source: GTP/trunk/App/Demos/Vis/FriendlyCulling/src/ShadowMapping.cpp @ 2954

Revision 2954, 17.6 KB checked in by mattausch, 16 years ago (diff)

implemented sun color

Line 
1#include "ShadowMapping.h"
2#include "FrameBufferObject.h"
3#include "RenderState.h"
4#include "RenderTraverser.h"
5#include "Light.h"
6#include "Polygon3.h"
7#include "Polyhedron.h"
8
9#include <IL/il.h>
10#include <assert.h>
11
12
13using namespace std;
14
15
16namespace CHCDemoEngine
17{
18
19static CGprogram sCgShadowProgram;
20static CGparameter sShadowParam;
21
22
23static Polyhedron *polyhedron = NULL;
24static Polyhedron *lightPoly = NULL;
25
26
27static void PrintGLerror(char *msg)
28{
29        GLenum errCode;
30        const GLubyte *errStr;
31       
32        if ((errCode = glGetError()) != GL_NO_ERROR)
33        {
34                errStr = gluErrorString(errCode);
35                fprintf(stderr,"OpenGL ERROR: %s: %s\n", errStr, msg);
36        }
37}
38
39
40static Polyhedron *CreatePolyhedron(const Matrix4x4 &lightMatrix,
41                                                                        const AxisAlignedBox3 &sceneBox)
42{
43        Frustum frustum(lightMatrix);
44
45        vector<Plane3> clipPlanes;
46
47        for (int i = 0; i < 6; ++ i)
48        {
49                ////////////
50                //-- normalize the coefficients
51
52                // the clipping planes look outward the frustum,
53                // so distances > 0 mean that a point is outside
54                const float invLength = -1.0f / Magnitude(frustum.mClipPlanes[i].mNormal);
55
56                frustum.mClipPlanes[i].mD *= invLength;
57                frustum.mClipPlanes[i].mNormal *= invLength;
58        }
59
60        // first create near plane because of precision issues
61        clipPlanes.push_back(frustum.mClipPlanes[4]);
62
63        clipPlanes.push_back(frustum.mClipPlanes[0]);
64        clipPlanes.push_back(frustum.mClipPlanes[1]);
65        clipPlanes.push_back(frustum.mClipPlanes[2]);
66        clipPlanes.push_back(frustum.mClipPlanes[3]);
67        clipPlanes.push_back(frustum.mClipPlanes[5]);
68
69        return Polyhedron::CreatePolyhedron(clipPlanes, sceneBox);
70}
71
72
73static void GrabDepthBuffer(float *data, GLuint depthTexture)
74{
75        glEnable(GL_TEXTURE_2D);
76        glBindTexture(GL_TEXTURE_2D, depthTexture);
77
78        glGetTexImage(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, GL_FLOAT, data);
79
80        glBindTexture(GL_TEXTURE_2D, 0);
81        glDisable(GL_TEXTURE_2D);
82}
83
84
85static void ExportDepthBuffer(float *data, int size)
86{
87        ilInit();
88        assert(ilGetError() == IL_NO_ERROR);
89
90        ILstring filename = ILstring("shadow.tga");
91        ilRegisterType(IL_FLOAT);
92
93        const int depth = 1;
94        const int bpp = 1;
95
96        if (!ilTexImage(size, size, depth, bpp, IL_LUMINANCE, IL_FLOAT, data))
97        {
98                cerr << "IL error " << ilGetError() << endl;
99       
100                ilShutDown();
101                assert(ilGetError() == IL_NO_ERROR);
102
103                return;
104        }
105
106        if (!ilSaveImage(filename))
107        {
108                cerr << "TGA write error " << ilGetError() << endl;
109        }
110
111        ilShutDown();
112        assert(ilGetError() == IL_NO_ERROR);
113
114        cout << "exported depth buffer" << endl;
115}
116
117
118
119static AxisAlignedBox3 GetExtremalPoints(const Matrix4x4 &m,
120                                                                                 const VertexArray &pts)
121{
122        AxisAlignedBox3 extremalPoints;
123        extremalPoints.Initialize();
124
125        VertexArray::const_iterator it, it_end = pts.end();
126               
127        for (it = pts.begin(); it != it_end; ++ it)
128        {
129                Vector3 pt = *it;
130                pt = m * pt;
131
132                extremalPoints.Include(pt);
133        }
