL_NO_ERROR);
113
114        cout << "exported depth buffer" << endl;
115}
116
117
118
[2924]119static AxisAlignedBox3 GetExtremalPoints(const Matrix4x4 &m,
120                                                                                 const VertexArray &pts)
121{
122        AxisAlignedBox3 extremalPoints;
123        extremalPoints.Initialize();
124
125        VertexArray::const_iterator it, it_end = pts.end();
126               
127        for (it = pts.begin(); it != it_end; ++ it)
128        {
129                Vector3 pt = *it;
130                pt = m * pt;
131
132                extremalPoints.Include(pt);
133        }
134
135        return extremalPoints;
136}
137
138
[3011]139ShadowMap::ShadowMap(DirectionalLight *light
140                                         , int size,
141                                         const AxisAlignedBox3 &sceneBox,
142                                         Camera *cam):
[2897]143mSceneBox(sceneBox), mSize(size), mCamera(cam), mLight(light)
[2891]144{
145        mFbo = new FrameBufferObject(size, size, FrameBufferObject::DEPTH_32, true);
[2965]146
[2947]147        // need a color buffer to keep opengl happy
[3011]148        mFbo->AddColorBuffer(ColorBufferObject::RGB_UBYTE,
[2965]149                                 ColorBufferObject::WRAP_CLAMP_TO_EDGE,
150                                                 ColorBufferObject::FILTER_NEAREST);
[2891]151
[2965]152
[2947]153        mShadowCam = new Camera(mSize, mSize);
[2891]154        mShadowCam->SetOrtho(true);
155}
156
157
[2894]158ShadowMap::~ShadowMap()
[2891]159{
160        DEL_PTR(mFbo);
[2897]161        DEL_PTR(mShadowCam);
[2891]162}
163
164
[2963]165static void DrawPolyhedron(Polyhedron *poly, const Vector3 &color)
[2891]166{
[2929]167        if (!poly) return;
[2911]168
[2929]169        for (size_t i = 0; i < poly->NumPolygons(); ++ i)
[2911]170        {
[2929]171                glColor3f(color.x, color.y, color.z);
[2911]172
173                glBegin(GL_LINE_LOOP);
174
[2929]175                Polygon3 *p = poly->GetPolygons()[i];
[2911]176
[2929]177                for (size_t j = 0; j < p->mVertices.size(); ++ j)
[2911]178                {
[2929]179                        Vector3 v = p->mVertices[j];
[2911]180                        glVertex3d(v.x, v.y, v.z);
181                }
182
183                glEnd();
184        }
185}
186
187
[2963]188void ShadowMap::VisualizeFrustra()
[2911]189{
[2963]190        DrawPolyhedron(lightPoly, Vector3(1, 0, 1));
191        DrawPolyhedron(polyhedron, Vector3(0, 1, 0));
[2913]192}
[2911]193
[2913]194
[2944]195// z0 is the point that lies on the parallel plane to the near plane through e (A)
196//and on the near plane of the C frustum (the plane z = bZmax) and on the line x = e.x
197Vector3 ShadowMap::GetLightSpaceZ0(const Matrix4x4 &lightSpace,
198                                                                   const Vector3 &e,
199                                                                   const float maxZ,
200                                                                   const Vector3 &eyeDir) const
201{
202        // to calculate the parallel plane to the near plane through e we
203        // calculate the plane A with the three points
204        Plane3 planeA(e, eyeDir);
205
206        planeA.Transform(lightSpace);
207       
208        // get the parameters of A from the plane equation n dot d = 0
209        const float d = planeA.mD;
210        const Vector3 n = planeA.mNormal;
211       
212        // transform to light space
213        const Vector3 e_ls = lightSpace * e;
214
215        Vector3 z0;
216
217        z0.x = e_ls.x;
218        z0.y = (d - n.z * maxZ - n.x * e_ls.x) / n.y;
219        z0.z = maxZ;
220
221        return z0;
222        //return V3(e_ls.x(),(d-n.z()*b_lsZmax-n.x()*e_ls.x())/n.y(),b_lsZmax);
223}
224
225
226float ShadowMap::ComputeNOpt(const Matrix4x4 &lightSpace,
