[1809] | 1 | /*
|
---|
| 2 | -----------------------------------------------------------------------------
|
---|
| 3 | This source file is part of OGRE
|
---|
| 4 | (Object-oriented Graphics Rendering Engine)
|
---|
| 5 | For the latest info, see http://www.ogre3d.org/
|
---|
| 6 |
|
---|
| 7 | Copyright (c) 2000-2005 The OGRE Team
|
---|
| 8 | Also see acknowledgements in Readme.html
|
---|
| 9 |
|
---|
| 10 | This program is free software; you can redistribute it and/or modify it under
|
---|
| 11 | the terms of the GNU Lesser General Public License as published by the Free Software
|
---|
| 12 | Foundation; either version 2 of the License, or (at your option) any later
|
---|
| 13 | version.
|
---|
| 14 |
|
---|
| 15 | This program is distributed in the hope that it will be useful, but WITHOUT
|
---|
| 16 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
---|
| 17 | FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
|
---|
| 18 |
|
---|
| 19 | You should have received a copy of the GNU Lesser General Public License along with
|
---|
| 20 | this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
---|
| 21 | Place - Suite 330, Boston, MA 02111-1307, USA, or go to
|
---|
| 22 | http://www.gnu.org/copyleft/lesser.txt.
|
---|
| 23 | -----------------------------------------------------------------------------
|
---|
| 24 | */
|
---|
| 25 | #ifndef __Matrix4__
|
---|
| 26 | #define __Matrix4__
|
---|
| 27 |
|
---|
| 28 | // Precompiler options
|
---|
| 29 | #include "OgrePrerequisites.h"
|
---|
| 30 |
|
---|
| 31 | #include "OgreVector3.h"
|
---|
| 32 | #include "OgreMatrix3.h"
|
---|
| 33 | #include "OgreVector4.h"
|
---|
| 34 | #include "OgrePlane.h"
|
---|
| 35 | namespace Ogre
|
---|
| 36 | {
|
---|
| 37 | /** Class encapsulating a standard 4x4 homogenous matrix.
|
---|
| 38 | @remarks
|
---|
| 39 | OGRE uses column vectors when applying matrix multiplications,
|
---|
| 40 | This means a vector is represented as a single column, 4-row
|
---|
| 41 | matrix. This has the effect that the tranformations implemented
|
---|
| 42 | by the matrices happens right-to-left e.g. if vector V is to be
|
---|
| 43 | transformed by M1 then M2 then M3, the calculation would be
|
---|
| 44 | M3 * M2 * M1 * V. The order that matrices are concatenated is
|
---|
| 45 | vital since matrix multiplication is not cummatative, i.e. you
|
---|
| 46 | can get a different result if you concatenate in the wrong order.
|
---|
| 47 | @par
|
---|
| 48 | The use of column vectors and right-to-left ordering is the
|
---|
| 49 | standard in most mathematical texts, and id the same as used in
|
---|
| 50 | OpenGL. It is, however, the opposite of Direct3D, which has
|
---|
| 51 | inexplicably chosen to differ from the accepted standard and uses
|
---|
| 52 | row vectors and left-to-right matrix multiplication.
|
---|
| 53 | @par
|
---|
| 54 | OGRE deals with the differences between D3D and OpenGL etc.
|
---|
| 55 | internally when operating through different render systems. OGRE
|
---|
| 56 | users only need to conform to standard maths conventions, i.e.
|
---|
| 57 | right-to-left matrix multiplication, (OGRE transposes matrices it
|
---|
| 58 | passes to D3D to compensate).
|
---|
| 59 | @par
|
---|
| 60 | The generic form M * V which shows the layout of the matrix
|
---|
| 61 | entries is shown below:
|
---|
| 62 | <pre>
|
---|
| 63 | [ m[0][0] m[0][1] m[0][2] m[0][3] ] {x}
|
---|
| 64 | | m[1][0] m[1][1] m[1][2] m[1][3] | * {y}
|
---|
| 65 | | m[2][0] m[2][1] m[2][2] m[2][3] | {z}
|
---|
| 66 | [ m[3][0] m[3][1] m[3][2] m[3][3] ] {1}
|
---|
| 67 | </pre>
|
---|
| 68 | */
|
---|
| 69 | class _OgreExport Matrix4
|
---|
| 70 | {
|
---|
| 71 | protected:
|
---|
| 72 | /// The matrix entries, indexed by [row][col].
