1 | #include "GeoTreeSimplifier.h"
|
---|
2 | #include "Leaf.h"
|
---|
3 |
|
---|
4 | #include <iostream>
|
---|
5 | #include <fstream>
|
---|
6 |
|
---|
7 | using namespace Geometry;
|
---|
8 | using namespace std;
|
---|
9 |
|
---|
10 | const int VISIT_PARENTS_DEEP=1;
|
---|
11 |
|
---|
12 | class LeafOctree
|
---|
13 | {
|
---|
14 | public:
|
---|
15 | float left, right, bottom, top, front, back;
|
---|
16 | std::vector<int> leaves; ///< leaves that are too much big to fit in any of the child leaves of this octree leaf
|
---|
17 | LeafOctree* parent;
|
---|
18 | LeafOctree* children[8];
|
---|
19 | bool PointInsideOctree(float x, float y, float z) const {
|
---|
20 | return (x>=left && x<=right && y>=bottom && y<=top && z>=front && z<=back);
|
---|
21 | }
|
---|
22 | bool HasChildren(void) const { return (children[0] && children[1] && children[2] && children[3] && children[4] && children[5] && children[6] && children[7]); }
|
---|
23 | };
|
---|
24 |
|
---|
25 | TreeSimplifier::TreeSimplifier(const Mesh *m, TIPOFUNC upb)
|
---|
26 | {
|
---|
27 | objmesh = m;
|
---|
28 | mtreesimpsequence = new Geometry::TreeSimplificationSequence();
|
---|
29 | activeLeaves = 0;
|
---|
30 | countLeaves = 0;
|
---|
31 |
|
---|
32 | // Output mesh
|
---|
33 | mesh = new Geometry::Mesh();
|
---|
34 | *mesh = *m;
|
---|
35 |
|
---|
36 | // Sets the progress bar.
|
---|
37 | mUPB = upb;
|
---|
38 | }
|
---|
39 |
|
---|
40 | TreeSimplifier::~TreeSimplifier()
|
---|
41 | {
|
---|
42 | delete mtreesimpsequence;
|
---|
43 | }
|
---|
44 |
|
---|
45 | // Returns the simplified mesh.
|
---|
46 | Geometry::Mesh *TreeSimplifier::GetMesh ()
|
---|
47 | {
|
---|
48 | return mesh;
|
---|
49 | }
|
---|
50 |
|
---|
51 | Geometry::TreeSimplificationSequence *TreeSimplifier::GetSimplificationSequence()
|
---|
52 | {
|
---|
53 | return mtreesimpsequence;
|
---|
54 | }
|
---|
55 | /*#include <time.h> // necesario para gettickcount
|
---|
56 | #include <map>*/
|
---|
57 | void TreeSimplifier::Simplify(Real lodfactor, Index meshLeaves)
|
---|
58 | {
|
---|
59 | long int totalv;
|
---|
60 | long int newleaf;
|
---|
61 | float diam;
|
---|
62 |
|
---|
63 | totalv = 0;
|
---|
64 |
|
---|
65 | /* // DEBUG
|
---|
66 | FILE *f = fopen("timelog.txt","wt");
|
---|
67 | int initime = time(0);
|
---|
68 | fprintf(f,"initime: %d", initime); fflush(f);
|
---|
69 | // DEBUG*/
|
---|
70 |
|
---|
71 | Mesh2Structure(objmesh, meshLeaves);
|
---|
72 |
|
---|
73 | diam = BoundingSphereDiameter();
|
---|
74 |
|
---|
75 | // precalculate the octree to speed up the simplification process
|
---|
76 | const int octree_deep = 2;
|
---|
77 | octree=CreateLeafOctree(octree_deep);
|
---|
78 |
|
---|
79 | SetCriteriaOptimized(diam);
|
---|
80 |
|
---|
81 | int target_face_count = (int)((lodfactor*0.01f) * activeLeaves);
|
---|
82 | int update_each = (activeLeaves - target_face_count)/68;
|
---|
83 | // int prune_each = octree_deep?(activeLeaves - target_face_count)/octree_deep:0;
|
---|
84 |
|
---|
85 | // FILE *fp = fopen("pruning.txt","wt"); // DEBUG
|
---|
86 |
|
---|
87 | /* std::map<float,int> hojas_x_crit;
|
---|
88 | for (int i=0; i<countLeaves; i++)
|
---|
89 | hojas_x_crit[Leaves[i].criteria] = i;
|
---|
90 |
|
---|
91 | int *leaf_order = new int[countLeaves];
|
---|
92 | std::map<float,int>::iterator kkit = hojas_x_crit.begin();
|
---|
93 | for (int i=0; i<countLeaves; i++, kkit++)
|
---|
94 | leaf_order[i] = kkit->second;*/
|
---|
95 |
|
---|
96 | // int erased_leaves = 0;
|
---|
97 | while (activeLeaves > target_face_count)
|
---|
98 | {
|
---|
99 | static int erased_faces_since_last_update = 0;
|
---|
100 | if (mUPB && erased_faces_since_last_update >= update_each)
|
---|
101 | {
|
---|
102 | erased_faces_since_last_update=0;
|
---|
103 | mUPB(1);
|
---|
104 | }
|
---|
105 |
|
---|
106 | /* static int erased_faces_since_last_prune = 0;
|
---|
107 | if (octree_deep && erased_faces_since_last_prune >= prune_each)
|
---|
108 | {
|
---|
109 | erased_faces_since_last_prune=0;
|
---|
110 | int pruneinitime = time(0);
|
---|
111 | PruneOctree(octree);
|
---|
112 | int prunefintime = time(0);
|
---|
113 | // DEBUG
|
---|
114 | fprintf(fp,"pruning at %d activeLeaves [%d (s)]\n", activeLeaves, prunefintime-pruneinitime); fflush(f);
|
---|
115 | // DEBUG
|
---|
116 | }*/
|
---|
117 |
|
---|
118 | erased_faces_since_last_update++;
|
---|
119 | // erased_faces_since_last_prune++;
|
---|
120 |
|
---|
121 | newleaf = Collapse(diam);
|
---|
122 | SetCriteria2Optimized(diam, newleaf);
|
---|
123 | // erased_leaves++;
|
---|
124 | }
|
---|
125 |
|
---|
126 | // fclose(fp);
|
---|
127 |
|
---|
128 | /* int fintime = time(0);
|
---|
129 | fprintf(f,"fintime: %d",fintime); fflush(f);
|
---|
130 | fprintf(f,"total: %d (s)",fintime-initime); fflush(f);
|
---|
131 | fclose(f);*/
|
---|
132 |
|
---|
133 | BuildOutputMesh(meshLeaves);
|
---|
134 | }
|
---|
135 |
|
---|
136 | void TreeSimplifier::Mesh2Structure(const Mesh *mesh, Index meshLeaves)
|
---|
137 | {
|
---|
138 | long int countv=0;
|
---|
139 | long int pos=0;
|
---|
140 | long int v1, v2, v3;
|
---|
141 | long int triangleID=0;
|
---|
142 |
|
---|
143 | countv += vertex_count = mesh->mSubMesh[meshLeaves].mVertexBuffer->mVertexCount;
|
---|
144 | Vertex = new float[2*countv][3];
|
---|
145 |
|
---|
146 | int update_each = mesh->mSubMesh[meshLeaves].mVertexBuffer->mVertexCount/5;
|
---|
147 |
|
---|
148 | for (unsigned int j=0; j<mesh->mSubMesh[meshLeaves].mVertexBuffer->mVertexCount; j++)
|
---|
149 | {
|
---|
150 | static int ticks_since_last_update = 0;
|
---|
151 | if (mUPB && ticks_since_last_update>=update_each)
|
---|
152 | {
|
---|
153 | ticks_since_last_update=0;
|
---|
154 | mUPB(1);
|
---|
155 | }
|
---|
156 | ticks_since_last_update++;
|
---|
157 |
|
---|
158 | Vertex[pos][0] = mesh->mSubMesh[meshLeaves].mVertexBuffer->mPosition[j].x;
|
---|
159 | Vertex[pos][1] = mesh->mSubMesh[meshLeaves].mVertexBuffer->mPosition[j].y;
|
---|
160 | Vertex[pos][2] = mesh->mSubMesh[meshLeaves].mVertexBuffer->mPosition[j].z;
|
---|
161 | pos++;
|
---|
162 | }
|
---|
163 |
|
---|
164 | // Calculate the number of leaves
|
---|
165 | countLeaves += (long)mesh->mSubMesh[meshLeaves].mIndexCount;
|
---|
166 | countLeaves=countLeaves/6; // Each leaf is composed of 6 indices
|
---|
167 |
|
---|
168 | if (countLeaves > 0)
|
---|
169 | Leaves = new Leaf[2*countLeaves];
|
---|
170 |
|
---|
171 | activeLeaves = countLeaves;
|
---|
172 |
|
---|
173 | // Insert leaves into the structure
|
---|
174 | pos=0;
|
---|
175 |
|
---|
176 | update_each = mesh->mSubMesh[meshLeaves].mIndexCount / 5;
|
---|
177 |
|
---|
178 | // Each leaf is composed of 6 vertices
|
---|
179 | for (unsigned int j=0; j<mesh->mSubMesh[meshLeaves].mIndexCount; j=j+6)
|
---|
180 | {
|
---|
181 | static int ticks_since_last_update = 0;
|
---|
182 | if (mUPB && ticks_since_last_update>=update_each)
|
---|
183 | {
|
---|
184 | ticks_since_last_update=0;
|
---|
185 | mUPB(1);
|
---|
186 | }
|
---|
187 | ticks_since_last_update+=6;
|
---|
188 |
|
---|
189 | // first triangle
|
---|
190 | v1=mesh->mSubMesh[meshLeaves].mIndex[j];
|
---|
191 | v2=mesh->mSubMesh[meshLeaves].mIndex[j+1];
|
---|
192 | v3=mesh->mSubMesh[meshLeaves].mIndex[j+2];
|
---|
193 | Leaves[pos].vertsLeaf[0]=v1;
|
---|
194 | Leaves[pos].vertsLeaf[1]=v2;
|
---|
195 | Leaves[pos].vertsLeaf[2]=v3;
|
---|
196 | Leaves[pos].idTriangle[0]=triangleID;
|
---|
197 | Leaves[pos].exists=true;
|
---|
198 | triangleID++;
|
---|
199 |
|
---|
200 | // second triangle
|
---|
201 | v3=mesh->mSubMesh[meshLeaves].mIndex[j+5];
|
---|
202 | Leaves[pos].vertsLeaf[3]=v3;
|
---|
203 | Leaves[pos].idTriangle[1]=triangleID;
|
---|
204 | triangleID++;
|
---|
205 |
|
---|
206 | CalculateLeafCenter(Leaves[pos]);
|
---|
207 | CalculateLeafNormal(Leaves[pos]);
|
---|
208 | pos++;
|
---|
209 | }
|
---|
210 | }
|
---|
211 |
|
---|
212 | float TreeSimplifier::max(float a, float b) const
|
---|
213 | {
|
---|
214 | if (a>b) return (a);
|
---|
215 | else return(b);
|
---|
216 | }
|
---|
217 |
|
---|
218 | float TreeSimplifier::min(float a, float b) const
|
---|
219 | {
|
---|
220 | if (a>b) return (b);
|
---|
221 | else return(a);
|
---|
222 | }
|
---|
223 |
|
---|
224 | float TreeSimplifier::distan(float x1, float y1, float z1, float x2, float y2, float z2) const
|
---|
225 | {
|
---|
