1 | #ifndef __GEO_VECTOR2__
|
---|
2 | #define __GEO_VECTOR2__
|
---|
3 | #ifndef DOXYGEN_SHOULD_SKIP_THIS
|
---|
4 |
|
---|
5 |
|
---|
6 | #include "GeoBase.h"
|
---|
7 | #include <cmath>
|
---|
8 | #include <cassert>
|
---|
9 | #include <ostream>
|
---|
10 |
|
---|
11 | namespace Geometry
|
---|
12 | {
|
---|
13 |
|
---|
14 | class Vector2
|
---|
15 | {
|
---|
16 | public:
|
---|
17 | union {
|
---|
18 | struct {
|
---|
19 | Real x, y;
|
---|
20 | };
|
---|
21 | Real val[2];
|
---|
22 | };
|
---|
23 |
|
---|
24 | public:
|
---|
25 | inline Vector2()
|
---|
26 | {
|
---|
27 | }
|
---|
28 |
|
---|
29 | inline Vector2( Real fX, Real fY )
|
---|
30 | : x( fX ), y( fY )
|
---|
31 | {
|
---|
32 | }
|
---|
33 |
|
---|
34 | inline Vector2( const Real* const r )
|
---|
35 | : x( r[0] ), y( r[1] )
|
---|
36 | {
|
---|
37 | }
|
---|
38 |
|
---|
39 | inline Vector2( const Vector2& rkVector )
|
---|
40 | : x( rkVector.x ), y( rkVector.y )
|
---|
41 | {
|
---|
42 | }
|
---|
43 |
|
---|
44 | inline Real operator [] ( size_t i ) const
|
---|
45 | {
|
---|
46 | assert( i < 2 );
|
---|
47 |
|
---|
48 | return *(&x+i);
|
---|
49 | }
|
---|
50 |
|
---|
51 | inline Real& operator [] ( size_t i )
|
---|
52 | {
|
---|
53 | assert( i < 2 );
|
---|
54 |
|
---|
55 | return *(&x+i);
|
---|
56 | }
|
---|
57 |
|
---|
58 | /** Assigns the value of the other vector.
|
---|
59 | @param
|
---|
60 | rkVector The other vector
|
---|
61 | */
|
---|
62 | inline Vector2& operator = ( const Vector2& rkVector )
|
---|
63 | {
|
---|
64 | x = rkVector.x;
|
---|
65 | y = rkVector.y;
|
---|
66 |
|
---|
67 | return *this;
|
---|
68 | }
|
---|
69 |
|
---|
70 | inline bool operator == ( const Vector2& rkVector ) const
|
---|
71 | {
|
---|
72 | return ( x == rkVector.x && y == rkVector.y );
|
---|
73 | }
|
---|
74 |
|
---|
75 | inline bool operator != ( const Vector2& rkVector ) const
|
---|
76 | {
|
---|
77 | return ( x != rkVector.x || y != rkVector.y );
|
---|
78 | }
|
---|
79 |
|
---|
80 | // arithmetic operations
|
---|
81 | inline Vector2 operator + ( const Vector2& rkVector ) const
|
---|
82 | {
|
---|
83 | Vector2 kSum;
|
---|
84 |
|
---|
85 | kSum.x = x + rkVector.x;
|
---|
86 | kSum.y = y + rkVector.y;
|
---|
87 |
|
---|
88 | return kSum;
|
---|
89 | }
|
---|
90 |
|
---|
91 | inline Vector2 operator - ( const Vector2& rkVector ) const
|
---|
92 | {
|
---|
93 | Vector2 kDiff;
|
---|
94 |
|
---|
95 | kDiff.x = x - rkVector.x;
|
---|
96 | kDiff.y = y - rkVector.y;
|
---|
97 |
|
---|
98 | return kDiff;
|
---|
99 | }
|
---|
100 |
|
---|
101 | inline Vector2 operator * ( Real fScalar ) const
|
---|
102 | {
|
---|
103 | Vector2 kProd;
|
---|
104 |
|
---|
105 | kProd.x = fScalar*x;
|
---|
106 | kProd.y = fScalar*y;
|
---|
107 |
|
---|
108 | return kProd;
|
---|
109 | }
|
---|
110 |
|
---|
111 | inline Vector2 operator * ( const Vector2& rhs) const
|
---|
112 | {
|
---|
113 | Vector2 kProd;
|
---|
114 |
|
---|
115 | kProd.x = rhs.x * x;
|
---|
116 | kProd.y = rhs.y * y;
|
---|
117 |
|
---|
118 | return kProd;
|
---|
119 | }
|
---|
120 |
|
---|
121 | inline Vector2 operator / ( Real fScalar ) const
|
---|
122 | {
|
---|
123 | assert( fScalar != 0.0f );
|
---|
124 |
|
---|
125 | Vector2 kDiv;
|
---|
126 |
|
---|
127 | Real fInv = 1.0f / fScalar;
|
---|
128 | kDiv.x = x * fInv;