|
---|
| 73 | union {
|
---|
| 74 | Real m[4][4];
|
---|
| 75 | Real _m[16];
|
---|
| 76 | };
|
---|
| 77 | public:
|
---|
| 78 | /** Default constructor.
|
---|
| 79 | @note
|
---|
| 80 | It does <b>NOT</b> initialize the matrix for efficiency.
|
---|
| 81 | */
|
---|
| 82 | inline Matrix4()
|
---|
| 83 | {
|
---|
| 84 | }
|
---|
| 85 |
|
---|
| 86 | inline Matrix4(
|
---|
| 87 | Real m00, Real m01, Real m02, Real m03,
|
---|
| 88 | Real m10, Real m11, Real m12, Real m13,
|
---|
| 89 | Real m20, Real m21, Real m22, Real m23,
|
---|
| 90 | Real m30, Real m31, Real m32, Real m33 )
|
---|
| 91 | {
|
---|
| 92 | m[0][0] = m00;
|
---|
| 93 | m[0][1] = m01;
|
---|
| 94 | m[0][2] = m02;
|
---|
| 95 | m[0][3] = m03;
|
---|
| 96 | m[1][0] = m10;
|
---|
| 97 | m[1][1] = m11;
|
---|
| 98 | m[1][2] = m12;
|
---|
| 99 | m[1][3] = m13;
|
---|
| 100 | m[2][0] = m20;
|
---|
| 101 | m[2][1] = m21;
|
---|
| 102 | m[2][2] = m22;
|
---|
| 103 | m[2][3] = m23;
|
---|
| 104 | m[3][0] = m30;
|
---|
| 105 | m[3][1] = m31;
|
---|
| 106 | m[3][2] = m32;
|
---|
| 107 | m[3][3] = m33;
|
---|
| 108 | }
|
---|
| 109 |
|
---|
| 110 | /** Creates a standard 4x4 transformation matrix with a zero translation part from a rotation/scaling 3x3 matrix.
|
---|
| 111 | */
|
---|
| 112 |
|
---|
| 113 | inline Matrix4(const Matrix3& m3x3)
|
---|
| 114 | {
|
---|
| 115 | operator=(IDENTITY);
|
---|
| 116 | operator=(m3x3);
|
---|
| 117 | }
|
---|
| 118 |
|
---|
| 119 | /** Creates a standard 4x4 transformation matrix with a zero translation part from a rotation/scaling Quaternion.
|
---|
| 120 | */
|
---|
| 121 |
|
---|
| 122 | inline Matrix4(const Quaternion& rot)
|
---|
| 123 | {
|
---|
| 124 | Matrix3 m3x3;
|
---|
| 125 | rot.ToRotationMatrix(m3x3);
|
---|
| 126 | operator=(IDENTITY);
|
---|
| 127 | operator=(m3x3);
|
---|
| 128 | }
|
---|
| 129 |
|
---|
| 130 |
|
---|
| 131 | inline Real* operator [] ( size_t iRow )
|
---|
| 132 | {
|
---|
| 133 | assert( iRow < 4 );
|
---|
| 134 | return m[iRow];
|
---|
| 135 | }
|
---|
| 136 |
|
---|
| 137 | inline const Real *const operator [] ( size_t iRow ) const
|
---|
| 138 | {
|
---|
| 139 | assert( iRow < 4 );
|
---|
| 140 | return m[iRow];
|
---|
| 141 | }
|
---|
| 142 |
|
---|
| 143 | inline Matrix4 concatenate(const Matrix4 &m2) const
|
---|
| 144 | {
|
---|
| 145 | Matrix4 r;
|
---|
| 146 | r.m[0][0] = m[0][0] * m2.m[0][0] + m[0][1] * m2.m[1][0] + m[0][2] * m2.m[2][0] + m[0][3] * m2.m[3][0];
|
---|
