1 | #ifndef _Vector3_h__
|
---|
2 | #define _Vector3_h__
|
---|
3 |
|
---|
4 |
|
---|
5 | #include "common.h"
|
---|
6 | #include <math.h>
|
---|
7 |
|
---|
8 |
|
---|
9 | namespace CHCDemoEngine
|
---|
10 | {
|
---|
11 |
|
---|
12 | // Forward-declare some other classes.
|
---|
13 | class Matrix4x4;
|
---|
14 |
|
---|
15 |
|
---|
16 | /** Vector class.
|
---|
17 | */
|
---|
18 | class Vector3
|
---|
19 | {
|
---|
20 | public:
|
---|
21 |
|
---|
22 | ///////////
|
---|
23 | //-- members;
|
---|
24 |
|
---|
25 | float x;
|
---|
26 | float y;
|
---|
27 | float z;
|
---|
28 |
|
---|
29 |
|
---|
30 | /////////////////////////
|
---|
31 |
|
---|
32 | void SetX(float q) { x = q; }
|
---|
33 | void SetY(float q) { y = q; }
|
---|
34 | void SetZ(float q) { z = q; }
|
---|
35 |
|
---|
36 | float GetX() const { return x; }
|
---|
37 | float GetY() const { return y; }
|
---|
38 | float GetZ() const { return z; }
|
---|
39 |
|
---|
40 |
|
---|
41 | //////////////
|
---|
42 | //-- constructors
|
---|
43 |
|
---|
44 | Vector3() { }
|
---|
45 |
|
---|
46 | Vector3(float x, float y, float z): x(x), y(y), z(z)
|
---|
47 | {}
|
---|
48 |
|
---|
49 | explicit Vector3(float v): x(v), y(v), z(v){}
|
---|
50 | /** Copy constructor.
|
---|
51 | */
|
---|
52 | Vector3(const Vector3 &v): x(v.x), y(v.y), z(v.z)
|
---|
53 | {}
|
---|
54 |
|
---|
55 | // Functions to get at the std::vector components
|
---|
56 | float& operator[] (const int inx)
|
---|
57 | {
|
---|
58 | return (&x)[inx];
|
---|
59 | }
|
---|
60 |
|
---|
61 | operator const float*() const
|
---|
62 | {
|
---|
63 | return (const float*) this;
|
---|
64 | }
|
---|
65 |
|
---|
66 | const float &operator[] (const int inx) const
|
---|
67 | {
|
---|
68 | return *(&x + inx);
|
---|
69 | }
|
---|
70 |
|
---|
71 | void ExtractVerts(float *px, float *py, int which) const;
|
---|
72 |
|
---|
73 | void SetValue(float a, float b, float c)
|
---|
74 | {
|
---|
75 | x = a; y = b; z = c;
|
---|
76 | }
|
---|
77 |
|
---|
78 | void SetValue(float a)
|
---|
79 | {
|
---|
80 | x = y = z = a;
|
---|
81 | }
|
---|
82 |
|
---|
83 |
|
---|
84 | /** Returns the axis, where the std::vector has the largest value.
|
---|
85 | */
|
---|
86 | int DrivingAxis(void) const;
|
---|
87 | /** returns the axis, where the std::vector has the smallest value
|
---|
88 | */
|
---|
89 | int TinyAxis(void) const;
|
---|
90 | /** Returns largest component in this vector
|
---|
91 | */
|
---|
92 | inline float MaxComponent(void) const
|
---|
93 | {
|
---|
94 | return (x > y) ? ( (x > z) ? x : z) : ( (y > z) ? y : z);
|
---|
95 | }
|
---|
96 | /** Returns copy of this vector where all components are positiv.
|
---|
97 | */
|
---|
98 | inline Vector3 Abs(void) const
|
---|
99 | {
|
---|
100 | return Vector3(fabs(x), fabs(y), fabs(z));
|
---|
101 | }
|
---|
102 | /** normalizes the std::vector of unit size corresponding to given std::vector
|
---|
103 | */
|
---|
104 | inline void Normalize();
|
---|
105 | /** Returns false if this std::vector has a nan component.
|
---|
106 | */
|
---|
107 | bool CheckValidity() const;
|
---|
108 | /**
|
---|
109 | Find a right handed coordinate system with (*this) being
|
---|
110 | the z-axis. For a right-handed system, U x V = (*this) holds.
