source: GTP/trunk/App/Demos/Vis/FriendlyCulling/src/Triangle3.cpp @ 2957

Revision 2957, 2.8 KB checked in by mattausch, 16 years ago (diff)

preetham working

Line 
1#include "Triangle3.h"
2#include "AxisAlignedBox3.h"
3#include "common.h"
4#include "Plane3.h"
5
6
7using namespace std;
8
9
10namespace CHCDemoEngine {
11
12       
13Triangle3::Triangle3(const Vector3 &a, const Vector3 &b, const Vector3 &c)
14{
15        Init(a, b, c);
16}
17
18
19void Triangle3::Init(const Vector3 &a, const Vector3 &b, const Vector3 &c)
20{
21        mVertices[0] = a;
22        mVertices[1] = b;
23        mVertices[2] = c;
24}
25
26
27AxisAlignedBox3 Triangle3::GetBoundingBox() const
28{
29        AxisAlignedBox3 box;
30        box.Initialize();
31
32        box.Include(mVertices[0]);
33        box.Include(mVertices[1]);
34        box.Include(mVertices[2]);
35
36        box.EnlargeToMinSize();
37       
38        return box;
39}
40
41
42Vector3 Triangle3::GetNormal() const
43{
44        const Vector3 v1 = mVertices[0] - mVertices[1];
45        const Vector3 v2 = mVertices[2] - mVertices[1];
46
47        return Normalize(CrossProd(v2, v1));
48}
49
50
51Vector3 Triangle3::GetCenter() const
52{
53        return (mVertices[0] + mVertices[1] + mVertices[2]) / 3.0f;
54}
55
56
57float Triangle3::GetArea() const
58{
59        Vector3 v1 = mVertices[0] - mVertices[1], v2=mVertices[2] - mVertices[1];
60        return 0.5f * Magnitude(CrossProd(v2, v1));
61}
62
63
64bool Triangle3::GetPlaneIntersection(const Plane3 &plane,
65                                                                         Vector3 &intersectA,
66                                                                         Vector3 &intersectB) const
67{
68        int side[3];
69
70        // compute distance from plane
71        for (int i = 0; i < 3; ++ i)
72                side[i] = plane.Side(mVertices[i], Limits::Small);
73
74        /////
75        // no intersection => early exit
76        if (((side[0] > 0) && (side[1] > 0) && (side[2] > 0)) ||
77                ((side[0] < 0) && (side[1] < 0) && (side[2] < 0)))
78        {
79                return false;
80        }
81
82        /////////////
83        // at least 2 triangle vertices lie in plane => early exit
84
85        for (int i = 0; i < 3; ++ i)
86        {
87                if (!side[i] && !side[(i + 1) % 3])
88                {
89                        intersectA = mVertices[i];
90                        intersectB = mVertices[(i + 1) % 3];
91                       
92                        return true;
93                }
94        }
95
96        bool foundA = false;
97
98        // compute intersection points
99        for (int i = 0; i < 3; ++ i)
100        {
101                const int i_2 = (i + 1) % 3;
102
103                // intersection found
104                if ((side[i] >= 0) && (side[i_2] <= 0) ||
105                        (side[i] <= 0) && (side[i_2] >= 0))
106                {       
107                        const float t = plane.FindT(mVertices[i], mVertices[i_2]);
108                       
109                        if (!foundA)
110                        {
111                                intersectA = mVertices[i] + t * (mVertices[i_2] - mVertices[i]);
112                                foundA = true;
113                        }
114                        else
115                        {
116                                intersectB = mVertices[i] + t * (mVertices[i_2] - mVertices[i]);
117                                return true;
118                        }
119                }
120        }
121
122        cout << "warning! wrong triangle - plane intersection" << endl;
123        return false; // something went wrong!
124}
125
126
127bool Triangle3::Valid() const
128{
129        const Vector3 a = mVertices[0] - mVertices[1];
130        const Vector3 b = mVertices[0] - mVertices[2];
131        const Vector3 cross_a_b = CrossProd(a, b);
132
133        const float eps = 1e-6f;
134       
135        if (SqrMagnitude(cross_a_b) <= eps * eps)
136        {
137                // v0, v1 & v2 lies on a line (area == 0)
138                return false;
139        }
140
141        return true;
142}
143
144
145}
Note: See TracBrowser for help on using the repository browser.