| 147 | r.m[0][1] = m[0][0] * m2.m[0][1] + m[0][1] * m2.m[1][1] + m[0][2] * m2.m[2][1] + m[0][3] * m2.m[3][1];
|
---|
| 148 | r.m[0][2] = m[0][0] * m2.m[0][2] + m[0][1] * m2.m[1][2] + m[0][2] * m2.m[2][2] + m[0][3] * m2.m[3][2];
|
---|
| 149 | r.m[0][3] = m[0][0] * m2.m[0][3] + m[0][1] * m2.m[1][3] + m[0][2] * m2.m[2][3] + m[0][3] * m2.m[3][3];
|
---|
| 150 |
|
---|
| 151 | r.m[1][0] = m[1][0] * m2.m[0][0] + m[1][1] * m2.m[1][0] + m[1][2] * m2.m[2][0] + m[1][3] * m2.m[3][0];
|
---|
| 152 | r.m[1][1] = m[1][0] * m2.m[0][1] + m[1][1] * m2.m[1][1] + m[1][2] * m2.m[2][1] + m[1][3] * m2.m[3][1];
|
---|
| 153 | r.m[1][2] = m[1][0] * m2.m[0][2] + m[1][1] * m2.m[1][2] + m[1][2] * m2.m[2][2] + m[1][3] * m2.m[3][2];
|
---|
| 154 | r.m[1][3] = m[1][0] * m2.m[0][3] + m[1][1] * m2.m[1][3] + m[1][2] * m2.m[2][3] + m[1][3] * m2.m[3][3];
|
---|
| 155 |
|
---|
| 156 | r.m[2][0] = m[2][0] * m2.m[0][0] + m[2][1] * m2.m[1][0] + m[2][2] * m2.m[2][0] + m[2][3] * m2.m[3][0];
|
---|
| 157 | r.m[2][1] = m[2][0] * m2.m[0][1] + m[2][1] * m2.m[1][1] + m[2][2] * m2.m[2][1] + m[2][3] * m2.m[3][1];
|
---|
| 158 | r.m[2][2] = m[2][0] * m2.m[0][2] + m[2][1] * m2.m[1][2] + m[2][2] * m2.m[2][2] + m[2][3] * m2.m[3][2];
|
---|
| 159 | r.m[2][3] = m[2][0] * m2.m[0][3] + m[2][1] * m2.m[1][3] + m[2][2] * m2.m[2][3] + m[2][3] * m2.m[3][3];
|
---|
| 160 |
|
---|
| 161 | r.m[3][0] = m[3][0] * m2.m[0][0] + m[3][1] * m2.m[1][0] + m[3][2] * m2.m[2][0] + m[3][3] * m2.m[3][0];
|
---|
| 162 | r.m[3][1] = m[3][0] * m2.m[0][1] + m[3][1] * m2.m[1][1] + m[3][2] * m2.m[2][1] + m[3][3] * m2.m[3][1];
|
---|
| 163 | r.m[3][2] = m[3][0] * m2.m[0][2] + m[3][1] * m2.m[1][2] + m[3][2] * m2.m[2][2] + m[3][3] * m2.m[3][2];
|
---|
| 164 | r.m[3][3] = m[3][0] * m2.m[0][3] + m[3][1] * m2.m[1][3] + m[3][2] * m2.m[2][3] + m[3][3] * m2.m[3][3];
|
---|
| 165 |
|
---|
| 166 | return r;
|
---|
| 167 | }
|
---|
| 168 |
|
---|
| 169 | /** Matrix concatenation using '*'.
|
---|
| 170 | */
|
---|
| 171 | inline Matrix4 operator * ( const Matrix4 &m2 ) const
|
---|
| 172 | {
|
---|
| 173 | return concatenate( m2 );
|
---|
| 174 | }
|
---|
| 175 |
|
---|
| 176 | /** Vector transformation using '*'.
|
---|
| 177 | @remarks
|
---|
| 178 | Transforms the given 3-D vector by the matrix, projecting the
|
---|
| 179 | result back into <i>w</i> = 1.
|
---|
| 180 | @note
|
---|
| 181 | This means that the initial <i>w</i> is considered to be 1.0,
|
---|
| 182 | and then all the tree elements of the resulting 3-D vector are
|
---|
| 183 | divided by the resulting <i>w</i>.