226 | return ((x2-x1)*(x2-x1)) + ((y2-y1)*(y2-y1)) + ((z2-z1)*(z2-z1));
|
---|
227 | }
|
---|
228 |
|
---|
229 | // Calculates the center of a leaf
|
---|
230 | void TreeSimplifier::CalculateLeafCenter(Leaf &auxleaf)
|
---|
231 | {
|
---|
232 | float max_x;
|
---|
233 | float max_y;
|
---|
234 | float max_z;
|
---|
235 | float min_x;
|
---|
236 | float min_y;
|
---|
237 | float min_z;
|
---|
238 |
|
---|
239 | //x1
|
---|
240 | max_x = max(max(Vertex[auxleaf.vertsLeaf[0]][0],Vertex[auxleaf.vertsLeaf[1]][0]),
|
---|
241 | max(Vertex[auxleaf.vertsLeaf[2]][0],Vertex[auxleaf.vertsLeaf[3]][0]));
|
---|
242 |
|
---|
243 | min_x = min(min(Vertex[auxleaf.vertsLeaf[0]][0],Vertex[auxleaf.vertsLeaf[1]][0]),
|
---|
244 | min(Vertex[auxleaf.vertsLeaf[2]][0],Vertex[auxleaf.vertsLeaf[3]][0]));
|
---|
245 |
|
---|
246 | auxleaf.center[0] = (max_x + min_x)/2;
|
---|
247 |
|
---|
248 | //y1
|
---|
249 | max_y = max(max(Vertex[auxleaf.vertsLeaf[0]][1],Vertex[auxleaf.vertsLeaf[1]][1]),
|
---|
250 | max(Vertex[auxleaf.vertsLeaf[2]][1],Vertex[auxleaf.vertsLeaf[3]][1]));
|
---|
251 |
|
---|
252 | min_y = min(min(Vertex[auxleaf.vertsLeaf[0]][1],Vertex[auxleaf.vertsLeaf[1]][1]),
|
---|
253 | min(Vertex[auxleaf.vertsLeaf[2]][1],Vertex[auxleaf.vertsLeaf[3]][1]));
|
---|
254 |
|
---|
255 | auxleaf.center[1] = (max_y + min_y) / 2;
|
---|
256 |
|
---|
257 | //z1
|
---|
258 | max_z = max(max(Vertex[auxleaf.vertsLeaf[0]][2],Vertex[auxleaf.vertsLeaf[1]][2]),
|
---|
259 | max(Vertex[auxleaf.vertsLeaf[2]][2],Vertex[auxleaf.vertsLeaf[3]][2]));
|
---|
260 |
|
---|
261 | min_z = min(min(Vertex[auxleaf.vertsLeaf[0]][2],Vertex[auxleaf.vertsLeaf[1]][2]),
|
---|
262 | min(Vertex[auxleaf.vertsLeaf[2]][2],Vertex[auxleaf.vertsLeaf[3]][2]));
|
---|
263 |
|
---|
264 | auxleaf.center[2] = (max_z + min_z) / 2;
|
---|
265 | }
|
---|
266 |
|
---|
267 |
|
---|
268 | // calculate the normal vector of a leaf
|
---|
269 | void TreeSimplifier::CalculateLeafNormal(Leaf &auxleaf)
|
---|
270 | {
|
---|
271 | float onex, oney, onez;
|
---|
272 | float twox, twoy, twoz;
|
---|
273 | float threex, threey, threez;
|
---|
274 |
|
---|
275 | onex = Vertex[auxleaf.vertsLeaf[0]][0]; oney = Vertex[auxleaf.vertsLeaf[0]][1]; onez = Vertex[auxleaf.vertsLeaf[0]][2];
|
---|
276 | twox = Vertex[auxleaf.vertsLeaf[1]][0]; twoy = Vertex[auxleaf.vertsLeaf[1]][1]; twoz = Vertex[auxleaf.vertsLeaf[1]][2];
|
---|
277 | threex = Vertex[auxleaf.vertsLeaf[2]][0]; threey = Vertex[auxleaf.vertsLeaf[2]][1]; threez = Vertex[auxleaf.vertsLeaf[2]][2];
|
---|
278 |
|
---|
279 | auxleaf.normal[0] = ((twoz-onez)*(threey-oney)) - ((twoy-oney)*(threez-onez));
|
---|
280 | auxleaf.normal[1] = ((twox-onex)*(threez-onez)) - ((threex-onex)*(twoz-onez));
|
---|
281 | auxleaf.normal[2] = ((threex-onex)*(twoy-oney)) - ((twox-onex)*(threey-oney));
|
---|
282 | }
|
---|
283 |
|
---|
284 |
|
---|
285 | // calculate the Hausdorff distance (distance between point clouds)
|
---|
286 | /*float TreeSimplifier::Hausdorff(Hoja &leaf1, Hoja& leaf2) const
|
---|
287 | {
|
---|
288 | float onex, oney, onez;
|
---|
289 | float twox, twoy, twoz;
|
---|
290 | float threex, threey, threez;
|
---|
291 | float fourx, foury, fourz;
|
---|
292 | float x1, y1, z1;
|
---|
293 | float x2, y2, z2;
|
---|
294 | float x3, y3, z3;
|
---|
295 | float x4, y4, z4;
|
---|
296 | float dist1, dist2, dist3, dist4, distmp, dista, distb, dist;
|
---|
297 |
|
---|
298 | onex=Vertex[leaf1.vertsLeaf[0]][0]; oney= Vertex[leaf1.vertsLeaf[0]][1]; onez = Vertex[leaf1.vertsLeaf[0]][2];
|
---|
299 | twox = Vertex[leaf1.vertsLeaf[1]][0]; twoy = Vertex[leaf1.vertsLeaf[1]][1]; twoz = Vertex[leaf1.vertsLeaf[1]][2];
|
---|
300 | threex = Vertex[leaf1.vertsLeaf[2]][0]; threey = Vertex[leaf1.vertsLeaf[2]][1]; threez = Vertex[leaf1.vertsLeaf[2]][2];
|
---|
301 | fourx = Vertex[leaf1.vertsLeaf[3]][0]; foury = Vertex[leaf1.vertsLeaf[3]][1]; fourz = Vertex[leaf1.vertsLeaf[3]][2];
|
---|
302 |
|
---|
303 |
|
---|
304 | x1 = Vertex[leaf2.vertsLeaf[0]][0]; y1 = Vertex[leaf2.vertsLeaf[0]][1]; z1 = Vertex[leaf2.vertsLeaf[0]][2];
|
---|
305 | x2 = Vertex[leaf2.vertsLeaf[1]][0]; y2 = Vertex[leaf2.vertsLeaf[1]][1]; z2 = Vertex[leaf2.vertsLeaf[1]][2];
|
---|
306 | x3 = Vertex[leaf2.vertsLeaf[2]][0]; y3 = Vertex[leaf2.vertsLeaf[2]][1]; z3 = Vertex[leaf2.vertsLeaf[2]][2];
|
---|
307 | x4 = Vertex[leaf2.vertsLeaf[3]][0]; y4 = Vertex[leaf2.vertsLeaf[3]][1]; z4 = Vertex[leaf2.vertsLeaf[3]][2];
|
---|
308 |
|
---|
309 | dist1 = distan ( onex, oney,onez,x1,y1,z1);
|
---|
310 |
|
---|
311 | distmp = distan ( onex, oney,onez,x2,y2,z2);
|
---|
312 | if ( distmp < dist1) dist1 = distmp;
|
---|
313 |
|
---|
314 | distmp = distan ( onex, oney,onez,x3,y3,z3);
|
---|
315 | if ( distmp < dist1) dist1 = distmp;
|
---|
316 |
|
---|
317 | distmp = distan ( onex, oney,onez,x4,y4,z4);
|
---|
318 | if ( distmp < dist1) dist1 = distmp;
|
---|
319 |
|
---|
320 | dist2 = distan ( twox, twoy,twoz,x1,y1,z1);
|
---|
321 |
|
---|
322 | distmp = distan ( twox, twoy,twoz,x2,y2,z2);
|
---|
323 | if ( distmp < dist2) dist2 = distmp;
|
---|
324 |
|
---|
325 | distmp = distan ( twox, twoy,twoz,x3,y3,z3);
|
---|
326 | if ( distmp < dist2) dist2 = distmp;
|
---|
327 |
|
---|
328 | distmp = distan ( twox, twoy,twoz,x4,y4,z4);
|
---|
329 | if ( distmp < dist2) dist2 = distmp;
|
---|
330 |
|
---|
331 |
|
---|
332 | dist3 = distan ( threex, threey,threez,x1,y1,z1);
|
---|
333 |
|
---|
334 | distmp = distan ( threex, threey,threez,x2,y2,z2);
|
---|
335 | if ( distmp < dist3) dist3 = distmp;
|
---|
336 |
|
---|
337 | distmp = distan ( threex, threey,threez,x3,y3,z3);
|
---|
338 | if ( distmp < dist3) dist3 = distmp;
|
---|
339 |
|
---|
340 | distmp = distan ( threex, threey,threez,x4,y4,z4);
|
---|
341 | if ( distmp < dist3) dist3 = distmp;
|
---|
342 |
|
---|
343 |
|
---|
344 |
|
---|
345 | dist4 = distan ( fourx, foury,fourz,x1,y1,z1);
|
---|
346 |
|
---|
347 | distmp = distan ( fourx, foury,fourz,x2,y2,z2);
|
---|
348 | if ( distmp < dist4) dist4 = distmp;
|
---|
349 |
|
---|
350 | distmp = distan ( fourx, foury,fourz,x3,y3,z3);
|
---|
351 | if ( distmp < dist4) dist4 = distmp;
|
---|
352 |
|
---|
353 | distmp = distan ( fourx, foury,fourz,x4,y4,z4);
|
---|
354 | if ( distmp < dist4) dist4 = distmp;
|
---|
355 |
|
---|
356 |
|
---|
357 | dista = max(dist1, max(dist2, max(dist3, dist4)));
|
---|
358 |
|
---|
359 | dist1 = distan ( x1,y1,z1, onex, oney, onez);
|
---|
360 |
|
---|
361 | distmp = distan ( x1,y1,z1, twox, twoy, twoz);
|
---|
362 | if ( distmp < dist1) dist1 = distmp;
|
---|
363 |
|
---|
364 | distmp = distan ( x1,y1,z1, threex, threey, threez);
|
---|
365 | if ( distmp < dist1) dist1 = distmp;
|
---|
366 |
|
---|
367 | distmp = distan ( x1,y1,z1, fourx, foury, fourz);
|
---|
368 | if ( distmp < dist1) dist1 = distmp;
|
---|
369 |
|
---|
370 | dist2 = distan ( x2,y2,z2, onex, oney, onez);
|
---|
371 |
|
---|
372 | distmp = distan ( x2,y2,z2, twox, twoy, twoz);
|
---|
373 | if ( distmp < dist2) dist2 = distmp;
|
---|
374 |
|
---|
375 | distmp = distan ( x2,y2,z2, threex, threey, threez);
|
---|
376 | if ( distmp < dist2) dist2 = distmp;
|
---|
377 |
|
---|
378 | distmp = distan ( x2,y2,z2, fourx, foury, fourz);
|
---|
379 | if ( distmp < dist2) dist2 = distmp;
|
---|
380 |
|
---|
381 |
|
---|
382 | //3
|
---|
383 | dist3 = distan ( x3,y3,z3, onex, oney, onez);
|
---|
384 |
|
---|
385 | distmp = distan ( x3,y3,z3, twox, twoy, twoz);
|
---|
386 | if ( distmp < dist3) dist3 = distmp;
|
---|
387 |
|
---|
388 | distmp = distan ( x3,y3,z3, threex, threey, threez);
|
---|
389 | if ( distmp < dist3) dist3 = distmp;
|
---|
390 |
|
---|
391 | distmp = distan ( x3,y3,z3, fourx, foury, fourz);
|
---|
392 | if ( distmp < dist3) dist3 = distmp;
|
---|
393 |
|
---|
394 | //4
|
---|
395 | dist4 = distan ( x4,y4,z4, onex, oney, onez);
|
---|
396 |
|
---|
397 | distmp = distan ( x4,y4,z4, twox, twoy, twoz);
|
---|
398 | if ( distmp < dist4) dist4 = distmp;
|
---|
399 |
|
---|
400 | distmp = distan ( x4,y4,z4, threex, threey, threez);
|
---|
401 | if ( distmp < dist4) dist4 = distmp;
|
---|
402 |
|
---|
403 | distmp = distan ( x4,y4,z4, fourx, foury, fourz);
|
---|
404 | if ( distmp < dist4) dist4 = distmp;
|
---|
405 |
|
---|
406 | //
|
---|
407 | distb = max(dist1, max(dist2, max(dist3, dist4)));
|
---|
408 |
|
---|
409 | dist = max ( dista, distb);
|
---|
410 | return ( dist);
