1 | #include "ShadowMapping.h"
|
---|
2 | #include "FrameBufferObject.h"
|
---|
3 | #include "RenderState.h"
|
---|
4 | #include "RenderTraverser.h"
|
---|
5 | #include "Light.h"
|
---|
6 | #include "Polygon3.h"
|
---|
7 | #include "Polyhedron.h"
|
---|
8 | #include "ResourceManager.h"
|
---|
9 |
|
---|
10 | #include <IL/il.h>
|
---|
11 | #include <assert.h>
|
---|
12 |
|
---|
13 |
|
---|
14 | using namespace std;
|
---|
15 |
|
---|
16 |
|
---|
17 | namespace CHCDemoEngine
|
---|
18 | {
|
---|
19 |
|
---|
20 | static Polyhedron *polyhedron = NULL;
|
---|
21 | static Polyhedron *lightPoly = NULL;
|
---|
22 |
|
---|
23 |
|
---|
24 | static void PrintGLerror(char *msg)
|
---|
25 | {
|
---|
26 | GLenum errCode;
|
---|
27 | const GLubyte *errStr;
|
---|
28 |
|
---|
29 | if ((errCode = glGetError()) != GL_NO_ERROR)
|
---|
30 | {
|
---|
31 | errStr = gluErrorString(errCode);
|
---|
32 | fprintf(stderr,"OpenGL ERROR: %s: %s\n", errStr, msg);
|
---|
33 | }
|
---|
34 | }
|
---|
35 |
|
---|
36 |
|
---|
37 | static Polyhedron *CreatePolyhedron(const Matrix4x4 &lightMatrix,
|
---|
38 | const AxisAlignedBox3 &sceneBox)
|
---|
39 | {
|
---|
40 | Frustum frustum(lightMatrix);
|
---|
41 |
|
---|
42 | vector<Plane3> clipPlanes;
|
---|
43 |
|
---|
44 | for (int i = 0; i < 6; ++ i)
|
---|
45 | {
|
---|
46 | ////////////
|
---|
47 | //-- normalize the coefficients
|
---|
48 |
|
---|
49 | // the clipping planes look outward the frustum,
|
---|
50 | // so distances > 0 mean that a point is outside
|
---|
51 | const float invLength = -1.0f / Magnitude(frustum.mClipPlanes[i].mNormal);
|
---|
52 |
|
---|
53 | frustum.mClipPlanes[i].mD *= invLength;
|
---|
54 | frustum.mClipPlanes[i].mNormal *= invLength;
|
---|
55 | }
|
---|
56 |
|
---|
57 | // first create near plane because of precision issues
|
---|
58 | clipPlanes.push_back(frustum.mClipPlanes[4]);
|
---|
59 |
|
---|
60 | clipPlanes.push_back(frustum.mClipPlanes[0]);
|
---|
61 | clipPlanes.push_back(frustum.mClipPlanes[1]);
|
---|
62 | clipPlanes.push_back(frustum.mClipPlanes[2]);
|
---|
63 | clipPlanes.push_back(frustum.mClipPlanes[3]);
|
---|
64 | clipPlanes.push_back(frustum.mClipPlanes[5]);
|
---|
65 |
|
---|
66 | return Polyhedron::CreatePolyhedron(clipPlanes, sceneBox);
|
---|
67 | }
|
---|
68 |
|
---|
69 |
|
---|
70 | static void GrabDepthBuffer(float *data, GLuint depthTexture)
|
---|
71 | {
|
---|
72 | glEnable(GL_TEXTURE_2D);
|
---|
73 | glBindTexture(GL_TEXTURE_2D, depthTexture);
|
---|
74 |
|
---|
75 | glGetTexImage(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, GL_FLOAT, data);
|
---|
76 |
|
---|
77 | glBindTexture(GL_TEXTURE_2D, 0);
|
---|
78 | glDisable(GL_TEXTURE_2D);
|
---|
79 | }
|
---|
80 |
|
---|
81 |
|
---|
82 | static void ExportDepthBuffer(float *data, int size)
|
---|
83 | {
|
---|
84 | ilInit();
|
---|
85 | assert(ilGetError() == IL_NO_ERROR);
|
---|
86 |
|
---|
87 | ILstring filename = ILstring("shadow.tga");
|
---|
88 | ilRegisterType(IL_FLOAT);
|
---|
89 |
|
---|
90 | const int depth = 1;
|
---|
91 | const int bpp = 1;
|
---|
92 |
|
---|
93 | if (!ilTexImage(size, size, depth, bpp, IL_LUMINANCE, IL_FLOAT, data))
|
---|
94 | {
|
---|
95 | cerr << "IL error " << ilGetError() << endl;
|