|
---|
| 184 | */
|
---|
| 185 | inline Vector3 operator * ( const Vector3 &v ) const
|
---|
| 186 | {
|
---|
| 187 | Vector3 r;
|
---|
| 188 |
|
---|
| 189 | Real fInvW = 1.0 / ( m[3][0] * v.x + m[3][1] * v.y + m[3][2] * v.z + m[3][3] );
|
---|
| 190 |
|
---|
| 191 | r.x = ( m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3] ) * fInvW;
|
---|
| 192 | r.y = ( m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3] ) * fInvW;
|
---|
| 193 | r.z = ( m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3] ) * fInvW;
|
---|
| 194 |
|
---|
| 195 | return r;
|
---|
| 196 | }
|
---|
| 197 | inline Vector4 operator * (const Vector4& v) const
|
---|
| 198 | {
|
---|
| 199 | return Vector4(
|
---|
| 200 | m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3] * v.w,
|
---|
| 201 | m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3] * v.w,
|
---|
| 202 | m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3] * v.w,
|
---|
| 203 | m[3][0] * v.x + m[3][1] * v.y + m[3][2] * v.z + m[3][3] * v.w
|
---|
| 204 | );
|
---|
| 205 | }
|
---|
| 206 | inline Plane operator * (const Plane& p) const
|
---|
| 207 | {
|
---|
| 208 | Plane ret;
|
---|
| 209 | Matrix4 invTrans = inverse().transpose();
|
---|
| 210 | ret.normal.x =
|
---|
| 211 | invTrans[0][0] * p.normal.x + invTrans[0][1] * p.normal.y + invTrans[0][2] * p.normal.z;
|
---|
| 212 | ret.normal.y =
|
---|
| 213 | invTrans[1][0] * p.normal.x + invTrans[1][1] * p.normal.y + invTrans[1][2] * p.normal.z;
|
---|
| 214 | ret.normal.z =
|
---|
| 215 | invTrans[2][0] * p.normal.x + invTrans[2][1] * p.normal.y + invTrans[2][2] * p.normal.z;
|
---|
| 216 | Vector3 pt = p.normal * -p.d;
|
---|
| 217 | pt = *this * pt;
|
---|
| 218 | ret.d = - pt.dotProduct(ret.normal);
|
---|
| 219 | return ret;
|
---|
| 220 | }
|
---|
| 221 |
|
---|
| 222 |
|
---|
| 223 | /** Matrix addition.
|
---|
| 224 | */
|
---|
| 225 | inline Matrix4 operator + ( const Matrix4 &m2 ) const
|
---|
| 226 | {
|
---|
| 227 | Matrix4 r;
|
---|
| 228 |
|
---|
| 229 | r.m[0][0] = m[0][0] + m2.m[0][0];
|
---|
| 230 | r.m[0][1] = m[0][1] + m2.m[0][1];
|
---|
| 231 | r.m[0][2] = m[0][2] + m2.m[0][2];
|
---|
| 232 | r.m[0][3] = m[0][3] + m2.m[0][3];
|
---|
| 233 |
|
---|
| 234 | r.m[1][0] = m[1][0] + m2.m[1][0];
|
---|
| 235 | r.m[1][1] = m[1][1] + m2.m[1][1];
|
---|
| 236 | r.m[1][2] = m[1][2] + m2.m[1][2];
|
---|
| 237 | r.m[1][3] = m[1][3] + m2.m[1][3];
|
---|
| 238 |
|
---|
| 239 | r.m[2][0] = m[2][0] + m2.m[2][0];
|
---|
| 240 | r.m[2][1] = m[2][1] + m2.m[2][1];
|
---|
| 241 | r.m[2][2] = m[2][2] + m2.m[2][2];
|
---|
| 242 | r.m[2][3] = m[2][3] + m2.m[2][3];
|
---|
| 243 |
|
---|
| 244 | r.m[3][0] = m[3][0] + m2.m[3][0];
|
---|
| 245 | r.m[3][1] = m[3][1] + m2.m[3][1];
|
---|
| 246 | r.m[3][2] = m[3][2] + m2.m[3][2];
|
---|
| 247 | r.m[3][3] = m[3][3] + m2.m[3][3];
|
---|
| 248 |
|
---|
| 249 | return r;
|
---|
| 250 | }
|
---|
| 251 |
|
---|
| 252 | /** Matrix subtraction.
|
---|
| 253 | */
|
---|
| 254 | inline Matrix4 operator - ( const Matrix4 &m2 ) const
|
---|
| 255 | {
|
---|
| 256 | Matrix4 r;
|
---|
| 257 | r.m[0][0] = m[0][0] - m2.m[0][0];
|
---|
| 258 | r.m[0][1] = m[0][1] - m2.m[0][1];
|
---|
| 259 | r.m[0][2] = m[0][2] - m2.m[0][2];
|
---|
| 260 | r.m[0][3] = m[0][3] - m2.m[0][3];
|
---|
| 261 |
|
---|
| 262 | r.m[1][0] = m[1][0] - m2.m[1][0];
|
---|
| 263 | r.m[1][1] = m[1][1] - m2.m[1][1];
|
---|
| 264 | r.m[1][2] = m[1][2] - m2.m[1][2];
|
---|
| 265 | r.m[1][3] = m[1][3] - m2.m[1][3];
|
---|
| 266 |
|
---|
| 267 | r.m[2][0] = m[2][0] - m2.m[2][0];
|
---|
| 268 | r.m[2][1] = m[2][1] - m2.m[2][1];
|
---|
| 269 | r.m[2][2] = m[2][2] - m2.m[2][2];
|
---|
| 270 | r.m[2][3] = m[2][3] - m2.m[2][3];
|
---|
| 271 |
|
---|
| 272 | r.m[3][0] = m[3][0] - m2.m[3][0];
|
---|
| 273 | r.m[3][1] = m[3][1] - m2.m[3][1];
|
---|
| 274 | r.m[3][2] = m[3][2] - m2.m[3][2];
|
---|
| 275 | r.m[3][3] = m[3][3] - m2.m[3][3];
|
---|
| 276 |
|
---|
| 277 | return r;
|
---|
| 278 | }
|
---|
| 279 |
|
---|
| 280 | /** Tests 2 matrices for equality.