|
---|
411 |
|
---|
412 | }
|
---|
413 | */
|
---|
414 |
|
---|
415 | // Calculate the Hausdorff distance (distance between point clouds) (Optimized)
|
---|
416 | float TreeSimplifier::HausdorffOptimized(const Leaf &leaf1, const Leaf& leaf2) const
|
---|
417 | {
|
---|
418 | float onex, oney, onez;
|
---|
419 | float twox, twoy, twoz;
|
---|
420 | float threex, threey, threez;
|
---|
421 | float fourx, foury, fourz;
|
---|
422 | float x1, y1, z1;
|
---|
423 | float x2, y2, z2;
|
---|
424 | float x3, y3, z3;
|
---|
425 | float x4, y4, z4;
|
---|
426 | float dist1, dist2, dist3, dist4, distmp, dista, distb, dist;
|
---|
427 |
|
---|
428 | onex = Vertex[leaf1.vertsLeaf[0]][0]; oney = Vertex[leaf1.vertsLeaf[0]][1]; onez = Vertex[leaf1.vertsLeaf[0]][2];
|
---|
429 | twox = Vertex[leaf1.vertsLeaf[1]][0]; twoy = Vertex[leaf1.vertsLeaf[1]][1]; twoz = Vertex[leaf1.vertsLeaf[1]][2];
|
---|
430 | threex = Vertex[leaf1.vertsLeaf[2]][0]; threey = Vertex[leaf1.vertsLeaf[2]][1]; threez = Vertex[leaf1.vertsLeaf[2]][2];
|
---|
431 | fourx = Vertex[leaf1.vertsLeaf[3]][0]; foury = Vertex[leaf1.vertsLeaf[3]][1]; fourz = Vertex[leaf1.vertsLeaf[3]][2];
|
---|
432 |
|
---|
433 | x1 = Vertex[leaf2.vertsLeaf[0]][0]; y1 = Vertex[leaf2.vertsLeaf[0]][1]; z1 = Vertex[leaf2.vertsLeaf[0]][2];
|
---|
434 | x2 = Vertex[leaf2.vertsLeaf[1]][0]; y2 = Vertex[leaf2.vertsLeaf[1]][1]; z2 = Vertex[leaf2.vertsLeaf[1]][2];
|
---|
435 | x3 = Vertex[leaf2.vertsLeaf[2]][0]; y3 = Vertex[leaf2.vertsLeaf[2]][1]; z3 = Vertex[leaf2.vertsLeaf[2]][2];
|
---|
436 | x4 = Vertex[leaf2.vertsLeaf[3]][0]; y4 = Vertex[leaf2.vertsLeaf[3]][1]; z4 = Vertex[leaf2.vertsLeaf[3]][2];
|
---|
437 |
|
---|
438 | // variables used to cache distances
|
---|
439 | float one1,one2,one3,one4, two1,two2,two3,two4, three1,three2,three3,three4, four1,four2,four3,four4;
|
---|
440 |
|
---|
441 | // Store the minimal distances from each of the 4 vertices to the other 4 vertices
|
---|
442 | one1 = dist1 = distan ( onex, oney,onez,x1,y1,z1);
|
---|
443 |
|
---|
444 | one2 = distmp = distan ( onex, oney,onez,x2,y2,z2);
|
---|
445 | if ( distmp < dist1) dist1 = distmp;
|
---|
446 |
|
---|
447 | one3 = distmp = distan ( onex, oney,onez,x3,y3,z3);
|
---|
448 | if ( distmp < dist1) dist1 = distmp;
|
---|
449 |
|
---|
450 | one4 = distmp = distan ( onex, oney,onez,x4,y4,z4);
|
---|
451 | if ( distmp < dist1) dist1 = distmp;
|
---|
452 |
|
---|
453 |
|
---|
454 | two1 = dist2 = distan ( twox, twoy,twoz,x1,y1,z1);
|
---|
455 |
|
---|
456 | two2 = distmp = distan ( twox, twoy,twoz,x2,y2,z2);
|
---|
457 | if ( distmp < dist2) dist2 = distmp;
|
---|
458 |
|
---|
459 | two3 = distmp = distan ( twox, twoy,twoz,x3,y3,z3);
|
---|
460 | if ( distmp < dist2) dist2 = distmp;
|
---|
461 |
|
---|
462 | two4 = distmp = distan ( twox, twoy,twoz,x4,y4,z4);
|
---|
463 | if ( distmp < dist2) dist2 = distmp;
|
---|
464 |
|
---|
465 |
|
---|
466 | three1 = dist3 = distan ( threex, threey,threez,x1,y1,z1);
|
---|
467 |
|
---|
468 | three2 = distmp = distan ( threex, threey,threez,x2,y2,z2);
|
---|
469 | if ( distmp < dist3) dist3 = distmp;
|
---|
470 |
|
---|
471 | three3 = distmp = distan ( threex, threey,threez,x3,y3,z3);
|
---|
472 | if ( distmp < dist3) dist3 = distmp;
|
---|
473 |
|
---|
474 | three4 = distmp = distan ( threex, threey,threez,x4,y4,z4);
|
---|
475 | if ( distmp < dist3) dist3 = distmp;
|
---|
476 |
|
---|
477 |
|
---|
478 | four1 = dist4 = distan ( fourx, foury,fourz,x1,y1,z1);
|
---|
479 |
|
---|
480 | four2 = distmp = distan ( fourx, foury,fourz,x2,y2,z2);
|
---|
481 | if ( distmp < dist4) dist4 = distmp;
|
---|
482 |
|
---|
483 | four3 = distmp = distan ( fourx, foury,fourz,x3,y3,z3);
|
---|
484 | if ( distmp < dist4) dist4 = distmp;
|
---|
485 |
|
---|
486 | four4 = distmp = distan ( fourx, foury,fourz,x4,y4,z4);
|
---|
487 | if ( distmp < dist4) dist4 = distmp;
|
---|
488 |
|
---|
489 | // pick up the maximum value from those 4
|
---|
490 |
|
---|
491 | dista = max(dist1, max(dist2, max(dist3, dist4)));
|
---|
492 |
|
---|
493 | // now use the cached distances to perform the reverse distances
|
---|
494 |
|
---|
495 | dist1 = one1; //distan ( x1,y1,z1, onex, oney, onez);
|
---|
496 |
|
---|
497 | distmp = two1; //distan ( x1,y1,z1, twox, twoy, twoz);
|
---|
498 | if ( distmp < dist1) dist1 = distmp;
|
---|
499 |
|
---|
500 | distmp = three1; //distan ( x1,y1,z1, threex, threey, threez);
|
---|
501 | if ( distmp < dist1) dist1 = distmp;
|
---|
502 |
|
---|
503 | distmp = four1; //distan ( x1,y1,z1, fourx, foury, fourz);
|
---|
504 | if ( distmp < dist1) dist1 = distmp;
|
---|
505 |
|
---|
506 | //2
|
---|
507 | dist2 = one2; //distan ( x2,y2,z2, onex, oney, onez);
|
---|
508 |
|
---|
509 | distmp = two2; //distan ( x2,y2,z2, twox, twoy, twoz);
|
---|
510 | if ( distmp < dist2) dist2 = distmp;
|
---|
511 |
|
---|
512 | distmp = three2; //distan ( x2,y2,z2, threex, threey, threez);
|
---|
513 | if ( distmp < dist2) dist2 = distmp;
|
---|
514 |
|
---|
515 | distmp = four2; //distan ( x2,y2,z2, fourx, foury, fourz);
|
---|
516 | if ( distmp < dist2) dist2 = distmp;
|
---|
517 |
|
---|
518 |
|
---|
519 | //3
|
---|
520 | dist3 = one3; //distan ( x3,y3,z3, onex, oney, onez);
|
---|
521 |
|
---|
522 | distmp = two3; //distan ( x3,y3,z3, twox, twoy, twoz);
|
---|
523 | if ( distmp < dist3) dist3 = distmp;
|
---|
524 |
|
---|
525 | distmp = three3; //distan ( x3,y3,z3, threex, threey, threez);
|
---|
526 | if ( distmp < dist3) dist3 = distmp;
|
---|
527 |
|
---|
528 | distmp = four3; //distan ( x3,y3,z3, fourx, foury, fourz);
|
---|
529 | if ( distmp < dist3) dist3 = distmp;
|
---|
530 |
|
---|
531 | //4
|
---|
532 | dist4 = one4; //distan ( x4,y4,z4, onex, oney, onez);
|
---|
533 |
|
---|
534 | distmp = two4; //distan ( x4,y4,z4, twox, twoy, twoz);
|
---|
535 | if ( distmp < dist4) dist4 = distmp;
|
---|
536 |
|
---|
537 | distmp = three4; //distan ( x4,y4,z4, threex, threey, threez);
|
---|
538 | if ( distmp < dist4) dist4 = distmp;
|
---|
539 |
|
---|
540 | distmp = four4; //distan ( x4,y4,z4, fourx, foury, fourz);
|
---|
541 | if ( distmp < dist4) dist4 = distmp;
|
---|
542 |
|
---|
543 | //
|
---|
544 | distb = max(dist1, max(dist2, max(dist3, dist4)));
|
---|
545 |
|
---|
546 | dist = max ( dista, distb);
|
---|
547 | return ( dist);
|
---|
548 |
|
---|
549 | }
|
---|
550 |
|
---|
551 |
|
---|
552 | // Calculate the distance between leaves
|
---|
553 | /*
|
---|
554 | void TreeSimplifier::DistanciaEntreHojas(void)
|
---|
555 | {
|
---|
556 | float dist, distmp ;
|
---|
557 | int j;
|
---|
558 |
|
---|
559 | for ( int i=0;i<countLeaves;i++)
|
---|
560 | {
|
---|
561 | if ( Leaves[i].existe == true) // si la hoja aun existe
|
---|
562 | {
|
---|
563 | // inicializo para poder comparar
|
---|
564 | if ( i == (countLeaves-1)) j = 0;
|
---|
565 | else j = i+1;
|
---|
566 | while (Leaves[j].existe == false) j++;
|
---|
567 | //dist = Leaves[i].Distancia(Leaves[j]);
|
---|
568 | dist = HausdorffOptimizado( Leaves[i], Leaves[j]);
|
---|
569 |
|
---|
570 | Leaves[i].hoja_cerca = j;
|
---|
571 | // empiezo los calculos
|
---|
572 | for ( j =0; j<(countLeaves-1);j++)
|
---|
573 | {
|
---|
574 | if ( j == i)
|
---|
575 | break;
|
---|
576 | if ( Leaves[j].existe == true) // si la hoja aun existe
|
---|
577 | {
|
---|
578 | distmp = HausdorffOptimizado(Leaves[i], Leaves[j]);
|
---|
579 | if ( distmp < dist )
|
---|
580 | {
|
---|
581 | dist = distmp;
|
---|
582 | Leaves[i].hoja_cerca = j;
|
---|
583 | }
|
---|
584 | }
|
---|
585 |
|
---|
586 | }
|
---|
587 | Leaves[i].dist = dist;
|
---|
588 | }
|
---|
589 | }
|
---|
590 |
|
---|
591 | }*/
|
---|
592 |
|
---|
593 | // Returns the leaf which distance is the lowest
|
---|
594 | long int TreeSimplifier::MinDistance(void)
|
---|
595 | {
|
---|
596 | float mindist=0.0f;
|
---|
597 | long int which=-1;
|
---|
598 | int i=0;
|
---|
599 |
|
---|
600 | /* //init
|
---|
601 | while (Leaves[i].existe != true)
|
---|
602 | i++;
|
---|
603 |
|
---|
604 | mindist = Leaves[i].dist;
|
---|
605 | which = i;
|
---|
606 | */
|
---|
607 | // search the minimum
|
---|
608 | for (i = 0; i < countLeaves; i++)
|
---|
609 | {
|
---|
610 | if (Leaves[i].exists)
|
---|
611 | {
|
---|
612 | if (mindist > Leaves[i].dist || which==-1)
|
---|
613 | {
|
---|
614 | mindist = Leaves[i].dist;
|
---|
615 | which = i;
|
---|
616 | }