---|
96 |
|
---|
97 | ilShutDown();
|
---|
98 | assert(ilGetError() == IL_NO_ERROR);
|
---|
99 |
|
---|
100 | return;
|
---|
101 | }
|
---|
102 |
|
---|
103 | ilEnable(IL_FILE_OVERWRITE);
|
---|
104 | if (!ilSaveImage(filename))
|
---|
105 | {
|
---|
106 | cerr << "TGA write error " << ilGetError() << endl;
|
---|
107 | }
|
---|
108 |
|
---|
109 | ilShutDown();
|
---|
110 | assert(ilGetError() == IL_NO_ERROR);
|
---|
111 |
|
---|
112 | cout << "exported depth buffer" << endl;
|
---|
113 | }
|
---|
114 |
|
---|
115 |
|
---|
116 |
|
---|
117 | static AxisAlignedBox3 GetExtremalPoints(const Matrix4x4 &m,
|
---|
118 | const VertexArray &pts)
|
---|
119 | {
|
---|
120 | AxisAlignedBox3 extremalPoints;
|
---|
121 | extremalPoints.Initialize();
|
---|
122 |
|
---|
123 | VertexArray::const_iterator it, it_end = pts.end();
|
---|
124 |
|
---|
125 | for (it = pts.begin(); it != it_end; ++ it)
|
---|
126 | {
|
---|
127 | Vector3 pt = *it;
|
---|
128 | pt = m * pt;
|
---|
129 |
|
---|
130 | extremalPoints.Include(pt);
|
---|
131 | }
|
---|
132 |
|
---|
133 | return extremalPoints;
|
---|
134 | }
|
---|
135 |
|
---|
136 |
|
---|
137 | ShadowMap::ShadowMap(DirectionalLight *light,
|
---|
138 | int size,
|
---|
139 | const AxisAlignedBox3 &sceneBox,
|
---|
140 | PerspectiveCamera *cam):
|
---|
141 | mSceneBox(sceneBox), mSize(size), mCamera(cam), mLight(light)
|
---|
142 | {
|
---|
143 | mFbo = new FrameBufferObject(size, size, FrameBufferObject::DEPTH_32, true);
|
---|
144 |
|
---|
145 | // need a color buffer to keep driver happy
|
---|
146 | mFbo->AddColorBuffer(ColorBufferObject::RGB_UBYTE,
|
---|
147 | ColorBufferObject::WRAP_CLAMP_TO_EDGE,
|
---|
148 | ColorBufferObject::FILTER_NEAREST);
|
---|
149 |
|
---|
150 | mShadowCam = new PerspectiveCamera(1);
|
---|
151 | }
|
---|
152 |
|
---|
153 |
|
---|
154 | ShadowMap::~ShadowMap()
|
---|
155 | {
|
---|
156 | DEL_PTR(mFbo);
|
---|
157 | DEL_PTR(mShadowCam);
|
---|
158 |
|
---|
159 | DEL_PTR(lightPoly);
|
---|
160 | DEL_PTR(polyhedron);
|
---|
161 | }
|
---|
162 |
|
---|
163 |
|
---|
164 | static void DrawPolyhedron(Polyhedron *poly, const Vector3 &color)
|
---|
165 | {
|
---|
166 | if (!poly) return;
|
---|
167 |
|
---|
168 | for (size_t i = 0; i < poly->NumPolygons(); ++ i)
|
---|
169 | {
|
---|
170 | glColor3f(color.x, color.y, color.z);
|
---|
171 |
|
---|
172 | glBegin(GL_LINE_LOOP);
|
---|
173 |
|
---|
174 | Polygon3 *p = poly->GetPolygons()[i];
|
---|
175 |
|
---|
176 | for (size_t j = 0; j < p->mVertices.size(); ++ j)
|
---|
177 | {
|
---|
178 | Vector3 v = p->mVertices[j];
|
---|
179 | glVertex3d(v.x, v.y, v.z);
|
---|
180 | }
|
---|
181 |
|
---|
182 | glEnd();
|
---|
183 | }
|
---|
184 | }
|
---|
185 |
|
---|
186 |
|
---|
187 | void ShadowMap::VisualizeFrustra()
|
---|
188 | {
|
---|
189 | DrawPolyhedron(lightPoly, Vector3(1, 0, 1));
|
---|
190 | DrawPolyhedron(polyhedron, Vector3(0, 1, 0));
|
---|
191 | }
|
---|
192 |
|
---|
193 |
|
---|
194 | // z0 is the point that lies on the parallel plane to the near plane through e (A)
|
---|
195 | //and on the near plane of the C frustum (the plane z = bZmax) and on the line x = e.x
|
---|
196 | Vector3 ShadowMap::GetLightSpaceZ0(const Matrix4x4 &lightSpace,
|
---|