227                                                         const AxisAlignedBox3 &extremalPoints,
228                                                         const VertexArray &body) const
229{
230        const Vector3 nearPt = GetNearCameraPointE(body);
231        const Vector3 eyeDir = mCamera->GetDirection();
232
233        Matrix4x4 eyeView;
234        mCamera->GetModelViewMatrix(eyeView);
235
236        const Matrix4x4 invLightSpace = Invert(lightSpace);
237
238        const Vector3 z0_ls = GetLightSpaceZ0(lightSpace, nearPt, extremalPoints.Max().z, eyeDir);
239        const Vector3 z1_ls = Vector3(z0_ls.x, z0_ls.y, extremalPoints.Min().z);
240       
241        // transform back to world space
242        const Vector3 z0_ws = invLightSpace * z0_ls;
243        const Vector3 z1_ws = invLightSpace * z1_ls;
244
245        // transform to eye space
246        const Vector3 z0_es = eyeView * z0_ws;
247        const Vector3 z1_es = eyeView * z1_ws;
248
249        const float z0 = z0_es.z;
250        const float z1 = z1_es.z;
251
252        cout << "z0 ls: " << z0_ls << " z1 ls: " << z1_ls << endl;
253        cout << "z0: " << z0_es << " z1: " << z1_es << endl;
254
255        const float d = fabs(extremalPoints.Max()[2] - extremalPoints.Min()[2]);
256
257        const float n = d / (sqrt(z1 / z0) - 1.0f);
258
259        return n;
260}
261
262
[2920]263float ShadowMap::ComputeN(const AxisAlignedBox3 &extremalPoints) const
[2913]264{
[2944]265        const float nearPlane = mCamera->GetNear();
[2916]266       
[2920]267        const float d = fabs(extremalPoints.Max()[2] - extremalPoints.Min()[2]);
268       
[2916]269        const float dotProd = DotProd(mCamera->GetDirection(), mShadowCam->GetDirection());
270        const float sinGamma = sin(fabs(acos(dotProd)));
271
[2944]272        // test for values close to zero
273        if (sinGamma < 1e-6f) return 1e6f;
274       
[2954]275        const float scale = 2.0f;
276        return scale * (nearPlane + sqrt(nearPlane * (nearPlane + d * sinGamma))) /  sinGamma;
[2916]277}
278
279
[2924]280Matrix4x4 ShadowMap::CalcLispSMTransform(const Matrix4x4 &lightSpace,
[2920]281                                                                                 const AxisAlignedBox3 &extremalPoints,
[2924]282                                                                                 const VertexArray &body
[2920]283                                                                                 )
[2917]284{
[2928]285        AxisAlignedBox3 bounds_ls = GetExtremalPoints(lightSpace, body);
286
[2913]287        ///////////////
[2915]288        //-- We apply the lispsm algorithm in order to calculate an optimal light projection matrix
[2924]289        //-- first find the free parameter values n, and P (the projection center), and the projection depth
290
[2945]291        const float n = ComputeN(bounds_ls);
292        //const float n = ComputeNOpt(lightSpace, extremalPoints, body); cout << "n: " << n << endl;
[2924]293
[2944]294        if (n >= 1e6f) // light direction nearly parallel to view => switch to uniform
295                return IdentityMatrix();
296
[2924]297        const Vector3 nearPt = GetNearCameraPointE(body);
[2933]298       
[2915]299        //get the coordinates of the near camera point in light space
[2924]300        const Vector3 lsNear = lightSpace * nearPt;
[2915]301
[2939]302        // the start point has the x and y coordinate of e, the z coord of the near plane of the light volume
[2924]303        const Vector3 startPt = Vector3(lsNear.x, lsNear.y, bounds_ls.Max().z);
[2943]304       
[2915]305        // the new projection center
[2936]306        const Vector3 projCenter = startPt + Vector3::UNIT_Z() * n;
[2915]307
308        //construct a translation that moves to the projection center
309        const Matrix4x4 projectionCenter = TranslationMatrix(-projCenter);
310
[2916]311        // light space y size