|
---|
| 281 | */
|
---|
| 282 | inline bool operator == ( const Matrix4& m2 ) const
|
---|
| 283 | {
|
---|
| 284 | if(
|
---|
| 285 | m[0][0] != m2.m[0][0] || m[0][1] != m2.m[0][1] || m[0][2] != m2.m[0][2] || m[0][3] != m2.m[0][3] ||
|
---|
| 286 | m[1][0] != m2.m[1][0] || m[1][1] != m2.m[1][1] || m[1][2] != m2.m[1][2] || m[1][3] != m2.m[1][3] ||
|
---|
| 287 | m[2][0] != m2.m[2][0] || m[2][1] != m2.m[2][1] || m[2][2] != m2.m[2][2] || m[2][3] != m2.m[2][3] ||
|
---|
| 288 | m[3][0] != m2.m[3][0] || m[3][1] != m2.m[3][1] || m[3][2] != m2.m[3][2] || m[3][3] != m2.m[3][3] )
|
---|
| 289 | return false;
|
---|
| 290 | return true;
|
---|
| 291 | }
|
---|
| 292 |
|
---|
| 293 | /** Tests 2 matrices for inequality.
|
---|
| 294 | */
|
---|
| 295 | inline bool operator != ( const Matrix4& m2 ) const
|
---|
| 296 | {
|
---|
| 297 | if(
|
---|
| 298 | m[0][0] != m2.m[0][0] || m[0][1] != m2.m[0][1] || m[0][2] != m2.m[0][2] || m[0][3] != m2.m[0][3] ||
|
---|
| 299 | m[1][0] != m2.m[1][0] || m[1][1] != m2.m[1][1] || m[1][2] != m2.m[1][2] || m[1][3] != m2.m[1][3] ||
|
---|
| 300 | m[2][0] != m2.m[2][0] || m[2][1] != m2.m[2][1] || m[2][2] != m2.m[2][2] || m[2][3] != m2.m[2][3] ||
|
---|
| 301 | m[3][0] != m2.m[3][0] || m[3][1] != m2.m[3][1] || m[3][2] != m2.m[3][2] || m[3][3] != m2.m[3][3] )
|
---|
| 302 | return true;
|
---|
| 303 | return false;
|
---|
| 304 | }
|
---|
| 305 |
|
---|
| 306 | /** Assignment from 3x3 matrix.
|
---|
| 307 | */
|
---|
| 308 | inline void operator = ( const Matrix3& mat3 )
|
---|
| 309 | {
|
---|
| 310 | m[0][0] = mat3.m[0][0]; m[0][1] = mat3.m[0][1]; m[0][2] = mat3.m[0][2];
|
---|
| 311 | m[1][0] = mat3.m[1][0]; m[1][1] = mat3.m[1][1]; m[1][2] = mat3.m[1][2];
|
---|
| 312 | m[2][0] = mat3.m[2][0]; m[2][1] = mat3.m[2][1]; m[2][2] = mat3.m[2][2];
|
---|
| 313 | }
|
---|
| 314 |
|
---|
| 315 | inline Matrix4 transpose(void) const
|
---|
| 316 | {
|
---|
| 317 | return Matrix4(m[0][0], m[1][0], m[2][0], m[3][0],
|
---|
| 318 | m[0][1], m[1][1], m[2][1], m[3][1],
|
---|
| 319 | m[0][2], m[1][2], m[2][2], m[3][2],
|
---|
| 320 | m[0][3], m[1][3], m[2][3], m[3][3]);
|
---|
| 321 | }
|
---|
| 322 |
|
---|
| 323 | /*
|
---|
| 324 | -----------------------------------------------------------------------
|
---|
| 325 | Translation Transformation
|
---|
| 326 | -----------------------------------------------------------------------
|
---|
| 327 | */
|
---|
| 328 | /** Sets the translation transformation part of the matrix.