|
---|
617 | }
|
---|
618 |
|
---|
619 | }
|
---|
620 | return which;
|
---|
621 | }
|
---|
622 |
|
---|
623 | // Calculate the coplanarity between leaves
|
---|
624 | void TreeSimplifier::CoplanarBetweenLeaves(void)
|
---|
625 | {
|
---|
626 | float cop;
|
---|
627 | float coptmp;
|
---|
628 | int i;
|
---|
629 | int j;
|
---|
630 |
|
---|
631 | for (i=0;i<countLeaves;i++)
|
---|
632 | {
|
---|
633 | if (Leaves[i].exists)
|
---|
634 | {
|
---|
635 | if (i == countLeaves-1)
|
---|
636 | j = 0;
|
---|
637 | else
|
---|
638 | j = i + 1;
|
---|
639 |
|
---|
640 | while (Leaves[j].exists == false)
|
---|
641 | j++;
|
---|
642 |
|
---|
643 | cop = Leaves[i].Coplanarity(Leaves[j]);
|
---|
644 | Leaves[i].leafCop = j;
|
---|
645 |
|
---|
646 | for (j=0; j<countLeaves-1; j++)
|
---|
647 | {
|
---|
648 | if (( j != i) && (Leaves[j].exists))
|
---|
649 | {
|
---|
650 | coptmp = Leaves[i].Coplanarity(Leaves[j]);
|
---|
651 |
|
---|
652 | // Take the most coplanar: close to 1
|
---|
653 | if (coptmp > cop)
|
---|
654 | {
|
---|
655 | cop = coptmp;
|
---|
656 | Leaves[i].leafCop = j;
|
---|
657 | }
|
---|
658 | }
|
---|
659 | }
|
---|
660 | Leaves[i].coplanar = 1 - cop;
|
---|
661 | }
|
---|
662 | }
|
---|
663 | }
|
---|
664 |
|
---|
665 | void TreeSimplifier::TwoGreater(float *maj, int *indices)
|
---|
666 | {
|
---|
667 | float m1;
|
---|
668 | int i;
|
---|
669 |
|
---|
670 | if (maj[0] < maj[1])
|
---|
671 | {
|
---|
672 | m1 = maj[0];
|
---|
673 | maj[0] = maj[1];
|
---|
674 | maj[1] = m1;
|
---|
675 |
|
---|
676 | i = indices[0];
|
---|
677 | indices[0] = indices[1];
|
---|
678 | indices[1] = i;
|
---|
679 | }
|
---|
680 |
|
---|
681 | if (maj[2] < maj[3])
|
---|
682 | {
|
---|
683 | m1 = maj[2];
|
---|
684 | maj[2] = maj[3];
|
---|
685 | maj[3] = m1;
|
---|
686 | i = indices[2];
|
---|
687 | indices[2] = indices[3];
|
---|
688 | indices[3] = i;
|
---|
689 | }
|
---|
690 |
|
---|
691 | if (maj[0] < maj[2])
|
---|
692 | {
|
---|
693 | m1 = maj[0];
|
---|
694 | maj[0] = maj[2];
|
---|
695 | maj[2] = m1;
|
---|
696 | i = indices[0];
|
---|
697 | indices[0] = indices[2];
|
---|
698 | indices[2] = i;
|
---|
699 | }
|
---|
700 |
|
---|
701 | if (maj[2] < maj[3])
|
---|
702 | {
|
---|
703 | m1 = maj[2];
|
---|
704 | maj[2] = maj[3];
|
---|
705 | maj [3] = m1;
|
---|
706 |
|
---|
707 | i = indices[2];
|
---|
708 | indices[2] = indices[3];
|
---|
709 | indices[3] = i;
|
---|
710 | }
|
---|
711 |
|
---|
712 | if (maj [1] < maj [2])
|
---|
713 | {
|
---|
714 | m1 = maj[1];
|
---|
715 | maj[1] = maj[2];
|
---|
716 | maj [2] = m1;
|
---|
717 |
|
---|
718 | i = indices[1];
|
---|
719 | indices[1] = indices[2];
|
---|
720 | indices[2] = i;
|
---|
721 | }
|
---|
722 | }
|
---|
723 |
|
---|
724 | float TreeSimplifier::BoundingSphereDiameter(void) const
|
---|
725 | {
|
---|
726 | float xmax, xmin, ymax, ymin, zmax, zmin;
|
---|
727 | float diameter, cx, cy, cz;
|
---|
728 | int j;
|
---|
729 |
|
---|
730 | // initialize all vertices to the first
|
---|
731 | xmax = Vertex[Leaves[0].vertsLeaf[0]][0];
|
---|
732 | xmin = xmax;
|
---|
733 |
|
---|
734 | ymax = Vertex[Leaves[0].vertsLeaf[0]][1];
|
---|
735 | ymin = ymax;
|
---|
736 |
|
---|
737 | zmax = Vertex[Leaves[0].vertsLeaf[0]][2];
|
---|
738 | zmin = zmax;
|
---|
739 |
|
---|
740 | // search for max and mins
|
---|
741 |
|
---|
742 | int update_each = countLeaves / 5;
|
---|
743 | for (int i = 1; i < countLeaves; i++)
|
---|
744 | {
|
---|
745 | static int ticks_since_last_update = 0;
|
---|
746 | if (mUPB && ticks_since_last_update>=update_each)
|
---|
747 | {
|
---|
748 | ticks_since_last_update=0;
|
---|
749 | mUPB(1);
|
---|
750 | }
|
---|
751 | ticks_since_last_update++;
|
---|
752 |
|
---|
753 | for (j=0;j<4;j++)
|
---|
754 | {
|
---|
755 | if ( xmax < Vertex[Leaves[i].vertsLeaf[j]][0]) xmax = Vertex[Leaves[i].vertsLeaf[j]][0];
|
---|
756 | if ( xmin > Vertex[Leaves[i].vertsLeaf[j]][0]) xmin = Vertex[Leaves[i].vertsLeaf[j]][0];
|
---|
757 |
|
---|
758 | if ( ymax < Vertex[Leaves[i].vertsLeaf[j]][1]) ymax = Vertex[Leaves[i].vertsLeaf[j]][1];
|
---|
759 | if ( ymin > Vertex[Leaves[i].vertsLeaf[j]][1]) ymin = Vertex[Leaves[i].vertsLeaf[j]][1];
|
---|
760 |
|
---|
761 | if ( zmax < Vertex[Leaves[i].vertsLeaf[j]][2]) zmax = Vertex[Leaves[i].vertsLeaf[j]][2];
|
---|
762 | if ( zmin > Vertex[Leaves[i].vertsLeaf[j]][2]) zmin = Vertex[Leaves[i].vertsLeaf[j]][2];
|
---|
763 | }
|
---|
764 | }
|
---|
765 |
|
---|
766 | cx = (xmax + xmin)/2;
|
---|
767 | cy = (ymax + ymin)/2;
|
---|
768 | cz = (zmax + zmin)/2;
|
---|
769 |
|
---|
770 | diameter = ((xmax-xmin)*(xmax-xmin)) + ((ymax-ymin)*(ymax-ymin)) + ((zmax-zmin)*(zmax-zmin));
|
---|
771 |
|
---|
772 | return (diameter);
|
---|
773 | }
|
---|
774 |
|
---|
775 | void TreeSimplifier::NormalizeDistance(float diameter)
|
---|
776 | {
|
---|
777 | float dtmp;
|
---|
778 | for (int i=0; i<countLeaves;i++)
|
---|
779 | {
|
---|
780 | dtmp = Leaves[i].dist;
|
---|
781 | Leaves[i].dist = dtmp / diameter;
|
---|
782 |
|
---|
783 | }
|
---|
784 | }
|
---|
785 | /*
|
---|
786 |
|
---|
787 | THIS FUNCTION IS OBSOLETE, AND NEEDS TO BE ERASED
|
---|
788 | //--------------------------------------------------------------------------------------------------------------------------------
|
---|
789 | // establece el criterio como (K1 * dist + K2 * cop)/ K1+K2
|
---|
790 | //--------------------------------------------------------------------------------------------------------------------------------
|
---|
791 | void TreeSimplifier::EstableceCriterio(float diametro)
|
---|
792 | {
|
---|
793 | // Para empezar establezco K1 y K2 con 0,5
|
---|
794 | float coptmp2, coptmp, distmp2, distmp, criteriotmp;
|
---|
795 | int i, j, nhojasi, nhojasj;
|
---|
796 |
|
---|
797 | int update_each = countLeaves / 30;
|
---|
798 |
|
---|
799 | for ( i=0; i<countLeaves;i++)
|
---|
800 | {
|
---|
801 | if (Leaves[i].existe == true)
|
---|
802 | {
|
---|
803 | //incializo criterio a un numero elevado
|
---|
804 | Leaves[i].criteria = 1000;
|
---|
805 | nhojasi = int(Leaves[i].parentLeafCount);
|
---|
806 | //coplanaridad
|
---|
807 | for ( j =0; j<countLeaves;j++)
|
---|
808 | {
|
---|
809 | if (( j != i) && ( Leaves[j].existe == true)) // si la hoja aun existe
|
---|
810 | {
|
---|
811 | //17/09/01 ANTES DE CALCULAR NADA, COMPRUEBO QUE ESTAS DOS HOJAS
|
---|
812 | // SE PODRIAN COLAPSAR, ED, QUE LA DIFERENCIA DE HOJAS QUE COLAPSAN
|
---|
813 | // ES COMO MÁXIMO 1
|
---|
814 |
|
---|
815 | nhojasj = int(Leaves[j].parentLeafCount);
|
---|
816 |
|
---|
817 | if ( abs((nhojasi - nhojasj)) < 2)
|
---|
818 | {
|
---|
819 | //coplanaridad y lo invierto
|
---|
820 | coptmp2 = Leaves[i].Coplanaridad(Leaves[j]);
|
---|
821 | coptmp = 1 - coptmp2;
|
---|
822 | //distancia y la normalizo
|
---|
823 | distmp2 = Hausdorff( Leaves[i], Leaves[j]);
|
---|
824 | distmp = distmp2 / diametro;
|
---|
825 | // calculo el criterio para esa hoja
|
---|
826 | criteriotmp = (( K1 * distmp * distmp ) + (K2 * coptmp * distmp))/ (K1 + K2);
|
---|
827 | //selecciono el criterio menor
|
---|
828 | if (Leaves[i].criteria > criteriotmp)
|
---|
829 | {
|
---|
830 | Leaves[i].criteria = criteriotmp;
|
---|
831 | Leaves[i].hoja_crit = j;
|
---|
832 | }
|
---|
833 | }
|
---|
834 | }
|
---|
835 |
|
---|
836 | }
|
---|
837 | }
|
---|
838 | }
|
---|
839 | }
|
---|
840 |
|
---|
841 | //--------------------------------------------------------------------------------------------------------------------------------
|
---|
842 | // establece el criterio despues de colapsar
|
---|
843 | //--------------------------------------------------------------------------------------------------------------------------------
|
---|
844 | void TreeSimplifier::EstableceCriterio2 ( float diametro,
|
---|
845 | long int hojanueva)
|
---|
846 | {
|
---|
847 | //Para empezar establezco K1 y K2 con 0,5
|
---|
848 | float coptmp2, coptmp, distmp2, distmp, criteriotmp;
|
---|
849 | int i, j, nhojasi, nhojasj;
|
---|
850 | //ESTAN EN tres PROCEDIMIENTOS: COLAPSA, ESTABLECECRITERIO Y ESTABLECECRITERIO2
|
---|
851 |
|
---|
852 | for (i = 0; i < countLeaves; i++)
|
---|
853 | {
|
---|
854 | if ((Leaves[i].existe == true) && (i != hojanueva))
|
---|
855 | {
|
---|
856 | nhojasi = int(Leaves[i].parentLeafCount);
|
---|
857 | //¿ SE HA DESACTIVADO LA HOJA_CRIT QUE GUARDABA LA HOJA?