[2933]312        const float d = fabs(bounds_ls.Max()[2] - bounds_ls.Min()[2]);
[2922]313
[2924]314        const float dy = fabs(bounds_ls.Max()[1] - bounds_ls.Min()[1]);
315        const float dx = fabs(bounds_ls.Max()[0] - bounds_ls.Min()[0]);
[2922]316
[2924]317       
[2915]318
[2928]319        //////////
[2924]320        //-- now apply these values to construct the perspective lispsm matrix
321
322        Matrix4x4 matLispSM;
323       
[2939]324        matLispSM = GetFrustum(-1.0, 1.0, -1.0, 1.0, n, n + d);
[2924]325
326        // translate to the projection center
[2920]327        matLispSM = projectionCenter * matLispSM;
[2915]328
329        // transform into OpenGL right handed system
[2920]330        Matrix4x4 refl = ScaleMatrix(1.0f, 1.0f, -1.0f);
331        matLispSM *= refl;
[2924]332       
[2920]333        return matLispSM;
[2915]334}
335
[2925]336#if 0
337Vector3 ShadowMap::GetNearCameraPointE(const VertexArray &pts) const
338{
339        float maxDist = -1e25f;
340        Vector3 nearest = Vector3::ZERO();
[2915]341
[2925]342        Matrix4x4 eyeView;
343        mCamera->GetModelViewMatrix(eyeView);
344
345        VertexArray newPts;
346        polyhedron->CollectVertices(newPts);
347       
348        //the LVS volume is always in front of the camera
349        VertexArray::const_iterator it, it_end = pts.end();     
350
351        for (it = pts.begin(); it != it_end; ++ it)
352        {
353                Vector3 pt = *it;
354                Vector3 ptE = eyeView * pt;
[2943]355               
[2925]356                if (ptE.z > 0) cerr <<"should not happen " << ptE.z << endl;
357                else
358                if (ptE.z > maxDist)
359                {
360                        cout << " d " << ptE.z;
361       
362                        maxDist = ptE.z;
363                        nearest = pt;
364                }
365        }
366
[2933]367        //      return Invert(eyeView) * nearest;
[2925]368        return nearest;
369}
370
371#else
372
[2920]373Vector3 ShadowMap::GetNearCameraPointE(const VertexArray &pts) const
[2919]374{
[2925]375        VertexArray newPts;
376        polyhedron->CollectVertices(newPts);
377
[2922]378        Vector3 nearest = Vector3::ZERO();
379        float minDist = 1e25f;
[2920]380
[2924]381        const Vector3 camPos = mCamera->GetPosition();
[2920]382
[2925]383        VertexArray::const_iterator it, it_end = newPts.end();
[2920]384
[2925]385        for (it = newPts.begin(); it != it_end; ++ it)
[2920]386        {
387                Vector3 pt = *it;
388
389                const float dist = SqrDistance(pt, camPos);
390
391                if (dist < minDist)
392                {
393                        minDist = dist;
394                        nearest = pt;
395                }
396        }
397
398        return nearest;
399}
400
[2925]401#endif
[2920]402
[2933]403Vector3 ShadowMap::GetProjViewDir(const Matrix4x4 &lightSpace,
404                                                                  const VertexArray &pts) const
[2920]405{
[2919]406        //get the point in the LVS volume that is nearest to the camera
[2920]407        const Vector3 e = GetNearCameraPointE(pts);
408
[2919]409        //construct edge to transform into light-space
[2920]410        const Vector3 b = e + mCamera->GetDirection();
[2919]411        //transform to light-space
[2920]412        const Vector3 e_lp = lightSpace * e;
413        const Vector3 b_lp = lightSpace * b;
414
415        Vector3 projDir(b_lp - e_lp);
416
[2919]417        //project the view direction into the shadow map plane
[2932]418        projDir.y = .0f;
[2920]419
420        return Normalize(projDir);
[2919]421}
422
423
[2915]424bool ShadowMap::CalcLightProjection(Matrix4x4 &lightProj)
425{
426        ///////////////////
427        //-- First step: calc frustum clipped by scene box
428
[2922]429        DEL_PTR(polyhedron);
[2915]430        polyhedron = CalcClippedFrustum(mSceneBox);