|
---|
| 329 | */
|
---|
| 330 | inline void setTrans( const Vector3& v )
|
---|
| 331 | {
|
---|
| 332 | m[0][3] = v.x;
|
---|
| 333 | m[1][3] = v.y;
|
---|
| 334 | m[2][3] = v.z;
|
---|
| 335 | }
|
---|
| 336 |
|
---|
| 337 | /** Extracts the translation transformation part of the matrix.
|
---|
| 338 | */
|
---|
| 339 | inline Vector3 getTrans() const
|
---|
| 340 | {
|
---|
| 341 | return Vector3(m[0][3], m[1][3], m[2][3]);
|
---|
| 342 | }
|
---|
| 343 |
|
---|
| 344 |
|
---|
| 345 | /** Builds a translation matrix
|
---|
| 346 | */
|
---|
| 347 | inline void makeTrans( const Vector3& v )
|
---|
| 348 | {
|
---|
| 349 | m[0][0] = 1.0; m[0][1] = 0.0; m[0][2] = 0.0; m[0][3] = v.x;
|
---|
| 350 | m[1][0] = 0.0; m[1][1] = 1.0; m[1][2] = 0.0; m[1][3] = v.y;
|
---|
| 351 | m[2][0] = 0.0; m[2][1] = 0.0; m[2][2] = 1.0; m[2][3] = v.z;
|
---|
| 352 | m[3][0] = 0.0; m[3][1] = 0.0; m[3][2] = 0.0; m[3][3] = 1.0;
|
---|
| 353 | }
|
---|
| 354 |
|
---|
| 355 | inline void makeTrans( Real tx, Real ty, Real tz )
|
---|
| 356 | {
|
---|
| 357 | m[0][0] = 1.0; m[0][1] = 0.0; m[0][2] = 0.0; m[0][3] = tx;
|
---|
| 358 | m[1][0] = 0.0; m[1][1] = 1.0; m[1][2] = 0.0; m[1][3] = ty;
|
---|
| 359 | m[2][0] = 0.0; m[2][1] = 0.0; m[2][2] = 1.0; m[2][3] = tz;
|
---|
| 360 | m[3][0] = 0.0; m[3][1] = 0.0; m[3][2] = 0.0; m[3][3] = 1.0;
|
---|
| 361 | }
|
---|
| 362 |
|
---|
| 363 | /** Gets a translation matrix.
|
---|
| 364 | */
|
---|
| 365 | inline static Matrix4 getTrans( const Vector3& v )
|
---|
| 366 | {
|
---|
| 367 | Matrix4 r;
|
---|
| 368 |
|
---|
| 369 | r.m[0][0] = 1.0; r.m[0][1] = 0.0; r.m[0][2] = 0.0; r.m[0][3] = v.x;
|
---|
| 370 | r.m[1][0] = 0.0; r.m[1][1] = 1.0; r.m[1][2] = 0.0; r.m[1][3] = v.y;
|
---|
| 371 | r.m[2][0] = 0.0; r.m[2][1] = 0.0; r.m[2][2] = 1.0; r.m[2][3] = v.z;
|
---|
| 372 | r.m[3][0] = 0.0; r.m[3][1] = 0.0; r.m[3][2] = 0.0; r.m[3][3] = 1.0;
|
---|
| 373 |
|
---|
| 374 | return r;
|
---|
| 375 | }
|
---|
| 376 |
|
---|
| 377 | /** Gets a translation matrix - variation for not using a vector.
|
---|
| 378 | */
|
---|
| 379 | inline static Matrix4 getTrans( Real t_x, Real t_y, Real t_z )
|
---|
| 380 | {
|
---|
| 381 | Matrix4 r;
|
---|
| 382 |
|
---|
| 383 | r.m[0][0] = 1.0; r.m[0][1] = 0.0; r.m[0][2] = 0.0; r.m[0][3] = t_x;
|
---|
| 384 | r.m[1][0] = 0.0; r.m[1][1] = 1.0; r.m[1][2] = 0.0; r.m[1][3] = t_y;
|
---|
| 385 | r.m[2][0] = 0.0; r.m[2][1] = 0.0; r.m[2][2] = 1.0; r.m[2][3] = t_z;
|
---|
| 386 | r.m[3][0] = 0.0; r.m[3][1] = 0.0; r.m[3][2] = 0.0; r.m[3][3] = 1.0;
|
---|
| 387 |
|
---|
| 388 | return r;
|
---|
| 389 | }
|
---|
| 390 |
|
---|
| 391 | /*
|
---|
| 392 | -----------------------------------------------------------------------
|
---|
| 393 | Scale Transformation
|
---|
| 394 | -----------------------------------------------------------------------
|
---|
| 395 | */
|
---|
| 396 | /** Sets the scale part of the matrix.