|
---|
858 | if ( Leaves[Leaves[i].hoja_crit].existe == false)
|
---|
859 | {
|
---|
860 | Leaves[i].criteria = 1000;
|
---|
861 |
|
---|
862 | //coplanaridad
|
---|
863 | for ( j =0; j<countLeaves;j++)
|
---|
864 | {
|
---|
865 | if (( j != i) && ( Leaves[j].existe == true)) // si la hoja aun existe
|
---|
866 | {
|
---|
867 | //17/09/01 ANTES DE CALCULAR NADA, COMPRUEBO QUE ESTAS DOS HOJAS
|
---|
868 | // SE PODRIAN COLAPSAR, ED, QUE LA DIFERENCIA DE HOJAS QUE COLAPSAN
|
---|
869 | // ES COMO MÁXIMO 1
|
---|
870 |
|
---|
871 | nhojasj = int(Leaves[j].parentLeafCount);
|
---|
872 |
|
---|
873 | if ( abs((nhojasi - nhojasj)) < 2)
|
---|
874 | {
|
---|
875 |
|
---|
876 | //coplanaridad y lo invierto
|
---|
877 | coptmp2 = Leaves[i].Coplanaridad(Leaves[j]);
|
---|
878 | coptmp = 1 - coptmp2;
|
---|
879 | //distancia y la normalizo
|
---|
880 | // distmp2 = Leaves[i].Distancia(Leaves[j]);
|
---|
881 | distmp2 = Hausdorff( Leaves[i], Leaves[j]);
|
---|
882 | distmp = distmp2 / diametro;
|
---|
883 | // calculo el criterio para esa hoja
|
---|
884 | criteriotmp = (( K1 * distmp * distmp ) + (K2 * coptmp * distmp))/ (K1 + K2);
|
---|
885 | //selecciono el criterio menor
|
---|
886 | if (Leaves[i].criteria > criteriotmp)
|
---|
887 | {
|
---|
888 | Leaves[i].criteria = criteriotmp;
|
---|
889 | Leaves[i].hoja_crit = j;
|
---|
890 | }
|
---|
891 | }
|
---|
892 | }
|
---|
893 | }
|
---|
894 | }
|
---|
895 | else
|
---|
896 | { // CALCULARE SI EL CRITERIO CON ESTA HOJA ES MENOR QUE EL ANTERIOR
|
---|
897 | nhojasj = int(Leaves[hojanueva].parentLeafCount);
|
---|
898 |
|
---|
899 | if ( abs((nhojasi - nhojasj)) < 2)
|
---|
900 | {
|
---|
901 | //coplanaridad y lo invierto
|
---|
902 | coptmp2 = Leaves[i].Coplanaridad(Leaves[hojanueva]);
|
---|
903 | coptmp = 1 - coptmp2;
|
---|
904 | //distancia y la normalizo
|
---|
905 | //distmp2 = Leaves[i].Distancia(Leaves[hojanueva]);
|
---|
906 | distmp2 = Hausdorff( Leaves[i], Leaves[hojanueva]);
|
---|
907 | distmp = distmp2 / diametro;
|
---|
908 | // calculo el criterio para esa hoja
|
---|
909 | criteriotmp = (( K1 * distmp * distmp ) + (K2 * coptmp * distmp))/ (K1 + K2);
|
---|
910 | //selecciono el criterio menor
|
---|
911 | if (Leaves[i].criteria > criteriotmp)
|
---|
912 | {
|
---|
913 | Leaves[i].criteria = criteriotmp;
|
---|
914 | Leaves[i].hoja_crit = hojanueva;
|
---|
915 | }
|
---|
916 | }
|
---|
917 | }
|
---|
918 | }
|
---|
919 | }
|
---|
920 | }*/
|
---|
921 |
|
---|
922 |
|
---|
923 |
|
---|
924 | // Gets the laf with the minimum criteria
|
---|
925 | long int TreeSimplifier::MinCriteria (void)
|
---|
926 | {
|
---|
927 | float mincrit=0.0f;
|
---|
928 | long int which=-1;
|
---|
929 |
|
---|
930 | /* while (Leaves[i].existe != true) i++;
|
---|
931 | mincrit = Leaves[i].criteria;
|
---|
932 | which =i;
|
---|
933 | */
|
---|
934 | for (int i=0;i<countLeaves;i++)
|
---|
935 | {
|
---|
936 | if (Leaves[i].exists)
|
---|
937 | {
|
---|
938 | if (mincrit>Leaves[i].criteria || which==-1)
|
---|
939 | {
|
---|
940 | mincrit = Leaves[i].criteria;
|
---|
941 | which = i;
|
---|
942 | }
|
---|
943 | }
|
---|
944 |
|
---|
945 | }
|
---|
946 | return which;
|
---|
947 | }
|
---|
948 |
|
---|
949 |
|
---|
950 | void TreeSimplifier::ChooseVertices(Leaf& leaf1, Leaf& leaf2, long int count)
|
---|
951 | {
|
---|
952 | float a,b,c;
|
---|
953 | float dist[4];
|
---|
954 | int indices[4];
|
---|
955 |
|
---|
956 | a = Vertex[leaf1.vertsLeaf[0]][0];
|
---|
957 | b = Vertex[leaf1.vertsLeaf[0]][1];
|
---|
958 | c = Vertex[leaf1.vertsLeaf[0]][2];
|
---|
959 |
|
---|
960 | dist[0] = ((leaf2.center[0]-a)*(leaf2.center[0]-a)) + ((leaf2.center[1]-b)*(leaf2.center[1]-b)) +
|
---|
961 | ((leaf2.center[2]-c)*(leaf2.center[2]-c));
|
---|
962 |
|
---|
963 |
|
---|
964 | a = Vertex[leaf1.vertsLeaf[1]][0];
|
---|
965 | b = Vertex[leaf1.vertsLeaf[1]][1];
|
---|
966 | c = Vertex[leaf1.vertsLeaf[1]][2];
|
---|
967 |
|
---|
968 | dist[1] = ((leaf2.center[0]-a)*(leaf2.center[0]-a)) + ((leaf2.center[1]-b)*(leaf2.center[1]-b)) +
|
---|
969 | ((leaf2.center[2]-c)*(leaf2.center[2]-c));
|
---|
970 |
|
---|
971 | a = Vertex[leaf1.vertsLeaf[2]][0];
|
---|
972 | b = Vertex[leaf1.vertsLeaf[2]][1];
|
---|
973 | c = Vertex[leaf1.vertsLeaf[2]][2];
|
---|
974 |
|
---|
975 | dist[2] = ((leaf2.center[0]-a)*(leaf2.center[0]-a)) + ((leaf2.center[1]-b)*(leaf2.center[1]-b)) +
|
---|
976 | ((leaf2.center[2]-c)*(leaf2.center[2]-c));
|
---|
977 |
|
---|
978 |
|
---|
979 | a = Vertex[leaf1.vertsLeaf[3]][0];
|
---|
980 | b = Vertex[leaf1.vertsLeaf[3]][1];
|
---|
981 | c = Vertex[leaf1.vertsLeaf[3]][2];
|
---|
982 |
|
---|
983 | dist[3] = ((leaf2.center[0]-a)*(leaf2.center[0]-a)) + ((leaf2.center[1]-b)*(leaf2.center[1]-b)) +
|
---|
984 | ((leaf2.center[2]-c)*(leaf2.center[2]-c));
|
---|
985 |
|
---|
986 | for ( int i=0;i<4;i++) indices[i]=i;
|
---|
987 |
|
---|
988 | TwoGreater(dist, indices);
|
---|
989 |
|
---|
990 | Leaves[countLeaves].vertsLeaf[0] = leaf1.vertsLeaf[indices[0]];
|
---|
991 | Leaves[countLeaves].vertsLeaf[1] = leaf1.vertsLeaf[indices[1]];
|
---|
992 |
|
---|
993 |
|
---|
994 |
|
---|
995 | a = Vertex[leaf2.vertsLeaf[0]][0];
|
---|
996 | b = Vertex[leaf2.vertsLeaf[0]][1];
|
---|
997 | c = Vertex[leaf2.vertsLeaf[0]][2];
|
---|
998 |
|
---|
999 | dist[0] = ((leaf1.center[0]-a)*(leaf1.center[0]-a)) + ((leaf1.center[1]-b)*(leaf1.center[1]-b)) +
|
---|
1000 | ((leaf1.center[2]-c)*(leaf1.center[2]-c));
|
---|
1001 |
|
---|
1002 |
|
---|
1003 | a = Vertex[leaf2.vertsLeaf[1]][0];
|
---|
1004 | b = Vertex[leaf2.vertsLeaf[1]][1];
|
---|
1005 | c = Vertex[leaf2.vertsLeaf[1]][2];
|
---|
1006 |
|
---|
1007 | dist[1] = ((leaf2.center[0]-a)*(leaf2.center[0]-a)) + ((leaf1.center[1]-b)*(leaf1.center[1]-b)) +
|
---|
1008 | ((leaf2.center[2]-c)*(leaf2.center[2]-c));
|
---|
1009 |
|
---|
1010 | a = Vertex[leaf2.vertsLeaf[2]][0];
|
---|
1011 | b = Vertex[leaf2.vertsLeaf[2]][1];
|
---|
1012 | c = Vertex[leaf2.vertsLeaf[2]][2];
|
---|
1013 |
|
---|
1014 | dist[2] = ((leaf1.center[0]-a)*(leaf1.center[0]-a)) + ((leaf1.center[1]-b)*(leaf1.center[1]-b)) +
|
---|
1015 | ((leaf1.center[2]-c)*(leaf1.center[2]-c));
|
---|
1016 |
|
---|
1017 |
|
---|
1018 | a = Vertex[leaf2.vertsLeaf[3]][0];
|
---|
1019 | b = Vertex[leaf2.vertsLeaf[3]][1];
|
---|
1020 | c = Vertex[leaf2.vertsLeaf[3]][2];
|
---|
1021 |
|
---|
1022 | dist[3] = ((leaf1.center[0]-a)*(leaf1.center[0]-a)) + ((leaf1.center[1]-b)*(leaf1.center[1]-b)) +
|
---|
1023 | ((leaf1.center[2]-c)*(leaf1.center[2]-c));
|
---|
1024 |
|
---|
1025 | for ( int i=0;i<4;i++) indices[i]=i;
|
---|
1026 |
|
---|
1027 | TwoGreater(dist, indices);
|
---|
1028 |
|
---|
1029 | Leaves[countLeaves].vertsLeaf[2] = leaf2.vertsLeaf[indices[0]];
|
---|
1030 | Leaves[countLeaves].vertsLeaf[3] = leaf2.vertsLeaf[indices[1]];
|
---|
1031 |
|
---|
1032 |
|
---|
1033 |
|
---|
1034 |
|
---|
1035 | }
|
---|
1036 |
|
---|
1037 | // Add leaves
|
---|
1038 | long int TreeSimplifier::Collapse(float diam)
|
---|
1039 | {
|
---|
1040 | long int i=0, which=-1;
|
---|
1041 | long int other = -1;
|
---|
1042 | float coptmp, coptmp2, distmp, distmp2, criteriatmp;
|
---|
1043 |
|
---|
1044 | which=MinCriteria();
|
---|
1045 | other = Leaves[which].leafCrit;
|
---|
1046 |
|
---|
1047 | //desactivo las hojas cercanas
|
---|
1048 | Leaves[which].exists = false;
|
---|
1049 | Leaves[other].exists = false;
|
---|
1050 | //creo la hoja nueva
|
---|
1051 |
|
---|
1052 | Leaves[countLeaves].leafNear = -1;
|
---|
1053 | Leaves[countLeaves].dist = 0;
|
---|
1054 | Leaves[countLeaves].leafCop = -1;
|
---|
1055 | Leaves[countLeaves].coplanar = 0;
|
---|
1056 |
|
---|
1057 | Leaves[countLeaves].parentLeafCount = Leaves[which].parentLeafCount + Leaves[other].parentLeafCount;
|
---|
1058 | // Leaves[countLeaves].parentLeafCount = 10;
|
---|
1059 | ChooseVertices(Leaves[which], Leaves[other], countLeaves);