197 | const Vector3 &e,
|
---|
198 | const float maxZ,
|
---|
199 | const Vector3 &eyeDir) const
|
---|
200 | {
|
---|
201 | // to calculate the parallel plane to the near plane through e we
|
---|
202 | // calculate the plane A with the three points
|
---|
203 | Plane3 planeA(e, eyeDir);
|
---|
204 |
|
---|
205 | planeA.Transform(lightSpace);
|
---|
206 |
|
---|
207 | // get the parameters of A from the plane equation n dot d = 0
|
---|
208 | const float d = planeA.mD;
|
---|
209 | const Vector3 n = planeA.mNormal;
|
---|
210 |
|
---|
211 | // transform to light space
|
---|
212 | const Vector3 e_ls = lightSpace * e;
|
---|
213 |
|
---|
214 | Vector3 z0;
|
---|
215 |
|
---|
216 | z0.x = e_ls.x;
|
---|
217 | z0.y = (d - n.z * maxZ - n.x * e_ls.x) / n.y;
|
---|
218 | z0.z = maxZ;
|
---|
219 |
|
---|
220 | return z0;
|
---|
221 | //return V3(e_ls.x(),(d-n.z()*b_lsZmax-n.x()*e_ls.x())/n.y(),b_lsZmax);
|
---|
222 | }
|
---|
223 |
|
---|
224 |
|
---|
225 | float ShadowMap::ComputeNOpt(const Matrix4x4 &lightSpace,
|
---|
226 | const AxisAlignedBox3 &extremalPoints,
|
---|
227 | const VertexArray &body) const
|
---|
228 | {
|
---|
229 | const Vector3 nearPt = GetNearCameraPointE(body);
|
---|
230 | const Vector3 eyeDir = mCamera->GetDirection();
|
---|
231 |
|
---|
232 | Matrix4x4 eyeView;
|
---|
233 | mCamera->GetModelViewMatrix(eyeView);
|
---|
234 |
|
---|
235 | const Matrix4x4 invLightSpace = Invert(lightSpace);
|
---|
236 |
|
---|
237 | const Vector3 z0_ls = GetLightSpaceZ0(lightSpace, nearPt, extremalPoints.Max().z, eyeDir);
|
---|
238 | const Vector3 z1_ls = Vector3(z0_ls.x, z0_ls.y, extremalPoints.Min().z);
|
---|
239 |
|
---|
240 | // transform back to world space
|
---|
241 | const Vector3 z0_ws = invLightSpace * z0_ls;
|
---|
242 | const Vector3 z1_ws = invLightSpace * z1_ls;
|
---|
243 |
|
---|
244 | // transform to eye space
|
---|
245 | const Vector3 z0_es = eyeView * z0_ws;
|
---|
246 | const Vector3 z1_es = eyeView * z1_ws;
|
---|
247 |
|
---|
248 | const float z0 = z0_es.z;
|
---|
249 | const float z1 = z1_es.z;
|
---|
250 |
|
---|
251 | cout << "z0 ls: " << z0_ls << " z1 ls: " << z1_ls << endl;
|
---|
252 | cout << "z0: " << z0_es << " z1: " << z1_es << endl;
|
---|
253 |
|
---|
254 | const float d = fabs(extremalPoints.Max()[2] - extremalPoints.Min()[2]);
|
---|
255 |
|
---|
256 | const float n = d / (sqrt(z1 / z0) - 1.0f);
|
---|
257 |
|
---|
258 | return n;
|
---|
259 | }
|
---|
260 |
|
---|
261 |
|
---|
262 | float ShadowMap::ComputeN(const AxisAlignedBox3 &extremalPoints) const
|
---|
263 | {
|
---|
264 | const float nearPlane = mCamera->GetNear();
|
---|
265 |
|
---|
266 | const float d = fabs(extremalPoints.Max()[2] - extremalPoints.Min()[2]);
|
---|
267 |
|
---|
268 | const float dotProd = DotProd(mCamera->GetDirection(), mShadowCam->GetDirection());
|
---|
269 | const float sinGamma = sin(fabs(acos(dotProd)));
|
---|
270 |
|
---|
271 | // test for values close to zero
|
---|
272 | if (sinGamma < 1e-6f) return 1e6f;
|
---|
273 |
|
---|
274 | const float scale = 2.0f;
|
---|
275 | return scale * (nearPlane + sqrt(nearPlane * (nearPlane + d * sinGamma))) / sinGamma;
|
---|
276 | }
|
---|
277 |
|
---|
278 |
|
---|