134
135        return extremalPoints;
136}
137
138
139ShadowMap::ShadowMap(DirectionalLight *light, int size, const AxisAlignedBox3 &sceneBox, Camera *cam):
140mSceneBox(sceneBox), mSize(size), mCamera(cam), mLight(light)
141{
142        mFbo = new FrameBufferObject(size, size, FrameBufferObject::DEPTH_32, true);
143        // need a color buffer to keep opengl happy
144        mFbo->AddColorBuffer(ColorBufferObject::BUFFER_UBYTE, ColorBufferObject::WRAP_CLAMP_TO_EDGE, ColorBufferObject::FILTER_LINEAR, false);
145
146        mShadowCam = new Camera(mSize, mSize);
147        mShadowCam->SetOrtho(true);
148}
149
150
151ShadowMap::~ShadowMap()
152{
153        DEL_PTR(mFbo);
154        DEL_PTR(mShadowCam);
155}
156
157
158static void DrawPoly(Polyhedron *poly, const Vector3 &color)
159{
160        if (!poly) return;
161
162        for (size_t i = 0; i < poly->NumPolygons(); ++ i)
163        {
164                glColor3f(color.x, color.y, color.z);
165
166                glBegin(GL_LINE_LOOP);
167
168                Polygon3 *p = poly->GetPolygons()[i];
169
170                for (size_t j = 0; j < p->mVertices.size(); ++ j)
171                {
172                        Vector3 v = p->mVertices[j];
173                        glVertex3d(v.x, v.y, v.z);
174                }
175
176                glEnd();
177        }
178}
179
180
181void ShadowMap::DrawPolys()
182{
183        DrawPoly(lightPoly, Vector3(1, 0, 1));
184        DrawPoly(polyhedron, Vector3(0, 1, 0));
185}
186
187
188// z0 is the point that lies on the parallel plane to the near plane through e (A)
189//and on the near plane of the C frustum (the plane z = bZmax) and on the line x = e.x
190Vector3 ShadowMap::GetLightSpaceZ0(const Matrix4x4 &lightSpace,
191                                                                   const Vector3 &e,
192                                                                   const float maxZ,
193                                                                   const Vector3 &eyeDir) const
194{
195        // to calculate the parallel plane to the near plane through e we
196        // calculate the plane A with the three points
197        Plane3 planeA(e, eyeDir);
198
199        planeA.Transform(lightSpace);
200       
201        // get the parameters of A from the plane equation n dot d = 0
202        const float d = planeA.mD;
203        const Vector3 n = planeA.mNormal;
204       
205        // transform to light space
206        const Vector3 e_ls = lightSpace * e;
207
208        Vector3 z0;
209
210        z0.x = e_ls.x;
211        z0.y = (d - n.z * maxZ - n.x * e_ls.x) / n.y;
212        z0.z = maxZ;
213
214        return z0;
215        //return V3(e_ls.x(),(d-n.z()*b_lsZmax-n.x()*e_ls.x())/n.y(),b_lsZmax);
216}
217
218
219float ShadowMap::ComputeNOpt(const Matrix4x4 &lightSpace,
220                                                         const AxisAlignedBox3 &extremalPoints,
221                                                         const VertexArray &body) const
222{
223        const Vector3 nearPt = GetNearCameraPointE(body);
224        const Vector3 eyeDir = mCamera->GetDirection();
225
226        Matrix4x4 eyeView;
227        mCamera->GetModelViewMatrix(eyeView);
228
229        const Matrix4x4 invLightSpace = Invert(lightSpace);
230
231        const Vector3 z0_ls = GetLightSpaceZ0(lightSpace, nearPt, extremalPoints.Max().z, eyeDir);
232        const Vector3 z1_ls = Vector3(z0_ls.x, z0_ls.y, extremalPoints.Min().z);
233       
234        // transform back to world space
235        const Vector3 z0_ws = invLightSpace * z0_ls;
236        const Vector3 z1_ws = invLightSpace * z1_ls;
237
238        // transform to eye space
239        const Vector3 z0_es = eyeView * z0_ws;
240        const Vector3 z1_es = eyeView * z1_ws;
241
242        const float z0 = z0_es.z;
243        const float z1 = z1_es.z;
244
245        cout << "z0 ls: " << z0_ls << " z1 ls: " << z1_ls << endl;
