source: GTP/trunk/App/Demos/Vis/FriendlyCulling/src/shaders/ssao.cg @ 3309

Revision 3309, 14.2 KB checked in by mattausch, 15 years ago (diff)

working on changed sampling scheme for temporal coherence

Line 
1#include "../shaderenv.h"
2#include "common.h"
3
4////////////////////
5// Screen Spaced Ambient Occlusion shader
6// based on shader of Alexander Kusternig
7
8
9#define USE_EYESPACE_DEPTH 1
10
11
12struct fragment
13{
14        float2 texCoord: TEXCOORD0;
15        float3 view: TEXCOORD1;
16};
17
18
19struct pixel
20{
21        float4 illum_col: COLOR0;
22};
23
24// this function is inspired from the paper of shamulgaan in order
25// to get a physical expression for the occlusion culling
26inline float occlusionPower(float radius, float dist)
27{
28        return 6.283185307179586476925286766559f * (1.0f - cos(asin(radius / dist)));
29}
30
31
32
33// reconstruct world space position
34inline float3 ReconstructSamplePos(float eyeSpaceDepth,
35                                                                   float2 texcoord,
36                                                                   float3 bl, float3 br, float3 tl, float3 tr)
37{
38        float3 viewVec = Interpol(texcoord, bl, br, tl, tr);
39        float3 samplePos = -viewVec * eyeSpaceDepth;
40
41        return samplePos;
42}
43
44
45
46/** This shader computes the reprojection and stores
47        the ssao value of the old pixel as well as the
48        weight of the pixel in the new frame.
49*/
50inline float2 temporalSmoothing(float4 worldPos,
51                                                                float eyeSpaceDepth,
52                                                                float2 texcoord0,
53                                                                float3 oldEyePos,
54                                                                sampler2D oldTex,
55                                                                float4x4 oldModelViewProj,
56                                                                sampler2D colors,
57                                                                float3 projPos,
58                                                                float invW,
59                                                                float3 oldbl,
60                                                                float3 oldbr,
61                                                                float3 oldtl,
62                                                                float3 oldtr,
63                                                                float3 diffVec
64                                                                )
65{
66        // compute position from old frame for dynamic objects + translational portion
67        const float3 translatedPos = diffVec - oldEyePos + worldPos.xyz;
68
69
70        /////////////////
71        //-- reproject into old frame and calculate texture position of sample in old frame
72
73        // note: the old model view matrix only holds the view orientation part
74        float4 backProjPos = mul(oldModelViewProj, float4(translatedPos, 1.0f));
75        backProjPos /= backProjPos.w;
76       
77        // fit from unit cube into 0 .. 1
78        const float2 oldTexCoords = backProjPos.xy * 0.5f + 0.5f;
79        // retrieve the sample from the last frame
80        const float4 oldPixel = tex2Dlod(oldTex, float4(oldTexCoords, .0f, .0f));
81
82        // the ssao value in the old frame
83        const float ssao = oldPixel.x;
84
85        // calculate eye space position of sample in old frame
86        const float oldEyeSpaceDepth = oldPixel.w;
87
88        // vector from eye pos to old sample
89        const float3 viewVec = Interpol(oldTexCoords, oldbl, oldbr, oldtl, oldtr);
90        const float invLen = 1.0f / length(viewVec);
91        const float projectedEyeSpaceDepth = invLen * length(translatedPos);
92        //const float projectedEyeSpaceDepth = length(translatedPos);
93       
94        const float depthDif = abs(1.0f - oldEyeSpaceDepth / projectedEyeSpaceDepth);
95
96        // the weight of the accumulated samples from the previous frames
97        float w;
98
99        //////////////
100        //-- reuse old value only if it was still valid in the old frame
101
102        if (1
103                && (oldTexCoords.x > 0) && (oldTexCoords.x < 1.0f)
104                && (oldTexCoords.y > 0) && (oldTexCoords.y < 1.0f)
105                && (depthDif <= MIN_DEPTH_DIFF)
106                )
107        {
108                // pixel valid => retrieve the convergence weight
109                w = oldPixel.y;
110        }
111        else
112        {       
113                w = 0.0f;
114        }
115
116        return float2(ssao, w);
117}
118
119
120/** The ssao shader returning the an intensity value between 0 and 1
121        This version of the ssao shader uses the dotproduct between pixel and
122        sample normal as weight.