279 | Matrix4x4 ShadowMap::CalcLispSMTransform(const Matrix4x4 &lightSpace,
|
---|
280 | const AxisAlignedBox3 &extremalPoints,
|
---|
281 | const VertexArray &body
|
---|
282 | )
|
---|
283 | {
|
---|
284 | AxisAlignedBox3 bounds_ls = GetExtremalPoints(lightSpace, body);
|
---|
285 |
|
---|
286 | ///////////////
|
---|
287 | //-- We apply the lispsm algorithm in order to calculate an optimal light projection matrix
|
---|
288 | //-- first find the free parameter values n, and P (the projection center), and the projection depth
|
---|
289 |
|
---|
290 | const float n = ComputeN(bounds_ls);
|
---|
291 | //const float n = ComputeNOpt(lightSpace, extremalPoints, body); cout << "n: " << n << endl;
|
---|
292 |
|
---|
293 | if (n >= 1e6f) // light direction nearly parallel to view => switch to uniform
|
---|
294 | return IdentityMatrix();
|
---|
295 |
|
---|
296 | const Vector3 nearPt = GetNearCameraPointE(body);
|
---|
297 |
|
---|
298 | //get the coordinates of the near camera point in light space
|
---|
299 | const Vector3 lsNear = lightSpace * nearPt;
|
---|
300 |
|
---|
301 | // the start point has the x and y coordinate of e, the z coord of the near plane of the light volume
|
---|
302 | const Vector3 startPt = Vector3(lsNear.x, lsNear.y, bounds_ls.Max().z);
|
---|
303 |
|
---|
304 | // the new projection center
|
---|
305 | const Vector3 projCenter = startPt + Vector3::UNIT_Z() * n;
|
---|
306 |
|
---|
307 | //construct a translation that moves to the projection center
|
---|
308 | const Matrix4x4 projectionCenter = TranslationMatrix(-projCenter);
|
---|
309 |
|
---|
310 | // light space y size
|
---|
311 | const float d = fabs(bounds_ls.Max()[2] - bounds_ls.Min()[2]);
|
---|
312 |
|
---|
313 | const float dy = fabs(bounds_ls.Max()[1] - bounds_ls.Min()[1]);
|
---|
314 | const float dx = fabs(bounds_ls.Max()[0] - bounds_ls.Min()[0]);
|
---|
315 |
|
---|
316 |
|
---|
317 |
|
---|
318 | //////////
|
---|
319 | //-- now apply these values to construct the perspective lispsm matrix
|
---|
320 |
|
---|
321 | Matrix4x4 matLispSM;
|
---|
322 |
|
---|
323 | matLispSM = GetFrustum(-1.0, 1.0, -1.0, 1.0, n, n + d);
|
---|
324 |
|
---|
325 | // translate to the projection center
|
---|
326 | matLispSM = projectionCenter * matLispSM;
|
---|
327 |
|
---|
328 | // transform into OpenGL right handed system
|
---|
329 | Matrix4x4 refl = ScaleMatrix(1.0f, 1.0f, -1.0f);
|
---|
330 | matLispSM *= refl;
|
---|
331 |
|
---|
332 | return matLispSM;
|
---|
333 | }
|
---|
334 |
|
---|
335 | #if 0
|
---|
336 |
|
---|
337 | Vector3 ShadowMap::GetNearCameraPointE(const VertexArray &pts) const
|
---|
338 | {
|
---|
339 | float maxDist = -1e25f;
|
---|
340 | Vector3 nearest = Vector3::ZERO();
|
---|
341 |
|
---|
342 | Matrix4x4 eyeView;
|
---|
343 | mCamera->GetModelViewMatrix(eyeView);
|
---|
344 |
|
---|
345 | VertexArray newPts;
|
---|
346 | polyhedron->CollectVertices(newPts);
|
---|
347 |
|
---|
348 | //the LVS volume is always in front of the camera
|
---|
349 | VertexArray::const_iterator it, it_end = pts.end();
|
---|
350 |
|
---|
351 | for (it = pts.begin(); it != it_end; ++ it)
|
---|
352 | {
|
---|
353 | Vector3 pt = *it;
|
---|
354 | Vector3 ptE = eyeView * pt;
|
---|
355 |
|
---|