246        cout << "z0: " << z0_es << " z1: " << z1_es << endl;
247
248        const float d = fabs(extremalPoints.Max()[2] - extremalPoints.Min()[2]);
249
250        const float n = d / (sqrt(z1 / z0) - 1.0f);
251
252        return n;
253}
254
255
256float ShadowMap::ComputeN(const AxisAlignedBox3 &extremalPoints) const
257{
258        const float nearPlane = mCamera->GetNear();
259       
260        const float d = fabs(extremalPoints.Max()[2] - extremalPoints.Min()[2]);
261       
262        const float dotProd = DotProd(mCamera->GetDirection(), mShadowCam->GetDirection());
263        const float sinGamma = sin(fabs(acos(dotProd)));
264
265        // test for values close to zero
266        if (sinGamma < 1e-6f) return 1e6f;
267       
268        const float scale = 2.0f;
269        return scale * (nearPlane + sqrt(nearPlane * (nearPlane + d * sinGamma))) /  sinGamma;
270}
271
272
273Matrix4x4 ShadowMap::CalcLispSMTransform(const Matrix4x4 &lightSpace,
274                                                                                 const AxisAlignedBox3 &extremalPoints,
275                                                                                 const VertexArray &body
276                                                                                 )
277{
278        AxisAlignedBox3 bounds_ls = GetExtremalPoints(lightSpace, body);
279
280        ///////////////
281        //-- We apply the lispsm algorithm in order to calculate an optimal light projection matrix
282        //-- first find the free parameter values n, and P (the projection center), and the projection depth
283
284        const float n = ComputeN(bounds_ls);
285        //const float n = ComputeNOpt(lightSpace, extremalPoints, body); cout << "n: " << n << endl;
286
287        if (n >= 1e6f) // light direction nearly parallel to view => switch to uniform
288                return IdentityMatrix();
289
290        const Vector3 nearPt = GetNearCameraPointE(body);
291       
292        //get the coordinates of the near camera point in light space
293        const Vector3 lsNear = lightSpace * nearPt;
294
295        // the start point has the x and y coordinate of e, the z coord of the near plane of the light volume
296        const Vector3 startPt = Vector3(lsNear.x, lsNear.y, bounds_ls.Max().z);
297       
298        // the new projection center
299        const Vector3 projCenter = startPt + Vector3::UNIT_Z() * n;
300
301        //construct a translation that moves to the projection center
302        const Matrix4x4 projectionCenter = TranslationMatrix(-projCenter);
303
304        // light space y size
305        const float d = fabs(bounds_ls.Max()[2] - bounds_ls.Min()[2]);
306
307        const float dy = fabs(bounds_ls.Max()[1] - bounds_ls.Min()[1]);
308        const float dx = fabs(bounds_ls.Max()[0] - bounds_ls.Min()[0]);
309
310       
311
312        //////////
313        //-- now apply these values to construct the perspective lispsm matrix
314
315        Matrix4x4 matLispSM;
316       
317        matLispSM = GetFrustum(-1.0, 1.0, -1.0, 1.0, n, n + d);
318
319        // translate to the projection center
320        matLispSM = projectionCenter * matLispSM;
321
322        // transform into OpenGL right handed system
323        Matrix4x4 refl = ScaleMatrix(1.0f, 1.0f, -1.0f);
324        matLispSM *= refl;
325       
326        return matLispSM;
327}
328
329#if 0
330Vector3 ShadowMap::GetNearCameraPointE(const VertexArray &pts) const
331{
332        float maxDist = -1e25f;
333        Vector3 nearest = Vector3::ZERO();
334
335        Matrix4x4 eyeView;
336        mCamera->GetModelViewMatrix(eyeView);
337
338        VertexArray newPts;
339        polyhedron->CollectVertices(newPts);
340       
341        //the LVS volume is always in front of the camera
342        VertexArray::const_iterator it, it_end = pts.end();     
343
344        for (it = pts.begin(); it != it_end; ++ it)
345        {
346                Vector3 pt = *it;