|
---|
| 397 | */
|
---|
| 398 | inline void setScale( const Vector3& v )
|
---|
| 399 | {
|
---|
| 400 | m[0][0] = v.x;
|
---|
| 401 | m[1][1] = v.y;
|
---|
| 402 | m[2][2] = v.z;
|
---|
| 403 | }
|
---|
| 404 |
|
---|
| 405 | /** Gets a scale matrix.
|
---|
| 406 | */
|
---|
| 407 | inline static Matrix4 getScale( const Vector3& v )
|
---|
| 408 | {
|
---|
| 409 | Matrix4 r;
|
---|
| 410 | r.m[0][0] = v.x; r.m[0][1] = 0.0; r.m[0][2] = 0.0; r.m[0][3] = 0.0;
|
---|
| 411 | r.m[1][0] = 0.0; r.m[1][1] = v.y; r.m[1][2] = 0.0; r.m[1][3] = 0.0;
|
---|
| 412 | r.m[2][0] = 0.0; r.m[2][1] = 0.0; r.m[2][2] = v.z; r.m[2][3] = 0.0;
|
---|
| 413 | r.m[3][0] = 0.0; r.m[3][1] = 0.0; r.m[3][2] = 0.0; r.m[3][3] = 1.0;
|
---|
| 414 |
|
---|
| 415 | return r;
|
---|
| 416 | }
|
---|
| 417 |
|
---|
| 418 | /** Gets a scale matrix - variation for not using a vector.
|
---|
| 419 | */
|
---|
| 420 | inline static Matrix4 getScale( Real s_x, Real s_y, Real s_z )
|
---|
| 421 | {
|
---|
| 422 | Matrix4 r;
|
---|
| 423 | r.m[0][0] = s_x; r.m[0][1] = 0.0; r.m[0][2] = 0.0; r.m[0][3] = 0.0;
|
---|
| 424 | r.m[1][0] = 0.0; r.m[1][1] = s_y; r.m[1][2] = 0.0; r.m[1][3] = 0.0;
|
---|
| 425 | r.m[2][0] = 0.0; r.m[2][1] = 0.0; r.m[2][2] = s_z; r.m[2][3] = 0.0;
|
---|
| 426 | r.m[3][0] = 0.0; r.m[3][1] = 0.0; r.m[3][2] = 0.0; r.m[3][3] = 1.0;
|
---|
| 427 |
|
---|
| 428 | return r;
|
---|
| 429 | }
|
---|
| 430 |
|
---|
| 431 | /** Extracts the rotation / scaling part of the Matrix as a 3x3 matrix.
|
---|
| 432 | @param m3x3 Destination Matrix3
|
---|
| 433 | */
|
---|
| 434 | inline void extract3x3Matrix(Matrix3& m3x3) const
|
---|
| 435 | {
|
---|
| 436 | m3x3.m[0][0] = m[0][0];
|
---|
| 437 | m3x3.m[0][1] = m[0][1];
|
---|
| 438 | m3x3.m[0][2] = m[0][2];
|
---|
| 439 | m3x3.m[1][0] = m[1][0];
|
---|
| 440 | m3x3.m[1][1] = m[1][1];
|
---|
| 441 | m3x3.m[1][2] = m[1][2];
|
---|
| 442 | m3x3.m[2][0] = m[2][0];
|
---|
| 443 | m3x3.m[2][1] = m[2][1];
|
---|
| 444 | m3x3.m[2][2] = m[2][2];
|
---|
| 445 |
|
---|
| 446 | }
|
---|
| 447 |
|
---|
| 448 | /** Extracts the rotation / scaling part as a quaternion from the Matrix.