356 | if (ptE.z > 0) cerr <<"should not happen " << ptE.z << endl;
|
---|
357 | else
|
---|
358 | if (ptE.z > maxDist)
|
---|
359 | {
|
---|
360 | cout << " d " << ptE.z;
|
---|
361 |
|
---|
362 | maxDist = ptE.z;
|
---|
363 | nearest = pt;
|
---|
364 | }
|
---|
365 | }
|
---|
366 |
|
---|
367 | // return Invert(eyeView) * nearest;
|
---|
368 | return nearest;
|
---|
369 | }
|
---|
370 |
|
---|
371 | #else
|
---|
372 |
|
---|
373 | Vector3 ShadowMap::GetNearCameraPointE(const VertexArray &pts) const
|
---|
374 | {
|
---|
375 | VertexArray newPts;
|
---|
376 | polyhedron->CollectVertices(newPts);
|
---|
377 |
|
---|
378 | Vector3 nearest = Vector3::ZERO();
|
---|
379 | float minDist = 1e25f;
|
---|
380 |
|
---|
381 | const Vector3 camPos = mCamera->GetPosition();
|
---|
382 |
|
---|
383 | VertexArray::const_iterator it, it_end = newPts.end();
|
---|
384 |
|
---|
385 | for (it = newPts.begin(); it != it_end; ++ it)
|
---|
386 | {
|
---|
387 | Vector3 pt = *it;
|
---|
388 |
|
---|
389 | const float dist = SqrDistance(pt, camPos);
|
---|
390 |
|
---|
391 | if (dist < minDist)
|
---|
392 | {
|
---|
393 | minDist = dist;
|
---|
394 | nearest = pt;
|
---|
395 | }
|
---|
396 | }
|
---|
397 |
|
---|
398 | return nearest;
|
---|
399 | }
|
---|
400 |
|
---|
401 | #endif
|
---|
402 |
|
---|
403 | Vector3 ShadowMap::GetProjViewDir(const Matrix4x4 &lightSpace,
|
---|
404 | const VertexArray &pts) const
|
---|
405 | {
|
---|
406 | //get the point in the LVS volume that is nearest to the camera
|
---|
407 | const Vector3 e = GetNearCameraPointE(pts);
|
---|
408 |
|
---|
409 | //construct edge to transform into light-space
|
---|
410 | const Vector3 b = e + mCamera->GetDirection();
|
---|
411 | //transform to light-space
|
---|
412 | const Vector3 e_lp = lightSpace * e;
|
---|
413 | const Vector3 b_lp = lightSpace * b;
|
---|
414 |
|
---|
415 | Vector3 projDir(b_lp - e_lp);
|
---|
416 |
|
---|
417 | //project the view direction into the shadow map plane
|
---|
418 | projDir.y = .0f;
|
---|
419 |
|
---|
420 | return Normalize(projDir);
|
---|
421 | }
|
---|
422 |
|
---|
423 |
|
---|
424 | bool ShadowMap::CalcLightProjection(Matrix4x4 &lightProj)
|
---|
425 | {
|
---|
426 | ///////////////////
|
---|
427 | //-- First step: calc frustum clipped by scene box
|
---|
428 |
|
---|
429 | DEL_PTR(polyhedron);
|
---|
430 | polyhedron = CalcClippedFrustum(mSceneBox);
|
---|
431 |
|
---|
432 | if (!polyhedron) return false; // something is wrong
|
---|
433 |
|
---|
434 | // include the part of the light volume that "sees" the frustum
|
---|
435 | // we only require frustum vertices
|
---|
436 |
|
---|
437 | VertexArray frustumPoints;
|
---|
438 | IncludeLightVolume(*polyhedron, frustumPoints, mLight->GetDirection(), mSceneBox);
|
---|
439 |
|
---|
440 |
|
---|
441 | ///////////////
|
---|
442 | //-- transform points from world view to light view and calculate extremal points
|
---|
443 |
|
---|
444 | Matrix4x4 lightView;
|
---|
445 | mShadowCam->GetModelViewMatrix(lightView);
|
---|
446 |
|
---|
447 | const AxisAlignedBox3 extremalPoints = GetExtremalPoints(lightView, frustumPoints);
|
---|
448 |
|
---|
449 | // we use directional lights, so the projection can be set to identity
|