|
---|
129 | kDiv.y = y * fInv;
|
---|
130 |
|
---|
131 | return kDiv;
|
---|
132 | }
|
---|
133 |
|
---|
134 | inline Vector2 operator - () const
|
---|
135 | {
|
---|
136 | Vector2 kNeg;
|
---|
137 |
|
---|
138 | kNeg.x = -x;
|
---|
139 | kNeg.y = -y;
|
---|
140 |
|
---|
141 | return kNeg;
|
---|
142 | }
|
---|
143 |
|
---|
144 | inline friend Vector2 operator * ( Real fScalar, const Vector2& rkVector )
|
---|
145 | {
|
---|
146 | Vector2 kProd;
|
---|
147 |
|
---|
148 | kProd.x = fScalar * rkVector.x;
|
---|
149 | kProd.y = fScalar * rkVector.y;
|
---|
150 |
|
---|
151 | return kProd;
|
---|
152 | }
|
---|
153 |
|
---|
154 | // arithmetic updates
|
---|
155 | inline Vector2& operator += ( const Vector2& rkVector )
|
---|
156 | {
|
---|
157 | x += rkVector.x;
|
---|
158 | y += rkVector.y;
|
---|
159 |
|
---|
160 | return *this;
|
---|
161 | }
|
---|
162 |
|
---|
163 | inline Vector2& operator -= ( const Vector2& rkVector )
|
---|
164 | {
|
---|
165 | x -= rkVector.x;
|
---|
166 | y -= rkVector.y;
|
---|
167 |
|
---|
168 | return *this;
|
---|
169 | }
|
---|
170 |
|
---|
171 | inline Vector2& operator *= ( Real fScalar )
|
---|
172 | {
|
---|
173 | x *= fScalar;
|
---|
174 | y *= fScalar;
|
---|
175 |
|
---|
176 | return *this;
|
---|
177 | }
|
---|
178 |
|
---|
179 | inline Vector2& operator /= ( Real fScalar )
|
---|
180 | {
|
---|
181 | assert( fScalar != 0.0f );
|
---|
182 |
|
---|
183 | Real fInv = 1.0f / fScalar;
|
---|
184 |
|
---|
185 | x *= fInv;
|
---|
186 | y *= fInv;
|
---|
187 |
|
---|
188 | return *this;
|
---|
189 | }
|
---|
190 |
|
---|
191 | /** Returns the length (magnitude) of the vector.
|
---|
192 | @warning
|
---|
193 | This operation requires a square root and is expensive in
|
---|
194 | terms of CPU operations. If you don't need to know the exact
|
---|
195 | length (e.g. for just comparing lengths) use squaredLength()
|
---|
196 | instead.
|
---|
197 | */
|
---|
198 | inline Real length () const
|
---|
199 | {
|
---|
200 | return sqrt( x * x + y * y );
|
---|
201 | }
|
---|
202 |
|
---|
203 | /** Returns the square of the length(magnitude) of the vector.
|
---|
204 | @remarks
|
---|
205 | This method is for efficiency - calculating the actual
|
---|
206 | length of a vector requires a square root, which is expensive
|
---|
207 | in terms of the operations required. This method returns the
|
---|
208 | square of the length of the vector, i.e. the same as the
|
---|
209 | length but before the square root is taken. Use this if you
|
---|
210 | want to find the longest / shortest vector without incurring
|
---|
211 | the square root.
|
---|
212 | */
|
---|
213 | inline Real squaredLength () const
|
---|
214 | {
|
---|
215 | return x * x + y * y;
|
---|
216 | }
|
---|
217 |
|
---|
218 | /** Calculates the dot (scalar) product of this vector with another.
|
---|
219 | @remarks
|
---|
220 | The dot product can be used to calculate the angle between 2
|
---|
221 | vectors. If both are unit vectors, the dot product is the
|
---|
222 | cosine of the angle; otherwise the dot product must be
|
---|
223 | divided by the product of the lengths of both vectors to get
|
---|
224 | the cosine of the angle. This result can further be used to
|
---|
225 | calculate the distance of a point from a plane.