123*/
124float3 ssao2(fragment IN,
125                         sampler2D colors,
126                         sampler2D noiseTex,
127                         float2 samples[NUM_SAMPLES],
128                         float3 normal,
129                         float3 centerPosition,
130                         float scaleFactor,
131                         float3 bl,
132                         float3 br,
133                         float3 tl,
134                         float3 tr,
135                         float3 viewDir,
136                         sampler2D normalTex,
137                         float sampleIntensity
138                         )
139{
140        float total_ao = .0f;
141        float numSamples = .0f;
142        float validSamples = .0f;
143
144        for (int i = 0; i < NUM_PRECOMPUTED_SAMPLES; ++ i)
145        {
146                const float2 offset = samples[i];
147
148#if 1
149                ////////////////////
150                //-- add random noise: reflect around random normal vector (rather slow!)
151
152                const float2 mynoise = tex2Dlod(noiseTex, float4(IN.texCoord * 4.0f, 0, 0)).xy;
153                const float2 offsetTransformed = myreflect(offset, mynoise);
154#else
155                const float2 offsetTransformed = offset;
156#endif
157                // weight with projected coordinate to reach similar kernel size for near and far
158                //const float2 texcoord = IN.texCoord.xy + offsetTransformed * scaleFactor + jitter;
159                const float2 texcoord = IN.texCoord.xy + offsetTransformed * scaleFactor;
160
161                //if ((texcoord.x <= 1.0f) && (texcoord.x >= 0.0f) && (texcoord.y <= 1.0f) && (texcoord.y >= 0.0f)) ++ numSamples;
162                float4 sampleColor = tex2Dlod(colors, float4(texcoord, 0, 0));
163
164                const float3 samplePos = ReconstructSamplePos(sampleColor.w, texcoord, bl, br, tl, tr);
165                // the normal of the current sample
166                const float3 sampleNormal = tex2Dlod(normalTex, float4(texcoord, 0, 0)).xyz;
167
168
169                ////////////////
170                //-- compute contribution of sample using the direction and angle
171
172                float3 dirSample = samplePos - centerPosition;
173
174                const float sqrLen = max(SqrLen(dirSample), 1e-2f);
175                const float lengthToSample = sqrt(sqrLen);
176                //const float lengthToSample = max(length(dirSample), 1e-6f);
177
178                dirSample /= lengthToSample; // normalize
179
180                // angle between current normal and direction to sample controls AO intensity.
181                float cosAngle = .5f + dot(sampleNormal, -normal) * 0.5f;
182                // use binary decision to cull samples that are behind current shading point
183                cosAngle *= step(0.0f, dot(dirSample, normal));
184       
185                const float aoContrib = sampleIntensity / sqrLen;
186                //const float aoContrib = (1.0f > lengthToSample) ? occlusionPower(9e-2f, DISTANCE_SCALE + lengthToSample): .0f;
187
188                total_ao += cosAngle * aoContrib;
189
190                // check if the samples have been valid in the last frame
191                validSamples += (1.0f - step(1.0f, lengthToSample)) * sampleColor.x;
192
193                ++ numSamples;
194        }
195
196        total_ao /= numSamples;
197
198#if 1
199        // if surface normal perpenticular to view dir, approx. half of the samples will not count
200        // => compensate for this (on the other hand, projected sampling area could be larger!)
201        const float viewCorrection = 1.0f + VIEW_CORRECTION_SCALE * max(dot(viewDir, normal), 0.0f);
202        total_ao += cosAngle * aoContrib * viewCorrection;
203
204#endif
205
206        return float3(max(0.0f, 1.0f - total_ao), validSamples, numSamples);
207}
208
209
210/** The ssao shader returning the an intensity value between 0 and 1.
211        This version of the ssao shader uses the dotproduct between
212        pixel-to-sample direction and sample normal as weight.
213
214    The algorithm works like the following:
215        1) Check in a circular area around the current position.
216        2) Shoot vectors to the positions there, and check the angle to these positions.
217        3) Summing up these angles gives an estimation of the occlusion at the current position.
218*/
219float3 ssao(fragment IN,
220                        sampler2D colors,
221                        sampler2D noiseTex,
222                        float2 samples[NUM_PRECOMPUTED_SAMPLES],
223                        float3 normal,
224                        float3 centerPosition,
225                        float scaleFactor,
226                        float3 bl,
227                        float3 br,
228                        float3 tl,
229                        float3 tr,
230                        float3 viewDir,
231                        float convergence,
232                        float sampleIntensity,
233                        bool isMovingObject,
234                        int idx
235                        )
236{
237        float total_ao = .0f;
238        float validSamples = .0f;
239        float numSamples = .0f;
240       
241        for (int i = 0; i < NUM_SAMPLES; ++ i)
242        {
243                float2 offset;
244
245                ////////////////////
246                //-- add random noise: reflect around random normal vector
247                //-- (affects performance for some reason!)