|
---|
111 | This implementation is here to avoid inconsistence and confusion
|
---|
112 | when construction coordinate systems using ArbitraryNormal():
|
---|
113 | In fact:
|
---|
114 | V = ArbitraryNormal(N);
|
---|
115 | U = CrossProd(V,N);
|
---|
116 | constructs a right-handed coordinate system as well, BUT:
|
---|
117 | 1) bugs can be introduced if one mistakenly constructs a
|
---|
118 | left handed sytems e.g. by doing
|
---|
119 | U = ArbitraryNormal(N);
|
---|
120 | V = CrossProd(U,N);
|
---|
121 | 2) this implementation gives non-negative base vectors
|
---|
122 | for (*this)==(0,0,1) | (0,1,0) | (1,0,0), which is
|
---|
123 | good for debugging and is not the case with the implementation
|
---|
124 | using ArbitraryNormal()
|
---|
125 |
|
---|
126 | ===> Using ArbitraryNormal() for constructing coord systems
|
---|
127 | is obsoleted by this method (<JK> 12/20/03).
|
---|
128 | */
|
---|
129 | void RightHandedBase(Vector3& U, Vector3& V) const;
|
---|
130 |
|
---|
131 |
|
---|
132 | // Unary operators
|
---|
133 |
|
---|
134 | Vector3 operator+ () const;
|
---|
135 | Vector3 operator- () const;
|
---|
136 |
|
---|
137 | // Assignment operators
|
---|
138 |
|
---|
139 | Vector3& operator+= (const Vector3 &A);
|
---|
140 | Vector3& operator-= (const Vector3 &A);
|
---|
141 | Vector3& operator*= (const Vector3 &A);
|
---|
142 | Vector3& operator*= (float A);
|
---|
143 | Vector3& operator/= (float A);
|
---|
144 |
|
---|
145 | static inline Vector3 UNIT_X() { return Vector3(1, 0, 0); }
|
---|
146 | static inline Vector3 UNIT_Y() { return Vector3(0, 1, 0); }
|
---|
147 | static inline Vector3 UNIT_Z() { return Vector3(0, 0, 1); }
|
---|
148 | static inline Vector3 ZERO() { return Vector3(0, 0, 0); }
|
---|
149 |
|
---|
150 |
|
---|
151 | //////////
|
---|
152 | //-- friends
|
---|
153 |
|
---|
154 | /**
|
---|
155 | ===> Using ArbitraryNormal() for constructing coord systems
|
---|
156 | ===> is obsoleted by RightHandedBase() method (<JK> 12/20/03).
|
---|
157 |
|
---|
158 | Return an arbitrary normal to `v'.
|
---|
159 | In fact it tries v x (0,0,1) an if the result is too small,
|
---|
160 | it definitely does v x (0,1,0). It will always work for
|
---|
161 | non-degenareted std::vector and is much faster than to use
|
---|
162 | TangentVectors.
|
---|
163 |
|
---|
164 | @param v(in) The std::vector we want to find normal for.
|
---|
165 | @return The normal std::vector to v.
|
---|
166 | */
|
---|
167 | friend inline Vector3 ArbitraryNormal(const Vector3 &v);
|
---|
168 |
|
---|
169 | /// Transforms a std::vector to the global coordinate frame.
|
---|
170 | /**
|
---|
171 | Given a local coordinate frame (U,V,N) (i.e. U,V,N are
|
---|
172 | the x,y,z axes of the local coordinate system) and
|
---|
173 | a std::vector 'loc' in the local coordiante system, this
|
---|
174 | function returns a the coordinates of the same std::vector
|
---|
175 | in global frame (i.e. frame (1,0,0), (0,1,0), (0,0,1).
|
---|
176 | */
|
---|
177 | friend inline Vector3 ToGlobalFrame(const Vector3& loc,
|
---|
178 | const Vector3& U,
|
---|
179 | const Vector3& V,
|
---|
180 | const Vector3& N);
|
---|
181 |
|
---|
182 | /// Transforms a std::vector to a local coordinate frame.
|
---|
183 | /**
|
---|
184 | Given a local coordinate frame (U,V,N) (i.e. U,V,N are
|
---|
185 | the x,y,z axes of the local coordinate system) and
|
---|
186 | a std::vector 'loc' in the global coordiante system, this
|
---|
187 | function returns a the coordinates of the same std::vector
|
---|
188 | in the local frame.