---|
450 | lightProj = IdentityMatrix();
|
---|
451 |
|
---|
452 | // switch coordinate system to that used in the lispsm algorithm for calculations
|
---|
453 | Matrix4x4 transform2LispSM = ZeroMatrix();
|
---|
454 |
|
---|
455 | transform2LispSM.x[0][0] = 1.0f;
|
---|
456 | transform2LispSM.x[1][2] = -1.0f; // y => -z
|
---|
457 | transform2LispSM.x[2][1] = 1.0f; // z => y
|
---|
458 | transform2LispSM.x[3][3] = 1.0f;
|
---|
459 |
|
---|
460 |
|
---|
461 | //switch to the lightspace used in the article
|
---|
462 | lightProj *= transform2LispSM;
|
---|
463 |
|
---|
464 | const Vector3 projViewDir = GetProjViewDir(lightView * lightProj, frustumPoints);
|
---|
465 |
|
---|
466 | //do DirectionalLight Space Perspective shadow mapping
|
---|
467 | //rotate the lightspace so that the projected light view always points upwards
|
---|
468 | //calculate a frame matrix that uses the projViewDir[lightspace] as up vector
|
---|
469 | //look(from position, into the direction of the projected direction, with unchanged up-vector)
|
---|
470 | //const Matrix4x4 frame = MyLookAt2(Vector3::ZERO(), projViewDir, Vector3::UNIT_Y());
|
---|
471 | const Matrix4x4 frame = LookAt(Vector3::ZERO(), projViewDir, Vector3::UNIT_Y());
|
---|
472 |
|
---|
473 | lightProj *= frame;
|
---|
474 |
|
---|
475 | const Matrix4x4 matLispSM =
|
---|
476 | CalcLispSMTransform(lightView * lightProj, extremalPoints, frustumPoints);
|
---|
477 |
|
---|
478 | lightProj *= matLispSM;
|
---|
479 |
|
---|
480 | // change back to GL coordinate system
|
---|
481 | Matrix4x4 transformToGL = ZeroMatrix();
|
---|
482 |
|
---|
483 | transformToGL.x[0][0] = 1.0f;
|
---|
484 | transformToGL.x[1][2] = 1.0f; // z => y
|
---|
485 | transformToGL.x[2][1] = -1.0f; // y => -z
|
---|
486 | transformToGL.x[3][3] = 1.0f;
|
---|
487 |
|
---|
488 | lightProj *= transformToGL;
|
---|
489 |
|
---|
490 | AxisAlignedBox3 lightPts = GetExtremalPoints(lightView * lightProj, frustumPoints);
|
---|
491 |
|
---|
492 | // focus projection matrix on the extremal points => scale to unit cube
|
---|
493 | Matrix4x4 scaleTranslate = GetFittingProjectionMatrix(lightPts);
|
---|
494 |
|
---|
495 | lightProj = lightProj * scaleTranslate;
|
---|
496 |
|
---|
497 | Matrix4x4 mymat = lightView * lightProj;
|
---|
498 |
|
---|
499 | AxisAlignedBox3 lightPtsNew = GetExtremalPoints(mymat, frustumPoints);
|
---|
500 |
|
---|
501 | // we have to flip the signs in order to tranform to opengl right handed system
|
---|
502 | Matrix4x4 refl = ScaleMatrix(1, 1, -1);
|
---|
503 | lightProj *= refl;
|
---|
504 |
|
---|
505 | return true;
|
---|
506 | }
|
---|
507 |
|
---|
508 |
|
---|
509 | Polyhedron *ShadowMap::CalcClippedFrustum(const AxisAlignedBox3 &box) const
|
---|
510 | {
|
---|
511 | Polyhedron *p = mCamera->ComputeFrustum();
|
---|
512 |
|
---|
513 | Polyhedron *clippedPolyhedron = box.CalcIntersection(*p);
|
---|
514 | DEL_PTR(p);
|
---|
515 |
|
---|
516 | return clippedPolyhedron;
|
---|
517 | }
|
---|
518 |
|
---|
519 |
|
---|
520 | //calculates the up vector for the light coordinate frame
|
---|
521 | static Vector3 CalcUpVec(const Vector3 viewDir, const Vector3 lightDir)
|
---|
522 | {
|
---|
523 | //we do what gluLookAt does...