248
249                if (convergence < SSAO_CONVERGENCE_THRESHOLD)
250                {
251                        float2 mynoise = tex2Dlod(noiseTex, float4(IN.texCoord * 4.0f, 0, 0)).xy;
252                        //offset = myreflect(samples[i], mynoise);
253                        offset = myrotate(samples[i + idx], mynoise.x);
254                }
255                else
256                {
257                        offset = samples[i + idx];
258                }
259               
260                // weight with projected coordinate to reach similar kernel size for near and far
261                const float2 texcoord = IN.texCoord.xy + offset * scaleFactor;
262
263                const float4 sampleColor = tex2Dlod(colors, float4(texcoord, .0f, .0f));
264                const float3 samplePos = ReconstructSamplePos(sampleColor.w, texcoord, bl, br, tl, tr);
265               
266
267                ////////////////
268                //-- compute contribution of sample using the direction and angle
269
270                float3 dirSample = samplePos - centerPosition;
271
272                //const float sqrLen = max(SqrLen(dirSample), 1e-2f);
273                //const float lengthToSample = sqrt(sqrLen);
274                const float lengthToSample =  max(length(dirSample), 1e-2f);
275
276                dirSample /= lengthToSample; // normalize
277
278                // angle between current normal and direction to sample controls AO intensity.
279                float cosAngle = dot(dirSample, normal);
280
281                //const float aoContrib = sampleIntensity / sqrLen;
282                const float aoContrib = sampleIntensity / lengthToSample;
283                //const float aoContrib = (1.0f > lengthToSample) ? occlusionPower(9e-2f, DISTANCE_SCALE + lengthToSample): .0f;
284
285                total_ao += max(cosAngle, 0) * aoContrib;
286
287                ++ numSamples;
288
289                // check if the samples have been valid in the last frame
290                // only mark sample as invalid if in the last / current frame
291                // they possibly have any influence on the ao
292                const float changeFactor = sampleColor.y;
293                const float pixelValid = sampleColor.x;
294
295                // we check if the sample could have been near enough to the current pixel
296                // to have any influence in the current or last frame
297                //const float tooFarAway = step(0.5f, lengthToSample - changeFactor);
298                //validSamples = max(validSamples, (1.0f - tooFarAway) * pixelValid * step(-0.1f, cosAngle));
299                validSamples = max(validSamples, pixelValid);
300
301#ifdef USE_GTX
302                // we can bail out early and use a minimal #samples)
303                // if some conditions are met as long as the hardware supports it
304                if (numSamples >= MIN_SAMPLES)
305                {
306                        // if the pixel belongs to a static object and all the samples stay valid in the current frame
307                        if (!isMovingObject && (validSamples < 1.0f)) break;
308                        // if the pixel belongs to a dynamic object but the #accumulated samples for this pixel is sufficiently high
309                        // (=> there was no discontinuity recently)
310                        else if (isMovingObject && (convergence > NUM_SAMPLES * 5)) break;
311                }
312#endif
313        }
314
315        // "normalize" ao contribution
316        total_ao /= numSamples;
317
318#if 1
319        // if surface normal perpenticular to view dir, approx. half of the samples will not count
320        // => compensate for this (on the other hand, projected sampling area could be larger!)