347                Vector3 ptE = eyeView * pt;
348               
349                if (ptE.z > 0) cerr <<"should not happen " << ptE.z << endl;
350                else
351                if (ptE.z > maxDist)
352                {
353                        cout << " d " << ptE.z;
354       
355                        maxDist = ptE.z;
356                        nearest = pt;
357                }
358        }
359
360        //      return Invert(eyeView) * nearest;
361        return nearest;
362}
363
364#else
365
366Vector3 ShadowMap::GetNearCameraPointE(const VertexArray &pts) const
367{
368        VertexArray newPts;
369        polyhedron->CollectVertices(newPts);
370
371        Vector3 nearest = Vector3::ZERO();
372        float minDist = 1e25f;
373
374        const Vector3 camPos = mCamera->GetPosition();
375
376        VertexArray::const_iterator it, it_end = newPts.end();
377
378        for (it = newPts.begin(); it != it_end; ++ it)
379        {
380                Vector3 pt = *it;
381
382                const float dist = SqrDistance(pt, camPos);
383
384                if (dist < minDist)
385                {
386                        minDist = dist;
387                        nearest = pt;
388                }
389        }
390
391        return nearest;
392}
393
394#endif
395
396Vector3 ShadowMap::GetProjViewDir(const Matrix4x4 &lightSpace,
397                                                                  const VertexArray &pts) const
398{
399        //get the point in the LVS volume that is nearest to the camera
400        const Vector3 e = GetNearCameraPointE(pts);
401
402        //construct edge to transform into light-space
403        const Vector3 b = e + mCamera->GetDirection();
404        //transform to light-space
405        const Vector3 e_lp = lightSpace * e;
406        const Vector3 b_lp = lightSpace * b;
407
408        Vector3 projDir(b_lp - e_lp);
409
410        //project the view direction into the shadow map plane
411        projDir.y = .0f;
412
413        return Normalize(projDir);
414}
415
416
417bool ShadowMap::CalcLightProjection(Matrix4x4 &lightProj)
418{
419        ///////////////////
420        //-- First step: calc frustum clipped by scene box
421
422        DEL_PTR(polyhedron);
423        polyhedron = CalcClippedFrustum(mSceneBox);
424
425        if (!polyhedron) return false; // something is wrong
426
427        // include the part of the light volume that "sees" the frustum
428        // we only require frustum vertices
429
430        VertexArray frustumPoints;
431        IncludeLightVolume(*polyhedron, frustumPoints, mLight->GetDirection(), mSceneBox);
432
433
434        ///////////////
435        //-- transform points from world view to light view and calculate extremal points
436
437        Matrix4x4 lightView;
438        mShadowCam->GetModelViewMatrix(lightView);
439
440        const AxisAlignedBox3 extremalPoints = GetExtremalPoints(lightView, frustumPoints);
441
442        // we use directional lights, so the projection can be set to identity
443        lightProj = IdentityMatrix();
444
445        // switch coordinate system to that used in the lispsm algorithm for calculations
446        Matrix4x4 transform2LispSM = ZeroMatrix();
447
448        transform2LispSM.x[0][0] =  1.0f;
449        transform2LispSM.x[1][2] =  -1.0f; // y => -z
450        transform2LispSM.x[2][1] =  1.0f; // z => y
451        transform2LispSM.x[3][3] =  1.0f;
452
453
454        //switch to the lightspace used in the article
455        lightProj *= transform2LispSM;
456
457        const Vector3 projViewDir = GetProjViewDir(lightView * lightProj, frustumPoints);
458
459        //do DirectionalLight Space Perspective shadow mapping
460        //rotate the lightspace so that the projected light view always points upwards
461        //calculate a frame matrix that uses the projViewDir[lightspace] as up vector
462        //look(from position, into the direction of the projected direction, with unchanged up-vector)