|
---|
189 | */
|
---|
190 | friend inline Vector3 ToLocalFrame(const Vector3& loc,
|
---|
191 | const Vector3& U,
|
---|
192 | const Vector3& V,
|
---|
193 | const Vector3& N);
|
---|
194 |
|
---|
195 | /// the magnitude=size of the std::vector
|
---|
196 | friend inline float Magnitude(const Vector3 &v);
|
---|
197 | /// the squared magnitude of the std::vector .. for efficiency in some cases
|
---|
198 | friend inline float SqrMagnitude(const Vector3 &v);
|
---|
199 | /// Magnitude(v1-v2)
|
---|
200 | friend inline float Distance(const Vector3 &v1, const Vector3 &v2);
|
---|
201 | /// SqrMagnitude(v1-v2)
|
---|
202 | friend inline float SqrDistance(const Vector3 &v1, const Vector3 &v2);
|
---|
203 | /// creates the std::vector of unit size corresponding to given std::vector
|
---|
204 | friend inline Vector3 Normalize(const Vector3 &A);
|
---|
205 | /// // Rotate a direction vector
|
---|
206 | friend Vector3 PlaneRotate(const Matrix4x4 &, const Vector3 &);
|
---|
207 |
|
---|
208 | // construct view vectors .. DirAt is the main viewing direction
|
---|
209 | // Viewer is the coordinates of viewer location, UpL is the std::vector.
|
---|
210 | friend void ViewVectors(const Vector3 &DirAt,
|
---|
211 | const Vector3 &Viewer,
|
---|
212 | const Vector3 &UpL,
|
---|
213 | Vector3 &ViewV,
|
---|
214 | Vector3 &ViewU,
|
---|
215 | Vector3 &ViewN);
|
---|
216 |
|
---|
217 | // Given the intersection point `P', you have available normal `N'
|
---|
218 | // of unit length. Let us suppose the incoming ray has direction `D'.
|
---|
219 | // Then we can construct such two vectors `U' and `V' that
|
---|
220 | // `U',`N', and `D' are coplanar, and `V' is perpendicular
|
---|
221 | // to the vectors `N','D', and `V'. Then 'N', 'U', and 'V' create
|
---|
222 | // the orthonormal base in space R3.
|
---|
223 | friend void TangentVectors(Vector3 &U, Vector3 &V, // output
|
---|
224 | const Vector3 &normal, // input
|
---|
225 | const Vector3 &dirIncoming);
|
---|
226 |
|
---|
227 |
|
---|
228 | // Binary operators
|
---|
229 |
|
---|
230 | friend inline Vector3 operator+ (const Vector3 &A, const Vector3 &B);
|
---|
231 | friend inline Vector3 operator- (const Vector3 &A, const Vector3 &B);
|
---|
232 | friend inline Vector3 operator* (const Vector3 &A, const Vector3 &B);
|
---|
233 | friend inline Vector3 operator* (const Vector3 &A, float B);
|
---|
234 | friend inline Vector3 operator* (float A, const Vector3 &B);
|
---|
235 | friend Vector3 operator* (const Matrix4x4 &, const Vector3 &);
|
---|
236 | friend inline Vector3 operator/ (const Vector3 &A, const Vector3 &B);
|
---|
237 |
|
---|
238 | friend inline int operator< (const Vector3 &A, const Vector3 &B);
|
---|
239 | friend inline int operator<= (const Vector3 &A, const Vector3 &B);
|
---|
240 |
|
---|
241 | friend inline Vector3 operator/ (const Vector3 &A, float B);
|
---|
242 | friend inline int operator== (const Vector3 &A, const Vector3 &B);
|
---|
243 | friend inline float DotProd(const Vector3 &A, const Vector3 &B);
|
---|
244 | friend inline Vector3 CrossProd (const Vector3 &A, const Vector3 &B);
|
---|
245 |
|
---|
246 | friend std::ostream& operator<< (std::ostream &s, const Vector3 &A);