431
432        if (!polyhedron) return false; // something is wrong
433
434        // include the part of the light volume that "sees" the frustum
435        // we only require frustum vertices
436
437        VertexArray frustumPoints;
[2939]438        IncludeLightVolume(*polyhedron, frustumPoints, mLight->GetDirection(), mSceneBox);
[2915]439
440
441        ///////////////
442        //-- transform points from world view to light view and calculate extremal points
443
444        Matrix4x4 lightView;
445        mShadowCam->GetModelViewMatrix(lightView);
446
[2920]447        const AxisAlignedBox3 extremalPoints = GetExtremalPoints(lightView, frustumPoints);
[2913]448
[2920]449        // we use directional lights, so the projection can be set to identity
450        lightProj = IdentityMatrix();
[2913]451
[2922]452        // switch coordinate system to that used in the lispsm algorithm for calculations
453        Matrix4x4 transform2LispSM = ZeroMatrix();
454
455        transform2LispSM.x[0][0] =  1.0f;
[2934]456        transform2LispSM.x[1][2] =  -1.0f; // y => -z
[2924]457        transform2LispSM.x[2][1] =  1.0f; // z => y
[2922]458        transform2LispSM.x[3][3] =  1.0f;
459
[2936]460
[2922]461        //switch to the lightspace used in the article
[2936]462        lightProj *= transform2LispSM;
[2922]463
[2924]464        const Vector3 projViewDir = GetProjViewDir(lightView * lightProj, frustumPoints);
[2916]465
[2952]466        //do DirectionalLight Space Perspective shadow mapping
[2922]467        //rotate the lightspace so that the projected light view always points upwards
468        //calculate a frame matrix that uses the projViewDir[lightspace] as up vector
[2917]469        //look(from position, into the direction of the projected direction, with unchanged up-vector)
[2938]470        //const Matrix4x4 frame = MyLookAt2(Vector3::ZERO(), projViewDir, Vector3::UNIT_Y());
[2944]471        const Matrix4x4 frame = LookAt(Vector3::ZERO(), projViewDir, Vector3::UNIT_Y());
[2917]472
[2936]473        lightProj *= frame;
[2924]474
[2917]475        const Matrix4x4 matLispSM =
[2920]476                CalcLispSMTransform(lightView * lightProj, extremalPoints, frustumPoints);
[2917]477
[2936]478        lightProj *= matLispSM;
[2917]479
[2922]480        // change back to GL coordinate system
481        Matrix4x4 transformToGL = ZeroMatrix();
482       
[2940]483        transformToGL.x[0][0] =   1.0f;
484        transformToGL.x[1][2] =   1.0f; // z => y
[2934]485        transformToGL.x[2][1] =  -1.0f; // y => -z
[2940]486        transformToGL.x[3][3] =   1.0f;
[2922]487
[2936]488        lightProj *= transformToGL;
[2922]489
[2920]490        AxisAlignedBox3 lightPts = GetExtremalPoints(lightView * lightProj, frustumPoints);
491
[2917]492        // focus projection matrix on the extremal points => scale to unit cube
[2922]493        Matrix4x4 scaleTranslate = GetFittingProjectionMatrix(lightPts);
[2917]494
[2939]495        lightProj = lightProj * scaleTranslate;
496
497        Matrix4x4 mymat = lightView * lightProj;
498
499        AxisAlignedBox3 lightPtsNew = GetExtremalPoints(mymat, frustumPoints);
500
[2920]501        // we have to flip the signs in order to tranform to opengl right handed system
502        Matrix4x4 refl = ScaleMatrix(1, 1, -1);
503        lightProj *= refl;
[2916]504       
[2913]505        return true;
[2911]506}
507
508
[2913]509Polyhedron *ShadowMap::CalcClippedFrustum(const AxisAlignedBox3 &box) const
510{
[2931]511        Polyhedron *p = mCamera->ComputeFrustum();
512       
513        Polyhedron *clippedPolyhedron = box.CalcIntersection(*p);
[2913]514
[2931]515        DEL_PTR(p);
[2913]516       
[2931]517        return clippedPolyhedron;
518}
[2913]519
520
[2931]521//calculates the up vector for the light coordinate frame
522static Vector3 CalcUpVec(const Vector3 viewDir, const Vector3 lightDir)
523{
524        //we do what gluLookAt does...