|
---|
524 | //left is the normalized vector perpendicular to lightDir and viewDir
|
---|
525 | //this means left is the normalvector of the yz-plane from the paper
|
---|
526 | Vector3 left = CrossProd(lightDir, viewDir);
|
---|
527 |
|
---|
528 | //we now can calculate the rotated(in the yz-plane) viewDir vector
|
---|
529 | //and use it as up vector in further transformations
|
---|
530 | Vector3 up = CrossProd(left, lightDir);
|
---|
531 |
|
---|
532 | return Normalize(up);
|
---|
533 | }
|
---|
534 |
|
---|
535 |
|
---|
536 | void ShadowMap::GetTextureMatrix(Matrix4x4 &m) const
|
---|
537 | {
|
---|
538 | m = mTextureMatrix;
|
---|
539 | }
|
---|
540 |
|
---|
541 |
|
---|
542 | unsigned int ShadowMap::GetDepthTexture() const
|
---|
543 | {
|
---|
544 | return mFbo->GetDepthTex();
|
---|
545 | }
|
---|
546 |
|
---|
547 |
|
---|
548 | unsigned int ShadowMap::GetShadowColorTexture() const
|
---|
549 | {
|
---|
550 | return mFbo->GetColorBuffer(0)->GetTexture();
|
---|
551 |
|
---|
552 | }
|
---|
553 |
|
---|
554 |
|
---|
555 | void ShadowMap::IncludeLightVolume(const Polyhedron &polyhedron,
|
---|
556 | VertexArray &frustumPoints,
|
---|
557 | const Vector3 lightDir,
|
---|
558 | const AxisAlignedBox3 &sceneBox
|
---|
559 | )
|
---|
560 | {
|
---|
561 | // we don't need closed form anymore => just store vertices
|
---|
562 | VertexArray vertices;
|
---|
563 | polyhedron.CollectVertices(vertices);
|
---|
564 |
|
---|
565 | // we 'look' at each point and intect rays with the scene bounding box
|
---|
566 | VertexArray::const_iterator it, it_end = vertices.end();
|
---|
567 |
|
---|
568 | for (it = vertices.begin(); it != it_end; ++ it)
|
---|
569 | {
|
---|
570 | Vector3 v = *it;
|
---|
571 |
|
---|
572 | frustumPoints.push_back(v);
|
---|
573 | // hack: start at point which is guaranteed to be outside of box
|
---|
574 | v -= Magnitude(mSceneBox.Diagonal()) * lightDir;
|
---|
575 |
|
---|
576 | SimpleRay ray(v, lightDir);
|
---|
577 |
|
---|
578 | float tNear, tFar;
|
---|
579 |
|
---|
580 | if (sceneBox.Intersects(ray, tNear, tFar))
|
---|
581 | {
|
---|
582 | Vector3 newpt = ray.Extrap(tNear);
|
---|
583 | frustumPoints.push_back(newpt);
|
---|
584 | }
|
---|
585 | }
|
---|
586 | }
|
---|
587 |
|
---|
588 |
|
---|
589 | void ShadowMap::ComputeShadowMap(RenderTraverser *renderer,
|
---|
590 | const Matrix4x4 &projView)
|
---|
591 | {
|
---|
592 | mFbo->Bind();
|
---|
593 |
|
---|
594 | glDrawBuffers(1, mrt);
|
---|
595 |
|
---|
596 | glPushAttrib(GL_VIEWPORT_BIT);
|
---|
597 | glViewport(0, 0, mSize, mSize);
|
---|
598 |
|
---|
599 | // turn off colors + lighting (should be handled by the render state)
|
---|
600 | glShadeModel(GL_FLAT);
|
---|
601 |
|
---|
602 |
|
---|
603 | /////////////
|
---|
604 | //-- render scene into shadow map
|
---|
605 |
|
---|
606 | _Render(renderer);
|
---|
607 |
|
---|
608 | glPopAttrib();
|
---|
609 | glShadeModel(GL_SMOOTH);
|
---|
610 |
|
---|
611 | #if 0
|
---|
612 | float *data = new float[mSize * mSize];
|
---|
613 |
|
---|
614 | GrabDepthBuffer(data, mFbo->GetDepthTex());
|
---|
615 | ExportDepthBuffer(data, mSize);
|
---|
616 |
|
---|
617 | delete [] data;
|
---|
618 |
|