|
---|
226 | @param
|
---|
227 | vec Vector with which to calculate the dot product (together
|
---|
228 | with this one).
|
---|
229 | @returns
|
---|
230 | A float representing the dot product value.
|
---|
231 | */
|
---|
232 | inline Real dotProduct(const Vector2& vec) const
|
---|
233 | {
|
---|
234 | return x * vec.x + y * vec.y;
|
---|
235 | }
|
---|
236 |
|
---|
237 | /** Normalises the vector.
|
---|
238 | @remarks
|
---|
239 | This method normalises the vector such that it's
|
---|
240 | length / magnitude is 1. The result is called a unit vector.
|
---|
241 | @note
|
---|
242 | This function will not crash for zero-sized vectors, but there
|
---|
243 | will be no changes made to their components.
|
---|
244 | @returns The previous length of the vector.
|
---|
245 | */
|
---|
246 | inline Real normalise()
|
---|
247 | {
|
---|
248 | Real fLength = sqrt( x * x + y * y);
|
---|
249 |
|
---|
250 | // Will also work for zero-sized vectors, but will change nothing
|
---|
251 | if ( fLength > 1e-08f )
|
---|
252 | {
|
---|
253 | Real fInvLength = 1.0f / fLength;
|
---|
254 | x *= fInvLength;
|
---|
255 | y *= fInvLength;
|
---|
256 | }
|
---|
257 |
|
---|
258 | return fLength;
|
---|
259 | }
|
---|
260 |
|
---|
261 |
|
---|
262 |
|
---|
263 | /** Returns a vector at a point half way between this and the passed
|
---|
264 | in vector.
|
---|
265 | */
|
---|
266 | inline Vector2 midPoint( const Vector2& vec ) const
|
---|
267 | {
|
---|
268 | return Vector2(
|
---|
269 | ( x + vec.x ) * 0.5f,
|
---|
270 | ( y + vec.y ) * 0.5f );
|
---|
271 | }
|
---|
272 |
|
---|
273 | /** Returns true if the vector's scalar components are all greater
|
---|
274 | that the ones of the vector it is compared against.
|
---|
275 | */
|
---|
276 | inline bool operator < ( const Vector2& rhs ) const
|
---|
277 | {
|
---|
278 | if( x < rhs.x && y < rhs.y )
|
---|
279 | return true;
|
---|
280 | return false;
|
---|
281 | }
|
---|
282 |
|
---|
283 | /** Returns true if the vector's scalar components are all smaller
|
---|
284 | that the ones of the vector it is compared against.
|
---|
285 | */
|
---|
286 | inline bool operator > ( const Vector2& rhs ) const
|
---|
287 | {
|
---|
288 | if( x > rhs.x && y > rhs.y )
|
---|
289 | return true;
|
---|
290 | return false;
|
---|
291 | }
|
---|
292 |
|
---|
293 | /** Sets this vector's components to the minimum of its own and the
|
---|
294 | ones of the passed in vector.
|
---|
295 | @remarks
|
---|
296 | 'Minimum' in this case means the combination of the lowest
|
---|
297 | value of x, y and z from both vectors. Lowest is taken just
|
---|
298 | numerically, not magnitude, so -1 < 0.
|
---|
299 | */
|
---|
300 | inline void makeFloor( const Vector2& cmp )
|
---|
301 | {
|
---|
302 | if( cmp.x < x ) x = cmp.x;
|
---|
303 | if( cmp.y < y ) y = cmp.y;
|
---|
304 | }
|
---|
305 |
|
---|
306 | /** Sets this vector's components to the maximum of its own and the
|
---|
307 | ones of the passed in vector.
|
---|
308 | @remarks
|
---|
309 | 'Maximum' in this case means the combination of the highest
|
---|
310 | value of x, y and z from both vectors. Highest is taken just
|
---|
311 | numerically, not magnitude, so 1 > -3.
|
---|
312 | */
|
---|
313 | inline void makeCeil( const Vector2& cmp )
|
---|
314 | {
|
---|
315 | if( cmp.x > x ) x = cmp.x;
|
---|
316 | if( cmp.y > y ) y = cmp.y;
|
---|
317 | }
|
---|
318 |
|
---|
319 | /** Generates a vector perpendicular to this vector (eg an 'up' vector).
|
---|
320 | @remarks
|
---|
321 | This method will return a vector which is perpendicular to this
|
---|
322 | vector. There are an infinite number of possibilities but this
|
---|
323 | method will guarantee to generate one of them. If you need more
|
---|
324 | control you should use the Quaternion class.