525        //left is the normalized vector perpendicular to lightDir and viewDir
526        //this means left is the normalvector of the yz-plane from the paper
527        Vector3 left = CrossProd(lightDir, viewDir);
[2913]528       
[2931]529        //we now can calculate the rotated(in the yz-plane) viewDir vector
530        //and use it as up vector in further transformations
531        Vector3 up = CrossProd(left, lightDir);
[2913]532
[2931]533        return Normalize(up);
[2913]534}
535
536
[2932]537void ShadowMap::GetTextureMatrix(Matrix4x4 &m) const
538{
539        m = mTextureMatrix;
540}
541
542 
543unsigned int ShadowMap::GetDepthTexture() const
544{
545        return mFbo->GetDepthTex();
546}
547
548unsigned int ShadowMap::GetShadowColorTexture() const
549{
550        return mFbo->GetColorBuffer(0)->GetTexture();
551       
552}
553
554
555void ShadowMap::IncludeLightVolume(const Polyhedron &polyhedron,
556                                                                   VertexArray &frustumPoints,
557                                                                   const Vector3 lightDir,
558                                                                   const AxisAlignedBox3 &sceneBox
559                                                                   )
560{
561        // we don't need closed form anymore => just store vertices
562        VertexArray vertices;
563        polyhedron.CollectVertices(vertices);
564
565        // we 'look' at each point and calculate intersections of rays with scene bounding box
566        VertexArray::const_iterator it, it_end = vertices.end();
567
568        for (it = vertices.begin(); it != it_end; ++ it)
569        {
570                Vector3 v  = *it;
571
572                frustumPoints.push_back(v);
573               
[2939]574                // hack: start at point which is guaranteed to be outside of box
[2932]575                v -= Magnitude(mSceneBox.Diagonal()) * lightDir;
576
577                SimpleRay ray(v, lightDir);
578
579                float tNear, tFar;
580
581                if (sceneBox.Intersects(ray, tNear, tFar))
582                {
583                        Vector3 newpt = ray.Extrap(tNear);
584                        frustumPoints.push_back(newpt);                 
585                }
586        }
587}
588
589
[2911]590void ShadowMap::ComputeShadowMap(RenderTraverser *renderer, const Matrix4x4 &projView)
591{
[2891]592        mFbo->Bind();
[2892]593       
[2891]594        glDrawBuffers(1, mrt);
595
596        glPushAttrib(GL_VIEWPORT_BIT);
597        glViewport(0, 0, mSize, mSize);
598
599        glDisable(GL_LIGHTING);
600        glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);
601
602        glShadeModel(GL_FLAT);
603
604
[2942]605        /////////////
606        //-- render scene into shadow map
[2894]607
[2942]608        _Render(renderer);
[2911]609
[2939]610
[2913]611        //////////////
612        //-- compute texture matrix
[2925]613
[2894]614        static Matrix4x4 biasMatrix(0.5f, 0.0f, 0.0f, 0.5f,
615                                                                0.0f, 0.5f, 0.0f, 0.5f,
616                                                                0.0f, 0.0f, 0.5f, 0.5f,