|
---|
247 | friend std::istream& operator>> (std::istream &s, Vector3 &A);
|
---|
248 |
|
---|
249 | friend void Minimize(Vector3 &min, const Vector3 &candidate);
|
---|
250 | friend void Maximize(Vector3 &max, const Vector3 &candidate);
|
---|
251 |
|
---|
252 | friend inline int EpsilonEqualV3(const Vector3 &v1, const Vector3 &v2, float thr);
|
---|
253 | friend inline int EpsilonEqualV3(const Vector3 &v1, const Vector3 &v2);
|
---|
254 |
|
---|
255 | friend Vector3 CosineRandomVector(const Vector3 &normal);
|
---|
256 | friend Vector3 UniformRandomVector(const Vector3 &normal);
|
---|
257 | friend Vector3 UniformRandomVector();
|
---|
258 |
|
---|
259 | friend Vector3 UniformRandomVector(float r1, float r2);
|
---|
260 |
|
---|
261 | friend Vector3 CosineRandomVector(float r1, float r2, const Vector3 &normal);
|
---|
262 | };
|
---|
263 |
|
---|
264 |
|
---|
265 |
|
---|
266 | // forward declaration
|
---|
267 | extern Vector3 UniformRandomVector(const Vector3 &normal);
|
---|
268 | extern Vector3 UniformRandomVector();
|
---|
269 | extern Vector3 UniformRandomVector(const float r1, const float r2);
|
---|
270 |
|
---|
271 | inline Vector3 ArbitraryNormal(const Vector3 &N)
|
---|
272 | {
|
---|
273 | float dist2 = N.x * N.x + N.y * N.y;
|
---|
274 |
|
---|
275 | if (dist2 > 0.0001f)
|
---|
276 | {
|
---|
277 | float inv_size = 1.0f / sqrtf(dist2);
|
---|
278 | return Vector3(N.y * inv_size, -N.x * inv_size, 0); // N x (0,0,1)
|
---|
279 | }
|
---|
280 |
|
---|
281 | float inv_size = 1.0f / sqrtf(N.z * N.z + N.x * N.x);
|
---|
282 | return Vector3(-N.z * inv_size, 0, N.x * inv_size); // N x (0,1,0)
|
---|
283 | }
|
---|
284 |
|
---|
285 |
|
---|
286 | inline void Vector3::RightHandedBase(Vector3& U, Vector3& V) const
|
---|
287 | {
|
---|
288 | // HACK
|
---|
289 | V = ArbitraryNormal(*this);
|
---|
290 | U = CrossProd(V, *this);
|
---|
291 | }
|
---|
292 |
|
---|
293 |
|
---|
294 | inline Vector3 ToGlobalFrame(const Vector3 &loc,
|
---|
295 | const Vector3 &U,
|
---|
296 | const Vector3 &V,
|
---|
297 | const Vector3 &N)
|
---|
298 | {
|
---|
299 | return loc.x * U + loc.y * V + loc.z * N;
|
---|
300 | }
|
---|
301 |
|
---|
302 |
|
---|
303 | inline Vector3 ToLocalFrame(const Vector3 &loc,
|
---|
304 | const Vector3 &U,
|
---|
305 | const Vector3 &V,
|
---|
306 | const Vector3 &N)
|
---|
307 | {
|
---|
308 | return Vector3(loc.x * U.x + loc.y * U.y + loc.z * U.z,
|
---|
309 | loc.x * V.x + loc.y * V.y + loc.z * V.z,
|
---|
310 | loc.x * N.x + loc.y * N.y + loc.z * N.z);
|
---|
311 | }
|
---|
312 |
|
---|
313 |
|
---|
314 | inline float Magnitude(const Vector3 &v)
|
---|
315 | {
|
---|
316 | return sqrtf(v.x * v.x + v.y * v.y + v.z * v.z);
|
---|
317 | }
|
---|
318 |
|
---|
319 |
|
---|
320 | inline float SqrMagnitude(const Vector3 &v)
|
---|
321 | {
|
---|
322 | return v.x * v.x + v.y * v.y + v.z * v.z;
|
---|
323 | }
|
---|
324 |
|
---|
325 |
|
---|
326 | inline float Distance(const Vector3 &v1, const Vector3 &v2)
|
---|
327 | {
|
---|
328 | //return sqrtf(sqrt(v1.x - v2.x) + sqrt(v1.y - v2.y) + sqrt(v1.z - v2.z));
|
---|
329 | return Magnitude(v1 - v2);
|
---|
330 | }
|
---|
331 |