321        const float viewCorrection = 1.0f + VIEW_CORRECTION_SCALE * max(dot(viewDir, normal), 0.0f);
322        total_ao *= viewCorrection;
323#endif
324
325        //return float3(total_ao, validSamples, numSamples);
326        return float3(min(1.0f, total_ao), validSamples, numSamples);
327}
328
329
330
331/** The mrt shader for screen space ambient occlusion
332*/
333pixel main(fragment IN,
334                   uniform sampler2D colors,
335                   uniform sampler2D normals,
336                   uniform sampler2D noiseTex,
337                   uniform float2 samples[NUM_PRECOMPUTED_SAMPLES],
338                   uniform sampler2D oldTex,
339                   uniform float4x4 modelViewProj,
340                   uniform float4x4 oldModelViewProj,
341                   uniform float temporalCoherence,
342                   uniform float3 bl,
343                   uniform float3 br,
344                   uniform float3 tl,
345                   uniform float3 tr,
346                   uniform float3 oldEyePos,
347                   uniform float3 oldbl,
348                   uniform float3 oldbr,
349                   uniform float3 oldtl,
350                   uniform float3 oldtr,
351                   uniform sampler2D attribsTex,
352                   uniform float kernelRadius,
353                   uniform float sampleIntensity
354                   )
355{
356        pixel OUT;
357
358        //const float3 normal = normalize(tex2Dlod(normals, float4(IN.texCoord, 0 ,0)).xyz);
359        const float3 normal = tex2Dlod(normals, float4(IN.texCoord, 0 ,0)).xyz;
360
361        // reconstruct position from the eye space depth
362        const float3 viewDir = IN.view;
363        const float eyeSpaceDepth = tex2Dlod(colors, float4(IN.texCoord, 0, 0)).w;
364        const float4 eyeSpacePos = float4(-viewDir * eyeSpaceDepth, 1.0f);
365
366        float3 diffVec = tex2Dlod(attribsTex, float4(IN.texCoord, 0, 0)).xyz;
367       
368
369        ////////////////
370        //-- calculcate the current projected posiion (also used for next frame)
371       
372        float4 projPos = mul(modelViewProj, eyeSpacePos);
373        const float invw = 1.0f / projPos.w;
374        projPos *= invw;
375        float scaleFactor = kernelRadius * invw;
376
377        const float sqrMoveSpeed = SqrLen(diffVec);
378        const bool isMovingObject = (sqrMoveSpeed > DYNAMIC_OBJECTS_THRESHOLD);
379
380       
381        /////////////////
382        //-- compute temporal reprojection
383
384        float2 temporalVals = temporalSmoothing(eyeSpacePos, eyeSpaceDepth, IN.texCoord, oldEyePos,
385                                                oldTex, oldModelViewProj,
386                                                                                        colors,
387                                                                                        projPos.xyz,
388                                                                                        invw,
389                                                                                        oldbl, oldbr, oldtl, oldtr,
390                                                                                        diffVec
391                                                                                        );
392
393        const float oldSsao = temporalVals.x;
394        float oldWeight = temporalVals.y;
395
396        float usedWeight = min(temporalCoherence, abs(oldWeight));
397        int idx = (int)oldWeight % (int)temporalCoherence;
398
399        float3 ao;
400
401        // cull background note: this should be done with the stencil buffer
402        if (eyeSpaceDepth < DEPTH_THRESHOLD)
403        {
404                ao = ssao(IN, colors, noiseTex, samples, normal, eyeSpacePos.xyz, scaleFactor, bl, br, tl, tr, normalize(viewDir), usedWeight, sampleIntensity, isMovingObject, idx);
405                //ao = ssao2(IN, colors, noiseTex, samples, normal, eyeSpacePos.xyz, scaleFactor, bl, br, tl, tr, normalize(viewDir), normals, sampleIntensity);
406        }
407        else
408        {
409                 ao = float3(1.0f, 1.0f, 1.0f);
410        }
411
412       
413        ///////////
414        //-- check if we have to reset pixel because one of the sample points was invalid
415        //-- only do this if the current pixel does not belong to a moving object
416
417        // the weight equals the number of sampled shot in this pass
418        const float newWeight = ao.z;
419
420        // completely reset the ao in this pixel
421        const float completelyResetThres = 20.0f;
422        // don't fully reset the ao in this pixel, but give low weight to old solution
423        const float partlyResetThres = 1.0f;
424       
425        // hack: just update static geometry
426        if (!isMovingObject)
427        {
428                if (ao.y > completelyResetThres)
429                {
430                        oldWeight = .0f;
431                }
432                else if (ao.y > partlyResetThres)
433                {
434                        oldWeight = min(oldWeight, 4.0f * newWeight);
435                        //oldWeight = .0f;
436                }
437        }
438
439        //////////
440        //-- blend ao between old and new samples (and avoid division by zero)
441
442        OUT.illum_col.x = ao.x * newWeight + oldSsao * usedWeight;
443        OUT.illum_col.x /= (newWeight + usedWeight);
444
445        // the new weight for the next frame
446        //const float combinedWeight = clamp(newWeight + oldWeight, .0f, temporalCoherence);
447        const float combinedWeight = newWeight + oldWeight;
448
449        OUT.illum_col.y = combinedWeight;
450        // can be used to check if this pixel belongs to a moving object
451        OUT.illum_col.z = SqrLen(diffVec);
452        OUT.illum_col.w = eyeSpaceDepth;
453
454        //OUT.illum_col.yzw = diffVec;
455
456        return OUT;
457}
Note: See TracBrowser for help on using the repository browser.