[2911]617                                                                0.0f, 0.0f, 0.0f, 1.0f);
[2894]618
[2911]619        mTextureMatrix = mLightProjView * biasMatrix;
[2894]620
[2891]621        glPopAttrib();
[2928]622       
[2943]623        glShadeModel(GL_SMOOTH);
[2928]624        glEnable(GL_LIGHTING);
625        glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
626
[2913]627#if 0
[2911]628        float *data = new float[mSize * mSize];
[2891]629
630        GrabDepthBuffer(data, mFbo->GetDepthTex());
631        ExportDepthBuffer(data, mSize);
632
[2892]633        delete [] data;
[2911]634       
[2892]635        PrintGLerror("shadow map");
[2913]636#endif
[2942]637       
[2891]638        FrameBufferObject::Release();
639}
640
641
[2931]642void ShadowMap::RenderShadowView(RenderTraverser *renderer, const Matrix4x4 &projView)
643{
[2942]644        glEnable(GL_LIGHTING);
[2943]645       
[2942]646        _Render(renderer);
647       
[2943]648        /*glDisable(GL_LIGHTING);
649        glDisable(GL_DEPTH_TEST);
650
651        //glLineWidth(2);
652        Polyhedron *hpoly = CreatePolyhedron(projView, mSceneBox);
653        DrawPoly(hpoly, Vector3(1, 1, 1));
654
655        DEL_PTR(hpoly);
656
657        glEnable(GL_LIGHTING);
658        glEnable(GL_DEPTH_TEST);*/
659
[2942]660        glDisable(GL_POLYGON_OFFSET_FILL);
661}
662
663
664void ShadowMap::_Render(RenderTraverser *renderer)
665{
[2939]666        const Vector3 dir = mLight->GetDirection();
[2931]667
668        mShadowCam->SetDirection(dir);
669
670        // set position so that we can see the whole scene
671        Vector3 pos = mSceneBox.Center();
672        pos -= dir * Magnitude(mSceneBox.Diagonal() * 0.5f);
673
[2932]674        mShadowCam->SetPosition(mCamera->GetPosition());
675
676        Vector3 upVec = CalcUpVec(mCamera->GetDirection(), dir);
[2944]677        Matrix4x4 lightView = LookAt(mShadowCam->GetPosition(), dir, upVec);
[2932]678
679        mShadowCam->mViewOrientation = lightView;
680
[2931]681        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
682
[2944]683        glPolygonOffset(5.0f, 100.0f);
[2931]684        glEnable(GL_POLYGON_OFFSET_FILL);
[2932]685       
686        Matrix4x4 lightProj;
[2931]687        CalcLightProjection(lightProj);
688
689        glMatrixMode(GL_PROJECTION);
690        glPushMatrix();
691        glLoadMatrixf((float *)lightProj.x);
692
693        mLightProjView = lightView * lightProj;
[2932]694
[2931]695        DEL_PTR(lightPoly);
696        lightPoly = CreatePolyhedron(mLightProjView, mSceneBox);
697
698        glMatrixMode(GL_MODELVIEW);
699        glPushMatrix();
[2951]700       
[2932]701        mShadowCam->SetupCameraView();
[2931]702
[2942]703       
[2931]704        /////////////
705        //-- render scene into shadow map
706
707        renderer->RenderScene();
708
[2943]709
[2931]710        glMatrixMode(GL_PROJECTION);
711        glPopMatrix();
712
[2951]713        glMatrixMode(GL_MODELVIEW);
714        glPopMatrix();
715
[2931]716       
[2942]717        glDisable(GL_POLYGON_OFFSET_FILL);
[2931]718}
[2891]719} // namespace
Note: See TracBrowser for help on using the repository browser.