|
---|
332 |
|
---|
333 | inline float SqrDistance(const Vector3 &v1, const Vector3 &v2)
|
---|
334 | {
|
---|
335 | //return sqrt(v1.x - v2.x) + sqrt(v1.y - v2.y) + sqrt(v1.z - v2.z);
|
---|
336 | return SqrMagnitude(v1 - v2);
|
---|
337 | }
|
---|
338 |
|
---|
339 |
|
---|
340 | inline Vector3 Normalize(const Vector3 &A)
|
---|
341 | {
|
---|
342 | return A * (1.0f / Magnitude(A));
|
---|
343 | }
|
---|
344 |
|
---|
345 |
|
---|
346 | inline float DotProd(const Vector3 &A, const Vector3 &B)
|
---|
347 | {
|
---|
348 | return A.x * B.x + A.y * B.y + A.z * B.z;
|
---|
349 | }
|
---|
350 |
|
---|
351 |
|
---|
352 | // angle between two vectors with respect to a surface normal in the
|
---|
353 | // range [0 .. 2 * pi]
|
---|
354 | inline float Angle(const Vector3 &A, const Vector3 &B, const Vector3 &norm)
|
---|
355 | {
|
---|
356 | Vector3 cross = CrossProd(A, B);
|
---|
357 |
|
---|
358 | float signedAngle;
|
---|
359 |
|
---|
360 | if (DotProd(cross, norm) > 0)
|
---|
361 | signedAngle = atan2(-Magnitude(CrossProd(A, B)), DotProd(A, B));
|
---|
362 | else
|
---|
363 | signedAngle = atan2(Magnitude(CrossProd(A, B)), DotProd(A, B));
|
---|
364 |
|
---|
365 | if (signedAngle < 0)
|
---|
366 | return 2 * M_PI + signedAngle;
|
---|
367 |
|
---|
368 | return signedAngle;
|
---|
369 | }
|
---|
370 |
|
---|
371 |
|
---|
372 | inline Vector3 Vector3::operator+() const
|
---|
373 | {
|
---|
374 | return *this;
|
---|
375 | }
|
---|
376 |
|
---|
377 |
|
---|
378 | inline Vector3 Vector3::operator-() const
|
---|
379 | {
|
---|
380 | return Vector3(-x, -y, -z);
|
---|
381 | }
|
---|
382 |
|
---|
383 |
|
---|
384 | inline Vector3 &Vector3::operator+=(const Vector3 &A)
|
---|
385 | {
|
---|
386 | x += A.x; y += A.y; z += A.z;
|
---|
387 | return *this;
|
---|
388 | }
|
---|
389 |
|
---|
390 |
|
---|
391 | inline Vector3& Vector3::operator-=(const Vector3 &A)
|
---|
392 | {
|
---|
393 | x -= A.x; y -= A.y; z -= A.z;
|
---|
394 |
|
---|
395 | return *this;
|
---|
396 | }
|
---|
397 |
|
---|
398 |
|
---|
399 | inline Vector3& Vector3::operator*= (float A)
|
---|
400 | {
|
---|
401 | x *= A; y *= A; z *= A;
|
---|
402 | return *this;
|
---|
403 | }
|
---|
404 |
|
---|
405 |
|
---|
406 | inline Vector3& Vector3::operator/=(float A)
|
---|
407 | {
|
---|
408 | float a = 1.0f / A;
|
---|
409 |
|
---|
410 | x *= a; y *= a; z *= a;
|
---|
411 |
|
---|
412 | return *this;
|
---|
413 | }
|
---|
414 |
|
---|
415 |
|
---|
416 | inline Vector3& Vector3::operator*= (const Vector3 &A)
|
---|
417 | {
|
---|
418 | x *= A.x; y *= A.y; z *= A.z;
|
---|
419 | return *this;
|
---|
420 | }
|
---|
421 |
|
---|
422 |
|
---|
423 | inline Vector3 operator+ (const Vector3 &A, const Vector3 &B)
|
---|
424 | {
|
---|
425 | return Vector3(A.x + B.x, A.y + B.y, A.z + B.z);
|
---|
426 | }
|
---|
427 |
|
---|
428 |
|
---|
429 | inline Vector3 operator- (const Vector3 &A, const Vector3 &B)
|
---|
430 | {
|
---|
431 | return Vector3(A.x - B.x, A.y - B.y, A.z - B.z);
|
---|
432 | }
|
---|
433 |
|
---|
434 |
|
---|
435 | inline Vector3 operator* (const Vector3 &A, const Vector3 &B)
|
---|
436 | {
|
---|
437 | return Vector3(A.x * B.x, A.y * B.y, A.z * B.z);
|
---|