|
---|
325 | */
|
---|
326 | inline Vector2 perpendicular(void) const
|
---|
327 | {
|
---|
328 | return Vector2 (-y, x);
|
---|
329 | }
|
---|
330 | /** Calculates the cross-product of 2 vectors, i.e. the vector that
|
---|
331 | lies perpendicular to them both.
|
---|
332 | @remarks
|
---|
333 | The cross-product is normally used to calculate the normal
|
---|
334 | vector of a plane, by calculating the cross-product of 2
|
---|
335 | non-equivalent vectors which lie on the plane (e.g. 2 edges
|
---|
336 | of a triangle).
|
---|
337 | @param
|
---|
338 | vec Vector which, together with this one, will be used to
|
---|
339 | calculate the cross-product.
|
---|
340 | @returns
|
---|
341 | A vector which is the result of the cross-product. This
|
---|
342 | vector will <b>NOT</b> be normalised, to maximise efficiency
|
---|
343 | - call Vector3::normalise on the result if you wish this to
|
---|
344 | be done. As for which side the resultant vector will be on, the
|
---|
345 | returned vector will be on the side from which the arc from 'this'
|
---|
346 | to rkVector is anticlockwise, e.g. UNIT_Y.crossProduct(UNIT_Z)
|
---|
347 | = UNIT_X, whilst UNIT_Z.crossProduct(UNIT_Y) = -UNIT_X.
|
---|
348 | @par
|
---|
349 | For a clearer explanation, look a the left and the bottom edges
|
---|
350 | of your monitor's screen. Assume that the first vector is the
|
---|
351 | left edge and the second vector is the bottom edge, both of
|
---|
352 | them starting from the lower-left corner of the screen. The
|
---|
353 | resulting vector is going to be perpendicular to both of them
|
---|
354 | and will go <i>inside</i> the screen, towards the cathode tube
|
---|
355 | (assuming you're using a CRT monitor, of course).
|
---|
356 | */
|
---|
357 | inline Vector2 crossProduct( const Vector2& rkVector ) const
|
---|
358 | {
|
---|
359 | return Vector2(-rkVector.y, rkVector.x);
|
---|
360 | }
|
---|
361 |
|
---|
362 | /** Returns true if this vector is zero length. */
|
---|
363 | inline bool isZeroLength(void) const
|
---|
364 | {
|
---|
365 | Real sqlen = (x * x) + (y * y);
|
---|
366 | return (sqlen < (1e-06 * 1e-06));
|
---|
367 |
|
---|
368 | }
|
---|
369 |
|
---|
370 | /** As normalise, except that this vector is unaffected and the
|
---|
371 | normalised vector is returned as a copy. */
|
---|
372 | inline Vector2 normalisedCopy(void) const
|
---|
373 | {
|
---|
374 | Vector2 ret = *this;
|
---|
375 | ret.normalise();
|
---|
376 | return ret;
|
---|
377 | }
|
---|
378 |
|
---|
379 | /** Calculates a reflection vector to the plane with the given normal .
|
---|
380 | @remarks NB assumes 'this' is pointing AWAY FROM the plane, invert if it is not.
|
---|
381 | */
|
---|
382 | inline Vector2 reflect(const Vector2& normal)
|
---|
383 | {
|
---|
384 | return Vector2( *this - ( 2 * this->dotProduct(normal) * normal ) );
|
---|
385 | }
|
---|
386 |
|
---|
387 | // special points
|
---|
388 | static const Vector2 ZERO;
|
---|
389 | static const Vector2 UNIT_X;
|
---|
390 | static const Vector2 UNIT_Y;
|
---|
391 | static const Vector2 NEGATIVE_UNIT_X;
|
---|
392 | static const Vector2 NEGATIVE_UNIT_Y;
|
---|
393 | static const Vector2 UNIT_SCALE;
|
---|
394 |
|
---|
395 | /** Function for writing to a stream.
|
---|
396 | */
|
---|
397 | inline friend std::ostream& operator <<
|
---|
398 | ( std::ostream& o, const Vector2& v )
|
---|
399 | {
|
---|
400 | o << "Vector2(" << v.x << ", " << v.y << ")";
|
---|
401 | return o;
|
---|
402 | }
|
---|
403 |
|
---|
404 |
|
---|
405 | };
|
---|
406 |
|
---|
407 | }
|
---|
408 | #endif /* DOXYGEN_SHOULD_SKIP_THIS */
|
---|
409 | #endif
|
---|