---|
619 | PrintGLerror("shadow map");
|
---|
620 | #endif
|
---|
621 |
|
---|
622 |
|
---|
623 | //////////////
|
---|
624 | //-- compute texture matrix
|
---|
625 |
|
---|
626 | static Matrix4x4 biasMatrix(0.5f, 0.0f, 0.0f, 0.5f,
|
---|
627 | 0.0f, 0.5f, 0.0f, 0.5f,
|
---|
628 | 0.0f, 0.0f, 0.5f, 0.5f,
|
---|
629 | 0.0f, 0.0f, 0.0f, 1.0f);
|
---|
630 |
|
---|
631 | mTextureMatrix = mLightProjView * biasMatrix;
|
---|
632 |
|
---|
633 | FrameBufferObject::Release();
|
---|
634 | }
|
---|
635 |
|
---|
636 |
|
---|
637 | void ShadowMap::RenderShadowView(RenderTraverser *renderer,
|
---|
638 | const Matrix4x4 &projView)
|
---|
639 | {
|
---|
640 | glEnable(GL_LIGHTING);
|
---|
641 |
|
---|
642 | _Render(renderer);
|
---|
643 |
|
---|
644 | /*glDisable(GL_LIGHTING);
|
---|
645 | glDisable(GL_DEPTH_TEST);
|
---|
646 |
|
---|
647 | Polyhedron *hpoly = CreatePolyhedron(projView, mSceneBox);
|
---|
648 | DrawPoly(hpoly, Vector3(1, 1, 1));
|
---|
649 | DEL_PTR(hpoly);
|
---|
650 |
|
---|
651 | glEnable(GL_LIGHTING);
|
---|
652 | glEnable(GL_DEPTH_TEST);*/
|
---|
653 |
|
---|
654 | glDisable(GL_POLYGON_OFFSET_FILL);
|
---|
655 | }
|
---|
656 |
|
---|
657 |
|
---|
658 | void ShadowMap::_Render(RenderTraverser *renderer)
|
---|
659 | {
|
---|
660 | const Vector3 dir = mLight->GetDirection();
|
---|
661 |
|
---|
662 | mShadowCam->SetDirection(dir);
|
---|
663 |
|
---|
664 | // set position so that we can see the whole scene
|
---|
665 | Vector3 pos = mSceneBox.Center();
|
---|
666 | pos -= dir * Magnitude(mSceneBox.Diagonal() * 0.5f);
|
---|
667 |
|
---|
668 | mShadowCam->SetPosition(mCamera->GetPosition());
|
---|
669 |
|
---|
670 | const Vector3 upVec = CalcUpVec(mCamera->GetDirection(), dir);
|
---|
671 | const Matrix4x4 lightView = LookAt(mShadowCam->GetPosition(), dir, upVec);
|
---|
672 |
|
---|
673 | mShadowCam->mViewOrientation = lightView;
|
---|
674 |
|
---|
675 | glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
|
---|
676 |
|
---|
677 | glPolygonOffset(5.0f, 100.0f);
|
---|
678 | glEnable(GL_POLYGON_OFFSET_FILL);
|
---|
679 |
|
---|
680 | Matrix4x4 lightProj;
|
---|
681 | CalcLightProjection(lightProj);
|
---|
682 |
|
---|
683 | mLightProjView = lightView * lightProj;
|
---|
684 |
|
---|
685 | DEL_PTR(lightPoly);
|
---|
686 | lightPoly = CreatePolyhedron(mLightProjView, mSceneBox);
|
---|
687 |
|
---|
688 | glMatrixMode(GL_PROJECTION);
|
---|
689 | glPushMatrix();
|
---|
690 |
|
---|
691 | glMatrixMode(GL_MODELVIEW);
|
---|
692 | glPushMatrix();
|
---|
693 |
|
---|
694 | // set projection matrix manually
|
---|
695 | mShadowCam->mProjection = lightProj;
|
---|
696 |
|
---|
697 | // load gl view projection
|
---|
698 | mShadowCam->SetupViewProjection();
|
---|
699 |
|
---|
700 |
|
---|
701 | /////////////
|
---|
702 | //-- render scene into shadow map
|
---|
703 |
|
---|
704 | renderer->RenderScene();
|
---|
705 |
|
---|
706 |
|
---|
707 | glMatrixMode(GL_PROJECTION);
|
---|
708 | glPopMatrix();
|
---|
709 |
|
---|
710 | glMatrixMode(GL_MODELVIEW);
|
---|
711 | glPopMatrix();
|
---|
712 |
|
---|
713 | glDisable(GL_POLYGON_OFFSET_FILL);
|
---|
714 | }
|
---|
715 |
|
---|
716 |
|
---|
717 | } // namespace
|
---|