463        //const Matrix4x4 frame = MyLookAt2(Vector3::ZERO(), projViewDir, Vector3::UNIT_Y());
464        const Matrix4x4 frame = LookAt(Vector3::ZERO(), projViewDir, Vector3::UNIT_Y());
465
466        lightProj *= frame;
467
468        const Matrix4x4 matLispSM =
469                CalcLispSMTransform(lightView * lightProj, extremalPoints, frustumPoints);
470
471        lightProj *= matLispSM;
472
473        // change back to GL coordinate system
474        Matrix4x4 transformToGL = ZeroMatrix();
475       
476        transformToGL.x[0][0] =   1.0f;
477        transformToGL.x[1][2] =   1.0f; // z => y
478        transformToGL.x[2][1] =  -1.0f; // y => -z
479        transformToGL.x[3][3] =   1.0f;
480
481        lightProj *= transformToGL;
482
483        AxisAlignedBox3 lightPts = GetExtremalPoints(lightView * lightProj, frustumPoints);
484
485        // focus projection matrix on the extremal points => scale to unit cube
486        Matrix4x4 scaleTranslate = GetFittingProjectionMatrix(lightPts);
487
488        lightProj = lightProj * scaleTranslate;
489
490        Matrix4x4 mymat = lightView * lightProj;
491
492        AxisAlignedBox3 lightPtsNew = GetExtremalPoints(mymat, frustumPoints);
493
494        // we have to flip the signs in order to tranform to opengl right handed system
495        Matrix4x4 refl = ScaleMatrix(1, 1, -1);
496        lightProj *= refl;
497       
498        return true;
499}
500
501
502Polyhedron *ShadowMap::CalcClippedFrustum(const AxisAlignedBox3 &box) const
503{
504        Polyhedron *p = mCamera->ComputeFrustum();
505       
506        Polyhedron *clippedPolyhedron = box.CalcIntersection(*p);
507
508        DEL_PTR(p);
509       
510        return clippedPolyhedron;
511}
512
513
514//calculates the up vector for the light coordinate frame
515static Vector3 CalcUpVec(const Vector3 viewDir, const Vector3 lightDir)
516{
517        //we do what gluLookAt does...
518        //left is the normalized vector perpendicular to lightDir and viewDir
519        //this means left is the normalvector of the yz-plane from the paper
520        Vector3 left = CrossProd(lightDir, viewDir);
521       
522        //we now can calculate the rotated(in the yz-plane) viewDir vector
523        //and use it as up vector in further transformations
524        Vector3 up = CrossProd(left, lightDir);
525
526        return Normalize(up);
527}
528
529
530void ShadowMap::GetTextureMatrix(Matrix4x4 &m) const
531{
532        m = mTextureMatrix;
533}
534
535 
536unsigned int ShadowMap::GetDepthTexture() const
537{
538        return mFbo->GetDepthTex();
539}
540
541unsigned int ShadowMap::GetShadowColorTexture() const
542{
543        return mFbo->GetColorBuffer(0)->GetTexture();
544       
545}
546
547
548void ShadowMap::IncludeLightVolume(const Polyhedron &polyhedron,
549                                                                   VertexArray &frustumPoints,
550                                                                   const Vector3 lightDir,
551                                                                   const AxisAlignedBox3 &sceneBox
552                                                                   )
553{
554        // we don't need closed form anymore => just store vertices
555        VertexArray vertices;
556        polyhedron.CollectVertices(vertices);
557
558        // we 'look' at each point and calculate intersections of rays with scene bounding box
559        VertexArray::const_iterator it, it_end = vertices.end();
560
561        for (it = vertices.begin(); it != it_end; ++ it)
562        {
563                Vector3 v  = *it;
564
565                frustumPoints.push_back(v);
566               
567                // hack: start at point which is guaranteed to be outside of box
568                v -= Magnitude(mSceneBox.Diagonal()) * lightDir;
569
570                SimpleRay ray(v, lightDir);
571
572                float tNear, tFar;
573