|
---|
1060 | CalculateLeafCenter (Leaves[countLeaves]);
|
---|
1061 | CalculateLeafNormal (Leaves[countLeaves]);
|
---|
1062 |
|
---|
1063 | // find out the minimal octree node that can contain this leaf
|
---|
1064 | LeafOctree *onode = GetMinOctreeNodeForLeaf(octree,Leaves[countLeaves]);
|
---|
1065 | octree_owning_leaf[countLeaves] = onode;
|
---|
1066 | onode->leaves.push_back(countLeaves);
|
---|
1067 |
|
---|
1068 | /* if (Leaves[countLeaves].parentLeafCount > 60 )
|
---|
1069 | {
|
---|
1070 | Leaves[countLeaves].existe = false;
|
---|
1071 | activeLeaves--;
|
---|
1072 | }
|
---|
1073 | else
|
---|
1074 | { */
|
---|
1075 | Leaves[countLeaves].exists = true;
|
---|
1076 | Leaves[countLeaves].criteria = 1000000.0f;
|
---|
1077 | Leaves[countLeaves].idTriangle[0] = countLeaves*2;
|
---|
1078 | Leaves[countLeaves].idTriangle[1] = countLeaves*2+1;
|
---|
1079 |
|
---|
1080 | float area_leaf_i = CalculateLeafArea(Leaves[i])/diam;
|
---|
1081 |
|
---|
1082 | for (int j = 0; j < (countLeaves+1); j++){
|
---|
1083 | /* int visit_parents = VISIT_PARENTS_DEEP;
|
---|
1084 | for (LeafOctree *octreenode = octree_owning_leaf[i]; octreenode && visit_parents>=0; octreenode=octreenode->parent, visit_parents--)
|
---|
1085 | {
|
---|
1086 | for (std::vector<int>::iterator it=octreenode->leaves.begin(); it!=octreenode->leaves.end(); it++)
|
---|
1087 | {
|
---|
1088 | int j = *it;*/
|
---|
1089 |
|
---|
1090 | if (j != countLeaves && Leaves[j].exists)
|
---|
1091 | {
|
---|
1092 | coptmp2 = Leaves[countLeaves].Coplanarity(Leaves[j]);
|
---|
1093 | coptmp = 1 - coptmp2;
|
---|
1094 | //distmp2 = HausdorffOptimized(Leaves[countLeaves], Leaves[j]);
|
---|
1095 | distmp2 = DistanceFromCenters(Leaves[countLeaves], Leaves[j]);
|
---|
1096 | distmp = distmp2 / diam;
|
---|
1097 |
|
---|
1098 | criteriatmp = (( K1 * distmp * distmp ) + (K2 * coptmp * distmp))/ (K1 + K2);
|
---|
1099 | criteriatmp *= CalculateLeafArea(Leaves[j])/diam + area_leaf_i;
|
---|
1100 | criteriatmp *= Leaves[j].parentLeafCount + Leaves[i].parentLeafCount;
|
---|
1101 |
|
---|
1102 | if (Leaves[countLeaves].criteria > criteriatmp)
|
---|
1103 | {
|
---|
1104 | Leaves[countLeaves].criteria = criteriatmp;
|
---|
1105 | Leaves[countLeaves].leafCrit = j;
|
---|
1106 | }
|
---|
1107 | }
|
---|
1108 | // }
|
---|
1109 | }
|
---|
1110 | // }
|
---|
1111 |
|
---|
1112 | // Crear el paso de simplificación
|
---|
1113 | Geometry::TreeSimplificationSequence::Step pasosimp;
|
---|
1114 | pasosimp.mV0=Leaves[which].idTriangle[0];
|
---|
1115 | pasosimp.mV1=Leaves[which].idTriangle[1];
|
---|
1116 | pasosimp.mT0=Leaves[other].idTriangle[0];
|
---|
1117 | pasosimp.mT1=Leaves[other].idTriangle[1];
|
---|
1118 |
|
---|
1119 | // Nuevos vértices
|
---|
1120 | pasosimp.mNewQuad[0]=Leaves[countLeaves].vertsLeaf[0];
|
---|
1121 | pasosimp.mNewQuad[1]=Leaves[countLeaves].vertsLeaf[1];
|
---|
1122 | pasosimp.mNewQuad[2]=Leaves[countLeaves].vertsLeaf[2];
|
---|
1123 | pasosimp.mNewQuad[3]=Leaves[countLeaves].vertsLeaf[3];
|
---|
1124 |
|
---|
1125 | // Insertar el paso de simplificación
|
---|
1126 | mtreesimpsequence->mSteps.push_back(pasosimp);
|
---|
1127 |
|
---|
1128 | //incremento el numero de hojas
|
---|
1129 | countLeaves++;
|
---|
1130 | activeLeaves--;
|
---|
1131 | return (countLeaves-1);//porque lo he incrementado en la linea de antes
|
---|
1132 | }
|
---|
1133 |
|
---|
1134 | void TreeSimplifier::BuildOutputMesh(int idMeshLeaves)
|
---|
1135 | {
|
---|
1136 | // Calculate the resulting index count after simplifying
|
---|
1137 | long int tamIndex = activeLeaves * 6; // Each leaf has got 6 indices
|
---|
1138 |
|
---|
1139 | delete [] mesh->mSubMesh[idMeshLeaves].mIndex;
|
---|
1140 | mesh->mSubMesh[idMeshLeaves].mIndexCount=tamIndex;
|
---|
1141 | mesh->mSubMesh[idMeshLeaves].mIndex=new Geometry::Index[tamIndex];
|
---|
1142 |
|
---|
1143 | // Iterate through all active leaves and dump them to the final mesh
|
---|
1144 | Geometry::Index index=0;
|
---|
1145 |
|
---|
1146 | int update_each = countLeaves / 10;
|
---|
1147 |
|
---|
1148 | for (long j=0; j<countLeaves;j++)
|
---|
1149 | {
|
---|
1150 | static int ticks_since_last_update = 0;
|
---|
1151 | if (mUPB && ticks_since_last_update>=update_each)
|
---|
1152 | {
|
---|
1153 | ticks_since_last_update=0;
|
---|
1154 | mUPB(1);
|
---|
1155 | }
|
---|
1156 | ticks_since_last_update++;
|
---|
1157 |
|
---|
1158 | if (Leaves[j].exists)
|
---|
1159 | {
|
---|
1160 | // if (index<6)
|
---|
1161 | // {
|
---|
1162 | mesh->mSubMesh[idMeshLeaves].mIndex[index]=Leaves[j].vertsLeaf[0];
|
---|
1163 | mesh->mSubMesh[idMeshLeaves].mIndex[index+1]=Leaves[j].vertsLeaf[1];
|
---|
1164 | mesh->mSubMesh[idMeshLeaves].mIndex[index+2]=Leaves[j].vertsLeaf[2];
|
---|
1165 | mesh->mSubMesh[idMeshLeaves].mIndex[index+3]=Leaves[j].vertsLeaf[2];
|
---|
1166 | mesh->mSubMesh[idMeshLeaves].mIndex[index+4]=Leaves[j].vertsLeaf[1];
|
---|
1167 | mesh->mSubMesh[idMeshLeaves].mIndex[index+5]=Leaves[j].vertsLeaf[3];
|
---|
1168 | /* }
|
---|
1169 | else
|
---|
1170 | {
|
---|
1171 | mesh->mSubMesh[idMeshLeaves].mIndex[index]=0;
|
---|
1172 | mesh->mSubMesh[idMeshLeaves].mIndex[index+1]=0;
|
---|
1173 | mesh->mSubMesh[idMeshLeaves].mIndex[index+2]=0;
|
---|
1174 | mesh->mSubMesh[idMeshLeaves].mIndex[index+3]=0;
|
---|
1175 | mesh->mSubMesh[idMeshLeaves].mIndex[index+4]=0;
|
---|
1176 | mesh->mSubMesh[idMeshLeaves].mIndex[index+5]=0;
|
---|
1177 | }*/
|
---|
1178 | index=index+6;
|
---|
1179 | }
|
---|
1180 | }
|
---|
1181 | }
|
---|
1182 |
|
---|
1183 | LeafOctree* TreeSimplifier::CreateLeafOctree(int deep)
|
---|
1184 | {
|
---|
1185 | LeafOctree *leafoctree = new LeafOctree;
|
---|
1186 | leafoctree->parent=NULL;
|
---|
1187 | leafoctree->left = Vertex[0][0];
|
---|
1188 | leafoctree->right = Vertex[0][0];
|
---|
1189 | leafoctree->bottom = Vertex[0][1];
|
---|
1190 | leafoctree->top = Vertex[0][1];
|
---|
1191 | leafoctree->front = Vertex[0][2];
|
---|
1192 | leafoctree->back = Vertex[0][2];
|
---|
1193 |
|
---|
1194 | // calcualte the limits of the octree
|
---|
1195 | for (int i=0; i<vertex_count; i++)
|
---|
1196 | {
|
---|
1197 | if (leafoctree->left>Vertex[i][0])
|
---|
1198 | leafoctree->left=Vertex[i][0];
|
---|
1199 | if (leafoctree->right<Vertex[i][0])
|
---|
1200 | leafoctree->right=Vertex[i][0];
|
---|
1201 | if (leafoctree->bottom>Vertex[i][1])
|
---|
1202 | leafoctree->bottom=Vertex[i][1];
|
---|
1203 | if (leafoctree->top<Vertex[i][1])
|
---|
1204 | leafoctree->top=Vertex[i][1];
|
---|
1205 | if (leafoctree->front>Vertex[i][2])
|
---|
1206 | leafoctree->front=Vertex[i][2];
|
---|
1207 | if (leafoctree->back<Vertex[i][2])
|
---|
1208 | leafoctree->back=Vertex[i][2];
|
---|
1209 | }
|
---|
1210 |
|
---|
1211 | // setup the initial leaves buffer
|
---|
1212 | leafoctree->leaves.clear();
|
---|
1213 | octree_owning_leaf=new LeafOctree*[countLeaves*2]; // *2 to reserve memory for all simplified leaves
|
---|
1214 | for (int i=0; i<countLeaves; i++)
|
---|
1215 | {
|
---|
1216 | leafoctree->leaves.push_back(i);
|
---|
1217 | octree_owning_leaf[i] = leafoctree;
|
---|
1218 | }
|
---|
1219 |
|
---|
1220 | // generate the octree given an arbitrary depth
|
---|
1221 | RecursiveCreateLeafOctree(leafoctree,deep);
|
---|
1222 |
|
---|
1223 | // fill the octree
|
---|
1224 | RecursiveFillOctreeWithLeaves(leafoctree);
|
---|
1225 |
|
---|
1226 | return leafoctree;
|
---|
1227 | }
|
---|
1228 |
|
---|
1229 | void TreeSimplifier::RecursiveCreateLeafOctree(LeafOctree *parent, int deep)
|
---|
1230 | {
|
---|
1231 | for (int i=0; i<8; i++)
|
---|
1232 | {
|
---|
1233 | parent->children[i] = NULL;
|
---|
1234 | if (deep>0)
|
---|
1235 | {
|
---|
1236 | LeafOctree *child = parent->children[i] = new LeafOctree;
|
---|
1237 |
|
---|
1238 | child->parent = parent;
|
---|
1239 | switch(i)
|
---|
1240 | {
|