438 | }
|
---|
439 |
|
---|
440 |
|
---|
441 | inline Vector3 operator* (const Vector3 &A, float B)
|
---|
442 | {
|
---|
443 | return Vector3(A.x * B, A.y * B, A.z * B);
|
---|
444 | }
|
---|
445 |
|
---|
446 |
|
---|
447 | inline Vector3 operator* (float A, const Vector3 &B)
|
---|
448 | {
|
---|
449 | return Vector3(B.x * A, B.y * A, B.z * A);
|
---|
450 | }
|
---|
451 |
|
---|
452 |
|
---|
453 | inline Vector3 operator/ (const Vector3 &A, const Vector3 &B)
|
---|
454 | {
|
---|
455 | return Vector3(A.x / B.x, A.y / B.y, A.z / B.z);
|
---|
456 | }
|
---|
457 |
|
---|
458 |
|
---|
459 | inline Vector3 operator/ (const Vector3 &A, float B)
|
---|
460 | {
|
---|
461 | float b = 1.0f / B;
|
---|
462 | return Vector3(A.x * b, A.y * b, A.z * b);
|
---|
463 | }
|
---|
464 |
|
---|
465 |
|
---|
466 | inline int operator< (const Vector3 &A, const Vector3 &B)
|
---|
467 | {
|
---|
468 | return A.x < B.x && A.y < B.y && A.z < B.z;
|
---|
469 | }
|
---|
470 |
|
---|
471 |
|
---|
472 | inline int operator<= (const Vector3 &A, const Vector3 &B)
|
---|
473 | {
|
---|
474 | return A.x <= B.x && A.y <= B.y && A.z <= B.z;
|
---|
475 | }
|
---|
476 |
|
---|
477 |
|
---|
478 | // Might replace floating-point == with comparisons of
|
---|
479 | // magnitudes, if needed.
|
---|
480 | inline int operator== (const Vector3 &A, const Vector3 &B)
|
---|
481 | {
|
---|
482 | return (A.x == B.x) && (A.y == B.y) && (A.z == B.z);
|
---|
483 | }
|
---|
484 |
|
---|
485 |
|
---|
486 | inline Vector3 CrossProd (const Vector3 &A, const Vector3 &B)
|
---|
487 | {
|
---|
488 | return Vector3(A.y * B.z - A.z * B.y,
|
---|
489 | A.z * B.x - A.x * B.z,
|
---|
490 | A.x * B.y - A.y * B.x);
|
---|
491 | }
|
---|
492 |
|
---|
493 |
|
---|
494 | inline void Vector3::Normalize()
|
---|
495 | {
|
---|
496 | float sqrmag = x * x + y * y + z * z;
|
---|
497 |
|
---|
498 | if (sqrmag > 0.0f)
|
---|
499 | (*this) *= 1.0f / sqrtf(sqrmag);
|
---|
500 | }
|
---|
501 |
|
---|
502 |
|
---|
503 | // Overload << operator for C++-style output
|
---|
504 | inline std::ostream& operator<< (std::ostream &s, const Vector3 &A)
|
---|
505 | {
|
---|
506 | return s << "(" << A.x << ", " << A.y << ", " << A.z << ")";
|
---|
507 | }
|
---|
508 |
|
---|
509 |
|
---|
510 | // Overload >> operator for C++-style input
|
---|
511 | inline std::istream& operator>> (std::istream &s, Vector3 &A)
|
---|
512 | {
|
---|
513 | char a;
|
---|
514 | // read "(x, y, z)"
|
---|
515 | return s >> a >> A.x >> a >> A.y >> a >> A.z >> a;
|
---|
516 | }
|
---|
517 |
|
---|
518 |
|
---|
519 | inline int EpsilonEqualV3(const Vector3 &v1, const Vector3 &v2, float thr)
|
---|
520 | {
|
---|
521 | if (fabsf(v1.x-v2.x) > thr)
|
---|
522 | return false;
|
---|
523 | if (fabsf(v1.y-v2.y) > thr)
|
---|
524 | return false;
|
---|
525 | if (fabsf(v1.z-v2.z) > thr)
|
---|
526 | return false;
|
---|
527 |
|
---|
528 | return true;
|
---|
529 | }
|
---|
530 |
|
---|
531 |
|
---|
532 | inline int EpsilonEqualV3(const Vector3 &v1, const Vector3 &v2)
|
---|
533 | {
|
---|
534 | return EpsilonEqualV3(v1, v2, Limits::Small);
|
---|
535 | }
|
---|
536 |
|
---|
537 |
|
---|
538 | }
|
---|
539 |
|
---|
540 | #endif
|
---|