/* ----------------------------------------------------------------------------- This source file is part of OGRE (Object-oriented Graphics Rendering Engine) For the latest info, see http://www.ogre3d.org/ Copyright (c) 2000-2005 The OGRE Team Also see acknowledgements in Readme.html This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA, or go to http://www.gnu.org/copyleft/lesser.txt. ----------------------------------------------------------------------------- */ #ifndef __AxisAlignedBox_H_ #define __AxisAlignedBox_H_ // Precompiler options #include "OgrePrerequisites.h" #include "OgreVector3.h" #include "OgreMatrix4.h" namespace Ogre { /** A 3D box aligned with the x/y/z axes. @remarks This class represents a simple box which is aligned with the axes. Internally it only stores 2 points as the extremeties of the box, one which is the minima of all 3 axes, and the other which is the maxima of all 3 axes. This class is typically used for an axis-aligned bounding box (AABB) for collision and visibility determination. */ class _OgreExport AxisAlignedBox { protected: Vector3 mMinimum; Vector3 mMaximum; bool mNull; Vector3 mCorners[8]; /** Internal method for updating corner points. */ void updateCorners(void) { // The order of these items is, using right-handed co-ordinates: // Minimum Z face, starting with Min(all), then anticlockwise // around face (looking onto the face) // Maximum Z face, starting with Max(all), then anticlockwise // around face (looking onto the face) mCorners[0] = mMinimum; mCorners[1].x = mMinimum.x; mCorners[1].y = mMaximum.y; mCorners[1].z = mMinimum.z; mCorners[2].x = mMaximum.x; mCorners[2].y = mMaximum.y; mCorners[2].z = mMinimum.z; mCorners[3].x = mMaximum.x; mCorners[3].y = mMinimum.y; mCorners[3].z = mMinimum.z; mCorners[4] = mMaximum; mCorners[5].x = mMinimum.x; mCorners[5].y = mMaximum.y; mCorners[5].z = mMaximum.z; mCorners[6].x = mMinimum.x; mCorners[6].y = mMinimum.y; mCorners[6].z = mMaximum.z; mCorners[7].x = mMaximum.x; mCorners[7].y = mMinimum.y; mCorners[7].z = mMaximum.z; } public: inline AxisAlignedBox() { // Default to null box setMinimum( -0.5, -0.5, -0.5 ); setMaximum( 0.5, 0.5, 0.5 ); mNull = true; } inline AxisAlignedBox( const Vector3& min, const Vector3& max ) { setExtents( min, max ); } inline AxisAlignedBox( Real mx, Real my, Real mz, Real Mx, Real My, Real Mz ) { setExtents( mx, my, mz, Mx, My, Mz ); } /** Gets the minimum corner of the box. */ inline const Vector3& getMinimum(void) const { return mMinimum; } /** Gets the maximum corner of the box. */ inline const Vector3& getMaximum(void) const { return mMaximum; } /** Sets the minimum corner of the box. */ inline void setMinimum( const Vector3& vec ) { mNull = false; mMinimum = vec; updateCorners(); } inline void setMinimum( Real x, Real y, Real z ) { mNull = false; mMinimum.x = x; mMinimum.y = y; mMinimum.z = z; updateCorners(); } /** Sets the maximum corner of the box. */ inline void setMaximum( const Vector3& vec ) { mNull = false; mMaximum = vec; updateCorners(); } inline void setMaximum( Real x, Real y, Real z ) { mNull = false; mMaximum.x = x; mMaximum.y = y; mMaximum.z = z; updateCorners(); } /** Sets both minimum and maximum extents at once. */ inline void setExtents( const Vector3& min, const Vector3& max ) { mNull = false; mMinimum = min; mMaximum = max; updateCorners(); } inline void setExtents( Real mx, Real my, Real mz, Real Mx, Real My, Real Mz ) { mNull = false; mMinimum.x = mx; mMinimum.y = my; mMinimum.z = mz; mMaximum.x = Mx; mMaximum.y = My; mMaximum.z = Mz; updateCorners(); } /** Returns a pointer to an array of 8 corner points, useful for collision vs. non-aligned objects. @remarks If the order of these corners is important, they are as follows: The 4 points of the minimum Z face (note that because Ogre uses right-handed coordinates, the minimum Z is at the 'back' of the box) starting with the minimum point of all, then anticlockwise around this face (if you are looking onto the face from outside the box). Then the 4 points of the maximum Z face, starting with maximum point of all, then anticlockwise around this face (looking onto the face from outside the box). Like this:
1-----2 /| /| / | / | 5-----4 | | 0--|--3 | / | / |/ |/ 6-----7*/ inline const Vector3* getAllCorners(void) const { assert( !mNull && "Can't get corners of a null AAB" ); return (const Vector3*)mCorners; } friend std::ostream& operator<<( std::ostream& o, AxisAlignedBox aab ) { if (aab.isNull()) { o << "AxisAlignedBox(null)"; } else { o << "AxisAlignedBox(min=" << aab.mMinimum << ", max=" << aab.mMaximum; o << ", corners="; for (int i = 0; i < 7; ++i) o << aab.mCorners[i] << ", "; o << aab.mCorners[7] << ")"; } return o; } /** Merges the passed in box into the current box. The result is the box which encompasses both. */ void merge( const AxisAlignedBox& rhs ) { // Do nothing if rhs null if (rhs.mNull) { return; } // Otherwise if current null, just take rhs else if (mNull) { setExtents(rhs.mMinimum, rhs.mMaximum); } // Otherwise merge else { Vector3 min = mMinimum; Vector3 max = mMaximum; max.makeCeil(rhs.mMaximum); min.makeFloor(rhs.mMinimum); setExtents(min, max); } } /** Extends the box to encompass the specified point (if needed). */ void merge( const Vector3& point ) { if (mNull){ // if null, use this point setExtents(point, point); } else { mMaximum.makeCeil(point); mMinimum.makeFloor(point); updateCorners(); } } /** Transforms the box according to the matrix supplied. @remarks By calling this method you get the axis-aligned box which surrounds the transformed version of this box. Therefore each corner of the box is transformed by the matrix, then the extents are mapped back onto the axes to produce another AABB. Useful when you have a local AABB for an object which is then transformed. */ void transform( const Matrix4& matrix ) { // Do nothing if current null if( mNull ) return; Vector3 min, max, temp; bool first = true; size_t i; for( i = 0; i < 8; ++i ) { // Transform and check extents temp = matrix * mCorners[i]; if( first || temp.x > max.x ) max.x = temp.x; if( first || temp.y > max.y ) max.y = temp.y; if( first || temp.z > max.z ) max.z = temp.z; if( first || temp.x < min.x ) min.x = temp.x; if( first || temp.y < min.y ) min.y = temp.y; if( first || temp.z < min.z ) min.z = temp.z; first = false; } setExtents( min,max ); } /** Sets the box to a 'null' value i.e. not a box. */ inline void setNull() { mNull = true; } /** Returns true if the box is null i.e. empty. */ bool isNull(void) const { return mNull; } /** Returns whether or not this box intersects another. */ inline bool intersects(const AxisAlignedBox& b2) const { // Early-fail for nulls if (this->isNull() || b2.isNull()) return false; // Use up to 6 separating planes if (mMaximum.x < b2.mMinimum.x) return false; if (mMaximum.y < b2.mMinimum.y) return false; if (mMaximum.z < b2.mMinimum.z) return false; if (mMinimum.x > b2.mMaximum.x) return false; if (mMinimum.y > b2.mMaximum.y) return false; if (mMinimum.z > b2.mMaximum.z) return false; // otherwise, must be intersecting return true; } /// Calculate the area of intersection of this box and another inline AxisAlignedBox intersection(const AxisAlignedBox& b2) const { if (!this->intersects(b2)) { return AxisAlignedBox(); } Vector3 intMin, intMax; const Vector3& b2max = b2.getMaximum(); const Vector3& b2min = b2.getMinimum(); if (b2max.x > mMaximum.x && mMaximum.x > b2min.x) intMax.x = mMaximum.x; else intMax.x = b2max.x; if (b2max.y > mMaximum.y && mMaximum.y > b2min.y) intMax.y = mMaximum.y; else intMax.y = b2max.y; if (b2max.z > mMaximum.z && mMaximum.z > b2min.z) intMax.z = mMaximum.z; else intMax.z = b2max.z; if (b2min.x < mMinimum.x && mMinimum.x < b2max.x) intMin.x = mMinimum.x; else intMin.x= b2min.x; if (b2min.y < mMinimum.y && mMinimum.y < b2max.y) intMin.y = mMinimum.y; else intMin.y= b2min.y; if (b2min.z < mMinimum.z && mMinimum.z < b2max.z) intMin.z = mMinimum.z; else intMin.z= b2min.z; return AxisAlignedBox(intMin, intMax); } /// Calculate the volume of this box Real volume(void) const { if (mNull) { return 0.0f; } else { Vector3 diff = mMaximum - mMinimum; return diff.x * diff.y * diff.z; } } /** Scales the AABB by the vector given. */ inline void scale(const Vector3& s) { // NB assumes centered on origin Vector3 min = mMinimum * s; Vector3 max = mMaximum * s; setExtents(min, max); } /** Tests whether this box intersects a sphere. */ bool intersects(const Sphere& s) const { return Math::intersects(s, *this); } /** Tests whether this box intersects a plane. */ bool intersects(const Plane& p) const { return Math::intersects(p, *this); } /** Tests whether the vector point is within this box. */ bool intersects(const Vector3& v) const { return(v.x >= mMinimum.x && v.x <= mMaximum.x && v.y >= mMinimum.y && v.y <= mMaximum.y && v.z >= mMinimum.z && v.z <= mMaximum.z); } /// Gets the centre of the box Vector3 getCenter(void) const { return Vector3((mMaximum + mMinimum) * 0.5); } }; } // namespace Ogre #endif