---|
1241 | case 0:
|
---|
1242 | child->left=parent->left;
|
---|
1243 | child->right=(parent->left+parent->right)*0.5f;
|
---|
1244 | child->bottom=(parent->bottom+parent->top)*0.5f;
|
---|
1245 | child->top=parent->top;
|
---|
1246 | child->front=parent->front;
|
---|
1247 | child->back=(parent->front+parent->back)*0.5f; break;
|
---|
1248 | case 1:
|
---|
1249 | child->left=(parent->left+parent->right)*0.5f;
|
---|
1250 | child->right=parent->right;
|
---|
1251 | child->bottom=(parent->bottom+parent->top)*0.5f;
|
---|
1252 | child->top=parent->top;
|
---|
1253 | child->front=parent->front;
|
---|
1254 | child->back=(parent->front+parent->back)*0.5f; break;
|
---|
1255 | case 2:
|
---|
1256 | child->left=parent->left;
|
---|
1257 | child->right=(parent->left+parent->right)*0.5f;
|
---|
1258 | child->bottom=parent->bottom;
|
---|
1259 | child->top=(parent->bottom+parent->top)*0.5f;
|
---|
1260 | child->front=parent->front;
|
---|
1261 | child->back=(parent->front+parent->back)*0.5f; break;
|
---|
1262 | case 3:
|
---|
1263 | child->left=(parent->left+parent->right)*0.5f;
|
---|
1264 | child->right=parent->right;
|
---|
1265 | child->bottom=parent->bottom;
|
---|
1266 | child->top=(parent->bottom+parent->top)*0.5f;
|
---|
1267 | child->front=parent->front;
|
---|
1268 | child->back=(parent->front+parent->back)*0.5f; break;
|
---|
1269 | case 4:
|
---|
1270 | child->left=parent->left;
|
---|
1271 | child->right=(parent->left+parent->right)*0.5f;
|
---|
1272 | child->bottom=(parent->bottom+parent->top)*0.5f;
|
---|
1273 | child->top=parent->top;
|
---|
1274 | child->back=parent->back;
|
---|
1275 | child->front=(parent->front+parent->back)*0.5f; break;
|
---|
1276 | case 5:
|
---|
1277 | child->left=(parent->left+parent->right)*0.5f;
|
---|
1278 | child->right=parent->right;
|
---|
1279 | child->bottom=(parent->bottom+parent->top)*0.5f;
|
---|
1280 | child->top=parent->top;
|
---|
1281 | child->back=parent->back;
|
---|
1282 | child->front=(parent->front+parent->back)*0.5f; break;
|
---|
1283 | case 6:
|
---|
1284 | child->left=parent->left;
|
---|
1285 | child->right=(parent->left+parent->right)*0.5f;
|
---|
1286 | child->bottom=parent->bottom;
|
---|
1287 | child->top=(parent->bottom+parent->top)*0.5f;
|
---|
1288 | child->back=parent->back;
|
---|
1289 | child->front=(parent->front+parent->back)*0.5f; break;
|
---|
1290 | case 7:
|
---|
1291 | child->left=(parent->left+parent->right)*0.5f;
|
---|
1292 | child->right=parent->right;
|
---|
1293 | child->bottom=parent->bottom;
|
---|
1294 | child->top=(parent->bottom+parent->top)*0.5f;
|
---|
1295 | child->back=parent->back;
|
---|
1296 | child->front=(parent->front+parent->back)*0.5f; break;
|
---|
1297 | }
|
---|
1298 | RecursiveCreateLeafOctree(parent->children[i],deep-1);
|
---|
1299 | }
|
---|
1300 | }
|
---|
1301 |
|
---|
1302 | }
|
---|
1303 |
|
---|
1304 | void TreeSimplifier::RecursiveFillOctreeWithLeaves(LeafOctree *o)
|
---|
1305 | {
|
---|
1306 | for (int i=0; i<8; i++)
|
---|
1307 | {
|
---|
1308 | LeafOctree *child = o->children[i];
|
---|
1309 | if (child)
|
---|
1310 | {
|
---|
1311 | for (std::vector<int>::iterator it=o->leaves.begin(); it!=o->leaves.end(); )
|
---|
1312 | {
|
---|
1313 | int idleaf = *it;
|
---|
1314 | int idv0 = Leaves[idleaf].vertsLeaf[0];
|
---|
1315 | int idv1 = Leaves[idleaf].vertsLeaf[1];
|
---|
1316 | int idv2 = Leaves[idleaf].vertsLeaf[2];
|
---|
1317 | int idv3 = Leaves[idleaf].vertsLeaf[3];
|
---|
1318 |
|
---|
1319 | float * v0 = Vertex[idv0];
|
---|
1320 | float * v1 = Vertex[idv1];
|
---|
1321 | float * v2 = Vertex[idv2];
|
---|
1322 | float * v3 = Vertex[idv3];
|
---|
1323 |
|
---|
1324 | // if the leaf fits completely inside a child, the child owns it
|
---|
1325 | if (child->PointInsideOctree(v0[0],v0[1],v0[2]) &&
|
---|
1326 | child->PointInsideOctree(v1[0],v1[1],v1[2]) &&
|
---|
1327 | child->PointInsideOctree(v2[0],v2[1],v2[2]) &&
|
---|
1328 | child->PointInsideOctree(v3[0],v3[1],v3[2]))
|
---|
1329 | {
|
---|
1330 | child->leaves.push_back(idleaf);
|
---|
1331 | it = o->leaves.erase(it);
|
---|
1332 | octree_owning_leaf[idleaf] = child;
|
---|
1333 | }
|
---|
1334 | else
|
---|
1335 | it++;
|
---|
1336 | }
|
---|
1337 | // recurse all valid children
|
---|
1338 | RecursiveFillOctreeWithLeaves(o->children[i]);
|
---|
1339 | }
|
---|
1340 | }
|
---|
1341 | }
|
---|
1342 |
|
---|
1343 | void TreeSimplifier::SetCriteriaOptimized(float diam)
|
---|
1344 | {
|
---|
1345 | float coptmp2, coptmp, distmp2, distmp, criteriatmp;
|
---|
1346 | int i, j, nleavesi, nleavesj;
|
---|
1347 |
|
---|
1348 | int update_each = countLeaves / 20;
|
---|
1349 |
|
---|
1350 | for ( i=0; i<countLeaves;i++)
|
---|
1351 | {
|
---|
1352 | static int ticks_since_last_update = 0;
|
---|
1353 | if (mUPB && ticks_since_last_update>=update_each)
|
---|
1354 | {
|
---|
1355 | ticks_since_last_update=0;
|
---|
1356 | mUPB(1);
|
---|
1357 | }
|
---|
1358 | ticks_since_last_update++;
|
---|
1359 |
|
---|
1360 | if (Leaves[i].exists == true)
|
---|
1361 | {
|
---|
1362 | Leaves[i].criteria = 1000000.0f;
|
---|
1363 | nleavesi = int(Leaves[i].parentLeafCount);
|
---|
1364 | float area_leaf_i = CalculateLeafArea(Leaves[i])/diam;
|
---|
1365 |
|
---|
1366 | // Use only the leaves which belong the the same octree node as leaf i or to its parents
|
---|
1367 | int visit_parents = VISIT_PARENTS_DEEP;
|
---|
1368 | for (LeafOctree *octreenode = octree_owning_leaf[i]; octreenode; octreenode=octreenode->parent, visit_parents--)
|
---|
1369 | {
|
---|
1370 | for (std::vector<int>::iterator it=octreenode->leaves.begin(); it!=octreenode->leaves.end(); it++)
|
---|
1371 | {
|
---|
1372 | j = *it;
|
---|
1373 | // for (j=0; j<countLeaves; j++)
|
---|
1374 | // {
|
---|
1375 | if (j!=i && Leaves[j].exists)
|
---|
1376 | {
|
---|
1377 | nleavesj = int(Leaves[j].parentLeafCount);
|
---|
1378 |
|
---|
1379 | // if ( abs((nleavesi - nleavesj)) < 2)
|
---|
1380 | // {
|
---|
1381 | coptmp2 = Leaves[i].Coplanarity(Leaves[j]);
|
---|
1382 | coptmp = 1 - coptmp2;
|
---|
1383 |
|
---|
1384 | //distmp2 = HausdorffOptimized( Leaves[i], Leaves[j]);
|
---|
1385 | distmp2 = DistanceFromCenters(Leaves[i], Leaves[j]);
|
---|
1386 | distmp = distmp2 / diam;
|
---|
1387 |
|
---|
1388 | //criteriatmp = (( K1 * distmp * distmp ) + (K2 * coptmp * distmp))/ (K1 + K2);
|
---|
1389 | criteriatmp = distmp;
|
---|
1390 | // select the lowest
|
---|
1391 | criteriatmp *= CalculateLeafArea(Leaves[j])/diam + area_leaf_i;
|
---|
1392 | criteriatmp *= Leaves[j].parentLeafCount + Leaves[i].parentLeafCount;
|
---|
1393 | if (Leaves[i].criteria > criteriatmp)
|
---|
1394 | {
|
---|
1395 | Leaves[i].criteria = criteriatmp;
|
---|
1396 | Leaves[i].leafCrit = j;
|
---|
1397 | }
|
---|
1398 | // }
|
---|
1399 | }
|
---|
1400 | }
|
---|
1401 | }
|
---|
1402 | }
|
---|
1403 | }
|
---|
1404 | }
|
---|
1405 |
|
---|
1406 |
|
---|
1407 | void TreeSimplifier::SetCriteria2Optimized(float diam, long int newleaf)
|
---|
1408 | {
|
---|
1409 | float coptmp2, coptmp, distmp2, distmp, criteriatmp;
|
---|
1410 | int i, j, nleavesi, nleavesj;
|
---|
1411 |
|
---|
1412 | for (i = 0; i < countLeaves; i++)
|
---|
1413 | {
|
---|
1414 | if (Leaves[i].exists && i!=newleaf)
|
---|
1415 | {
|
---|
1416 | float area_leaf_i = CalculateLeafArea(Leaves[i])/diam;
|
---|
1417 | nleavesi = int(Leaves[i].parentLeafCount);
|
---|
1418 | if ( Leaves[Leaves[i].leafCrit].exists == false)
|
---|
1419 | {
|
---|
1420 | Leaves[i].criteria = 1000000.0f;
|
---|
1421 |
|
---|
1422 | int visit_parents = VISIT_PARENTS_DEEP;
|
---|
1423 | for (LeafOctree *octreenode = octree_owning_leaf[i]; octreenode; octreenode=octreenode->parent, visit_parents--)
|
---|
1424 | {
|
---|
1425 | for (std::vector<int>::iterator it=octreenode->leaves.begin(); it!=octreenode->leaves.end(); it++)
|
---|
1426 | {
|
---|