574                if (sceneBox.Intersects(ray, tNear, tFar))
575                {
576                        Vector3 newpt = ray.Extrap(tNear);
577                        frustumPoints.push_back(newpt);                 
578                }
579        }
580}
581
582
583void ShadowMap::ComputeShadowMap(RenderTraverser *renderer, const Matrix4x4 &projView)
584{
585        mFbo->Bind();
586       
587        glDrawBuffers(1, mrt);
588
589        glPushAttrib(GL_VIEWPORT_BIT);
590        glViewport(0, 0, mSize, mSize);
591
592        glDisable(GL_LIGHTING);
593        glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);
594
595        glShadeModel(GL_FLAT);
596
597
598        /////////////
599        //-- render scene into shadow map
600
601        _Render(renderer);
602
603
604        //////////////
605        //-- compute texture matrix
606
607        static Matrix4x4 biasMatrix(0.5f, 0.0f, 0.0f, 0.5f,
608                                                                0.0f, 0.5f, 0.0f, 0.5f,
609                                                                0.0f, 0.0f, 0.5f, 0.5f,
610                                                                0.0f, 0.0f, 0.0f, 1.0f);
611
612        mTextureMatrix = mLightProjView * biasMatrix;
613
614        glPopAttrib();
615       
616        glShadeModel(GL_SMOOTH);
617        glEnable(GL_LIGHTING);
618        glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
619
620#if 0
621        float *data = new float[mSize * mSize];
622
623        GrabDepthBuffer(data, mFbo->GetDepthTex());
624        ExportDepthBuffer(data, mSize);
625
626        delete [] data;
627       
628        PrintGLerror("shadow map");
629#endif
630       
631        FrameBufferObject::Release();
632}
633
634
635void ShadowMap::RenderShadowView(RenderTraverser *renderer, const Matrix4x4 &projView)
636{
637        glEnable(GL_LIGHTING);
638       
639        _Render(renderer);
640       
641        /*glDisable(GL_LIGHTING);
642        glDisable(GL_DEPTH_TEST);
643
644        //glLineWidth(2);
645        Polyhedron *hpoly = CreatePolyhedron(projView, mSceneBox);
646        DrawPoly(hpoly, Vector3(1, 1, 1));
647
648        DEL_PTR(hpoly);
649
650        glEnable(GL_LIGHTING);
651        glEnable(GL_DEPTH_TEST);*/
652
653        glDisable(GL_POLYGON_OFFSET_FILL);
654}
655
656
657void ShadowMap::_Render(RenderTraverser *renderer)
658{
659        const Vector3 dir = mLight->GetDirection();
660
661        mShadowCam->SetDirection(dir);
662
663        // set position so that we can see the whole scene
664        Vector3 pos = mSceneBox.Center();
665        pos -= dir * Magnitude(mSceneBox.Diagonal() * 0.5f);
666
667        mShadowCam->SetPosition(mCamera->GetPosition());
668
669        Vector3 upVec = CalcUpVec(mCamera->GetDirection(), dir);
670        Matrix4x4 lightView = LookAt(mShadowCam->GetPosition(), dir, upVec);
671
672        mShadowCam->mViewOrientation = lightView;
673
674        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
675
676        glPolygonOffset(5.0f, 100.0f);
677        glEnable(GL_POLYGON_OFFSET_FILL);
678       
679        Matrix4x4 lightProj;
680        CalcLightProjection(lightProj);
681
682        glMatrixMode(GL_PROJECTION);
683        glPushMatrix();
684        glLoadMatrixf((float *)lightProj.x);
685
686        mLightProjView = lightView * lightProj;
687
688        DEL_PTR(lightPoly);
689        lightPoly = CreatePolyhedron(mLightProjView, mSceneBox);
690
691        glMatrixMode(GL_MODELVIEW);
692        glPushMatrix();
693       
694        mShadowCam->SetupCameraView();
695
696       
697        /////////////
698        //-- render scene into shadow map
699
700        renderer->RenderScene();
701
702
703        glMatrixMode(GL_PROJECTION);
704        glPopMatrix();
705
706        glMatrixMode(GL_MODELVIEW);
707        glPopMatrix();
708
709       
710        glDisable(GL_POLYGON_OFFSET_FILL);
711}
712} // namespace
Note: See TracBrowser for help on using the repository browser.