|
---|
| 449 | */
|
---|
| 450 | inline Quaternion extractQuaternion() const
|
---|
| 451 | {
|
---|
| 452 | Matrix3 m3x3;
|
---|
| 453 | extract3x3Matrix(m3x3);
|
---|
| 454 | return Quaternion(m3x3);
|
---|
| 455 | }
|
---|
| 456 |
|
---|
| 457 | static const Matrix4 ZERO;
|
---|
| 458 | static const Matrix4 IDENTITY;
|
---|
| 459 | /** Useful little matrix which takes 2D clipspace {-1, 1} to {0,1}
|
---|
| 460 | and inverts the Y. */
|
---|
| 461 | static const Matrix4 CLIPSPACE2DTOIMAGESPACE;
|
---|
| 462 |
|
---|
| 463 | inline Matrix4 operator*(Real scalar)
|
---|
| 464 | {
|
---|
| 465 | return Matrix4(
|
---|
| 466 | scalar*m[0][0], scalar*m[0][1], scalar*m[0][2], scalar*m[0][3],
|
---|
| 467 | scalar*m[1][0], scalar*m[1][1], scalar*m[1][2], scalar*m[1][3],
|
---|
| 468 | scalar*m[2][0], scalar*m[2][1], scalar*m[2][2], scalar*m[2][3],
|
---|
| 469 | scalar*m[3][0], scalar*m[3][1], scalar*m[3][2], scalar*m[3][3]);
|
---|
| 470 | }
|
---|
| 471 |
|
---|
| 472 | /** Function for writing to a stream.
|
---|
| 473 | */
|
---|
| 474 | inline _OgreExport friend std::ostream& operator <<
|
---|
| 475 | ( std::ostream& o, const Matrix4& m )
|
---|
| 476 | {
|
---|
| 477 | o << "Matrix4(";
|
---|
| 478 | for (size_t i = 0; i < 4; ++i)
|
---|
| 479 | {
|
---|
| 480 | o << " row" << (unsigned)i << "{";
|
---|
| 481 | for(size_t j = 0; j < 4; ++j)
|
---|
| 482 | {
|
---|
| 483 | o << m[i][j] << " ";
|
---|
| 484 | }
|
---|
| 485 | o << "}";
|
---|
| 486 | }
|
---|
| 487 | o << ")";
|
---|
| 488 | return o;
|
---|
| 489 | }
|
---|
| 490 |
|
---|
| 491 | Matrix4 adjoint() const;
|
---|
| 492 | Real determinant() const;
|
---|
| 493 | Matrix4 inverse() const;
|
---|
| 494 |
|
---|
| 495 | /** Building a Matrix4 from orientation / scale / position.
|
---|
| 496 | @remarks
|
---|
| 497 | Transform is performed in the order scale, rotate, translation, i.e. translation is independent
|
---|
| 498 | of orientation axes, scale does not affect size of translation, rotation and scaling are always
|
---|
| 499 | centered on the origin.
|
---|
| 500 | */
|
---|
| 501 | void makeTransform(const Vector3& position, const Vector3& scale, const Quaternion& orientation);
|
---|
| 502 |
|
---|
| 503 | /** Building an inverse Matrix4 from orientation / scale / position.
|
---|
| 504 | @remarks
|
---|
| 505 | As makeTransform except it build the inverse given the same data as makeTransform, so
|
---|
| 506 | performing -translation, -rotate, 1/scale in that order.
|
---|
| 507 | */
|
---|
| 508 | void makeInverseTransform(const Vector3& position, const Vector3& scale, const Quaternion& orientation);
|
---|
| 509 | };
|
---|
| 510 |
|
---|
| 511 | /* Removed from Vector4 and made a non-member here because otherwise
|
---|
| 512 | OgreMatrix4.h and OgreVector4.h have to try to include and inline each
|
---|
| 513 | other, which frankly doesn't work ;)
|
---|
| 514 | */
|
---|
| 515 | inline Vector4 operator * (const Vector4& v, const Matrix4& mat)
|
---|
| 516 | {
|
---|
| 517 | return Vector4(
|
---|
| 518 | v.x*mat[0][0] + v.y*mat[1][0] + v.z*mat[2][0] + v.w*mat[3][0],
|
---|
| 519 | v.x*mat[0][1] + v.y*mat[1][1] + v.z*mat[2][1] + v.w*mat[3][1],
|
---|
| 520 | v.x*mat[0][2] + v.y*mat[1][2] + v.z*mat[2][2] + v.w*mat[3][2],
|
---|
| 521 | v.x*mat[0][3] + v.y*mat[1][3] + v.z*mat[2][3] + v.w*mat[3][3]
|
---|
| 522 | );
|
---|
| 523 | }
|
---|
| 524 |
|
---|
| 525 | }
|
---|
| 526 | #endif
|
---|