1427 | j = *it;
|
---|
1428 | // for (j=0; j<countLeaves; j++)
|
---|
1429 | // {
|
---|
1430 | if (j!=i && Leaves[j].exists)
|
---|
1431 | {
|
---|
1432 | nleavesj = int(Leaves[j].parentLeafCount);
|
---|
1433 |
|
---|
1434 | // if ( abs((nleavesi - nleavesj)) < 2)
|
---|
1435 | // {
|
---|
1436 | coptmp2 = Leaves[i].Coplanarity(Leaves[j]);
|
---|
1437 | coptmp = 1 - coptmp2;
|
---|
1438 |
|
---|
1439 |
|
---|
1440 | //distmp2 = HausdorffOptimized( Leaves[i], Leaves[j]);
|
---|
1441 | distmp2 = DistanceFromCenters( Leaves[i], Leaves[j]);
|
---|
1442 | distmp = distmp2 / diam;
|
---|
1443 |
|
---|
1444 | criteriatmp = (( K1 * distmp * distmp ) + (K2 * coptmp * distmp))/ (K1 + K2);
|
---|
1445 | criteriatmp *= CalculateLeafArea(Leaves[j])/diam + area_leaf_i;
|
---|
1446 | criteriatmp *= Leaves[j].parentLeafCount + Leaves[i].parentLeafCount;
|
---|
1447 |
|
---|
1448 | // select the leaf with the lowest criteria
|
---|
1449 | if (Leaves[i].criteria > criteriatmp)
|
---|
1450 | {
|
---|
1451 | Leaves[i].criteria = criteriatmp;
|
---|
1452 | Leaves[i].leafCrit = j;
|
---|
1453 | }
|
---|
1454 | // }
|
---|
1455 | }
|
---|
1456 | }
|
---|
1457 | }
|
---|
1458 | }
|
---|
1459 | else
|
---|
1460 | {
|
---|
1461 | nleavesj = int(Leaves[newleaf].parentLeafCount);
|
---|
1462 |
|
---|
1463 | // if ( abs((nleavesi - nleavesj)) < 2)
|
---|
1464 | // {
|
---|
1465 | coptmp2 = Leaves[i].Coplanarity(Leaves[newleaf]);
|
---|
1466 | coptmp = 1 - coptmp2;
|
---|
1467 |
|
---|
1468 | //distmp2 = HausdorffOptimized( Leaves[i], Leaves[newleaf]);
|
---|
1469 | distmp2 = DistanceFromCenters( Leaves[i], Leaves[newleaf]);
|
---|
1470 | distmp = distmp2 / diam;
|
---|
1471 |
|
---|
1472 | criteriatmp = (( K1 * distmp * distmp ) + (K2 * coptmp * distmp))/ (K1 + K2);
|
---|
1473 | criteriatmp *= CalculateLeafArea(Leaves[newleaf])/diam + area_leaf_i;
|
---|
1474 | criteriatmp *= Leaves[newleaf].parentLeafCount + Leaves[i].parentLeafCount;
|
---|
1475 |
|
---|
1476 | if (Leaves[i].criteria > criteriatmp)
|
---|
1477 | {
|
---|
1478 | Leaves[i].criteria = criteriatmp;
|
---|
1479 | Leaves[i].leafCrit = newleaf;
|
---|
1480 | }
|
---|
1481 | // }
|
---|
1482 | }
|
---|
1483 | }
|
---|
1484 | }
|
---|
1485 | }
|
---|
1486 |
|
---|
1487 |
|
---|
1488 | LeafOctree *TreeSimplifier::GetMinOctreeNodeForLeaf(LeafOctree *start, const Leaf &leaf)
|
---|
1489 | {
|
---|
1490 | int idv0 = leaf.vertsLeaf[0];
|
---|
1491 | int idv1 = leaf.vertsLeaf[1];
|
---|
1492 | int idv2 = leaf.vertsLeaf[2];
|
---|
1493 | int idv3 = leaf.vertsLeaf[3];
|
---|
1494 |
|
---|
1495 | float * v0 = Vertex[idv0];
|
---|
1496 | float * v1 = Vertex[idv1];
|
---|
1497 | float * v2 = Vertex[idv2];
|
---|
1498 | float * v3 = Vertex[idv3];
|
---|
1499 |
|
---|
1500 | if (start->PointInsideOctree(v0[0],v0[1],v0[2]) &&
|
---|
1501 | start->PointInsideOctree(v1[0],v1[1],v1[2]) &&
|
---|
1502 | start->PointInsideOctree(v2[0],v2[1],v2[2]) &&
|
---|
1503 | start->PointInsideOctree(v3[0],v3[1],v3[2]))
|
---|
1504 | {
|
---|
1505 | return start;
|
---|
1506 | }
|
---|
1507 |
|
---|
1508 | for (int i=0; i<8; i++)
|
---|
1509 | if (start->children[i])
|
---|
1510 | {
|
---|
1511 | LeafOctree *selectedNode = GetMinOctreeNodeForLeaf(start->children[i],leaf);
|
---|
1512 | if (selectedNode)
|
---|
1513 | return selectedNode;
|
---|
1514 | }
|
---|
1515 |
|
---|
1516 | return NULL;
|
---|
1517 | }
|
---|
1518 |
|
---|
1519 | float TreeSimplifier::DistanceFromCenters(const Leaf &leaf1, const Leaf &leaf2) const
|
---|
1520 | {
|
---|
1521 | float onex, oney, onez;
|
---|
1522 | float twox, twoy, twoz;
|
---|
1523 | float threex, threey, threez;
|
---|
1524 | float fourx, foury, fourz;
|
---|
1525 | float x1, y1, z1;
|
---|
1526 | float x2, y2, z2;
|
---|
1527 | float x3, y3, z3;
|
---|
1528 | float x4, y4, z4;
|
---|
1529 |
|
---|
1530 | onex = Vertex[leaf1.vertsLeaf[0]][0]; oney = Vertex[leaf1.vertsLeaf[0]][1]; onez = Vertex[leaf1.vertsLeaf[0]][2];
|
---|
1531 | twox = Vertex[leaf1.vertsLeaf[1]][0]; twoy = Vertex[leaf1.vertsLeaf[1]][1]; twoz = Vertex[leaf1.vertsLeaf[1]][2];
|
---|
1532 | threex = Vertex[leaf1.vertsLeaf[2]][0]; threey = Vertex[leaf1.vertsLeaf[2]][1]; threez = Vertex[leaf1.vertsLeaf[2]][2];
|
---|
1533 | fourx = Vertex[leaf1.vertsLeaf[3]][0]; foury = Vertex[leaf1.vertsLeaf[3]][1]; fourz = Vertex[leaf1.vertsLeaf[3]][2];
|
---|
1534 |
|
---|
1535 | float center1x = (onex + twox + threex + fourx)*0.25f;
|
---|
1536 | float center1y = (oney + twoy + threey + foury)*0.25f;
|
---|
1537 | float center1z = (onez + twoz + threez + fourz)*0.25f;
|
---|
1538 |
|
---|
1539 | x1 = Vertex[leaf2.vertsLeaf[0]][0]; y1 = Vertex[leaf2.vertsLeaf[0]][1]; z1 = Vertex[leaf2.vertsLeaf[0]][2];
|
---|
1540 | x2 = Vertex[leaf2.vertsLeaf[1]][0]; y2 = Vertex[leaf2.vertsLeaf[1]][1]; z2 = Vertex[leaf2.vertsLeaf[1]][2];
|
---|
1541 | x3 = Vertex[leaf2.vertsLeaf[2]][0]; y3 = Vertex[leaf2.vertsLeaf[2]][1]; z3 = Vertex[leaf2.vertsLeaf[2]][2];
|
---|
1542 | x4 = Vertex[leaf2.vertsLeaf[3]][0]; y4 = Vertex[leaf2.vertsLeaf[3]][1]; z4 = Vertex[leaf2.vertsLeaf[3]][2];
|
---|
1543 |
|
---|
1544 | float center2x = (x1 + x2 + x3 + x4)*0.25f;
|
---|
1545 | float center2y = (y1 + y2 + y3 + y4)*0.25f;
|
---|
1546 | float center2z = (z1 + z2 + z3 + z4)*0.25f;
|
---|
1547 |
|
---|
1548 | return distan(center1x,center1y,center1z,center2x,center2y,center2z);
|
---|
1549 | }
|
---|
1550 |
|
---|
1551 |
|
---|
1552 | bool TreeSimplifier::PruneOctree(LeafOctree *octree)
|
---|
1553 | {
|
---|
1554 | if (octree->HasChildren())
|
---|
1555 | {
|
---|
1556 | for (int i=0; i<8; i++)
|
---|
1557 | if (octree->children[i])
|
---|
1558 | if (PruneOctree(octree->children[i])) // if child was pruned, nullify it
|
---|
1559 | octree->children[i]=NULL;
|
---|
1560 | }
|
---|
1561 | else
|
---|
1562 | {
|
---|
1563 | if (octree->parent)
|
---|
1564 | {
|
---|
1565 | for (std::vector<int>::iterator it=octree->leaves.begin(); it!=octree->leaves.end(); it++)
|
---|
1566 | {
|
---|
1567 | int idleaf = *it;
|
---|
1568 | octree->parent->leaves.push_back(idleaf);
|
---|
1569 | octree_owning_leaf[idleaf] = octree->parent;
|
---|
1570 | }
|
---|
1571 | return true;
|
---|
1572 | }
|
---|
1573 | }
|
---|
1574 | return false;
|
---|
1575 | }
|
---|
1576 |
|
---|
1577 | void TreeSimplifier::CrossProduct(const float *v1, const float *v2, float *res) const
|
---|
1578 | {
|
---|
1579 | res[0] = v1[1]*v2[2] - v1[2]*v2[1];
|
---|
1580 | res[1] = v1[2]*v2[0] - v1[0]*v2[2];
|
---|
1581 | res[2] = v1[0]*v2[1] - v1[1]*v2[0];
|
---|
1582 | }
|
---|
1583 |
|
---|
1584 | float TreeSimplifier::SquaredModule(const float *v) const
|
---|
1585 | {
|
---|
1586 | return (v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
|
---|
1587 | }
|
---|
1588 |
|
---|
1589 |
|
---|
1590 | float TreeSimplifier::CalculateLeafArea(Leaf &leaf) const
|
---|
1591 | {
|
---|
1592 | int idv0 = leaf.vertsLeaf[0];
|
---|
1593 | int idv1 = leaf.vertsLeaf[1];
|
---|
1594 | int idv2 = leaf.vertsLeaf[2];
|
---|
1595 | int idv3 = leaf.vertsLeaf[3];
|
---|
1596 |
|
---|
1597 | float * v0 = Vertex[idv0];
|
---|
1598 | float * v1 = Vertex[idv1];
|
---|
1599 | float * v2 = Vertex[idv2];
|
---|
1600 | float * v3 = Vertex[idv3];
|
---|
1601 |
|
---|
1602 | float v1v0[3] = {v1[0]-v0[0],v1[1]-v0[1],v1[2]-v0[2]};
|
---|
1603 | float v2v0[3] = {v2[0]-v0[0],v2[1]-v0[1],v2[2]-v0[2]};
|
---|
1604 | float v2v1[3] = {v2[0]-v1[0],v2[1]-v1[1],v2[2]-v1[2]};
|
---|
1605 | float v3v1[3] = {v3[0]-v1[0],v3[1]-v1[1],v3[2]-v1[2]};
|
---|
1606 |
|
---|
1607 | float cross1[3], cross2[3];
|
---|
1608 |
|
---|
1609 | CrossProduct(v1v0,v2v0,cross1);
|
---|
1610 | CrossProduct(v2v1,v3v1,cross2);
|
---|
1611 |
|
---|
1612 | float mod1 = SquaredModule(cross1);
|
---|
1613 | float mod2 = SquaredModule(cross2);
|
---|
1614 |
|
---|
1615 | return mod1*0.5f + mod2*0.5f;
|
---|
1616 | }
|
---|