// GOLEM library #include #include using namespace std; #include "AxisAlignedBox3.h" #include "Ray.h" #include "Polygon3.h" #include "Mesh.h" namespace GtpVisibilityPreprocessor { #define FATAL Debug #define FATAL_ABORT exit(1) // AxisAlignedBox3 implementations // Overload << operator for C++-style output ostream& operator<< (ostream &s, const AxisAlignedBox3 &A) { return s << '[' << A.mMin.x << ", " << A.mMin.y << ", " << A.mMin.z << "][" << A.mMax.x << ", " << A.mMax.y << ", " << A.mMax.z << ']'; } // Overload >> operator for C++-style input istream& operator>> (istream &s, AxisAlignedBox3 &A) { char a; // read "[min.x, min.y, min.z][mMax.x, mMax.y, mMax.z]" return s >> a >> A.mMin.x >> a >> A.mMin.y >> a >> A.mMin.z >> a >> a >> A.mMax.x >> a >> A.mMax.y >> a >> A.mMax.z >> a; } bool AxisAlignedBox3::Unbounded() const { return (mMin == Vector3(-MAXFLOAT)) || (mMax == Vector3(-MAXFLOAT)); } void AxisAlignedBox3::Include(const Vector3 &newpt) { Minimize(mMin, newpt); Maximize(mMax, newpt); } void AxisAlignedBox3::Include(const Polygon3 &newpoly) { VertexContainer::const_iterator it, it_end = newpoly.mVertices.end(); for (it = newpoly.mVertices.begin(); it != it_end; ++ it) Include(*it); } void AxisAlignedBox3::Include(const PolygonContainer &polys) { PolygonContainer::const_iterator it, it_end = polys.end(); for (it = polys.begin(); it != it_end; ++ it) Include(*(*it)); } void AxisAlignedBox3::Include(Mesh *mesh) { VertexContainer::const_iterator it, it_end = mesh->mVertices.end(); for (it = mesh->mVertices.begin(); it != it_end; ++ it) Include(*it); } void AxisAlignedBox3::Include(const AxisAlignedBox3 &bbox) { Minimize(mMin, bbox.mMin); Maximize(mMax, bbox.mMax); } bool AxisAlignedBox3::IsCorrect() { if ( (mMin.x > mMax.x) || (mMin.y > mMax.y) || (mMin.z > mMax.z) ) return false; // box is not formed return true; } void AxisAlignedBox3::GetEdge(const int edge, Vector3 *a, Vector3 *b) const { switch(edge) { case 0: a->SetValue(mMin.x, mMin.y, mMin.z); b->SetValue(mMin.x, mMin.y, mMax.z); break; case 1: a->SetValue(mMin.x, mMin.y, mMin.z); b->SetValue(mMin.x, mMax.y, mMin.z); break; case 2: a->SetValue(mMin.x, mMin.y, mMin.z); b->SetValue(mMax.x, mMin.y, mMin.z); break; case 3: a->SetValue(mMax.x, mMax.y, mMax.z); b->SetValue(mMax.x, mMax.y, mMin.z); break; case 4: a->SetValue(mMax.x, mMax.y, mMax.z); b->SetValue(mMax.x, mMin.y, mMax.z); break; case 5: a->SetValue(mMax.x, mMax.y, mMax.z); b->SetValue(mMin.x, mMax.y, mMax.z); break; case 6: a->SetValue(mMin.x, mMin.y, mMax.z); b->SetValue(mMin.x, mMax.y, mMax.z); break; case 7: a->SetValue(mMin.x, mMin.y, mMax.z); b->SetValue(mMax.x, mMin.y, mMax.z); break; case 8: a->SetValue(mMin.x, mMax.y, mMin.z); b->SetValue(mMin.x, mMax.y, mMax.z); break; case 9: a->SetValue(mMin.x, mMax.y, mMin.z); b->SetValue(mMax.x, mMax.y, mMin.z); break; case 10: a->SetValue(mMax.x, mMin.y, mMin.z); b->SetValue(mMax.x, mMax.y, mMin.z); break; case 11: a->SetValue(mMax.x, mMin.y, mMin.z); b->SetValue(mMax.x, mMin.y, mMax.z); break; } } // returns the vertex indices in the range <0..7>, v = 4.x + 2.y + z, where // x,y,z are either 0 or 1; (0 .. min coordinate, 1 .. max coordinate) void AxisAlignedBox3::GetEdge(const int edge, int &aIdx, int &bIdx) const { switch(edge) { case 0: aIdx = 0; bIdx = 1; break; case 1: aIdx = 0; bIdx = 2; break; case 2: aIdx = 0; bIdx = 4; break; case 3: aIdx = 7; bIdx = 6; break; case 4: aIdx = 7; bIdx = 5; break; case 5: aIdx = 7; bIdx = 3; break; case 6: aIdx = 1; bIdx = 3; break; case 7: aIdx = 1; bIdx = 5; break; case 8: aIdx = 2; bIdx = 3; break; case 9: aIdx = 2; bIdx = 6; break; case 10: aIdx = 4; bIdx = 6; break; case 11: aIdx = 4; bIdx = 5; break; } } void AxisAlignedBox3::Include(const int &axis, const float &newBound) { switch (axis) { case 0: { // x-axis if (mMin.x > newBound) mMin.x = newBound; if (mMax.x < newBound) mMax.x = newBound; break; } case 1: { // y-axis if (mMin.y > newBound) mMin.y = newBound; if (mMax.y < newBound) mMax.y = newBound; break; } case 2: { // z-axis if (mMin.z > newBound) mMin.z = newBound; if (mMax.z < newBound) mMax.z = newBound; break; } } } #if 0 // ComputeMinMaxT computes the minimum and maximum signed distances // of intersection with the ray; it returns 1 if the ray hits // the bounding box and 0 if it does not. int AxisAlignedBox3::ComputeMinMaxT(const Ray &ray, float *tmin, float *tmax) const { float minx, maxx, miny, maxy, minz, maxz; if (fabs(ray.dir.x) < 0.001) { if (mMin.x < ray.loc.x && mMax.x > ray.loc.x) { minx = -MAXFLOAT; maxx = MAXFLOAT; } else return 0; } else { float t1 = (mMin.x - ray.loc.x) / ray.dir.x; float t2 = (mMax.x - ray.loc.x) / ray.dir.x; if (t1 < t2) { minx = t1; maxx = t2; } else { minx = t2; maxx = t1; } if (maxx < 0) return 0; } if (fabs(ray.dir.y) < 0.001) { if (mMin.y < ray.loc.y && mMax.y > ray.loc.y) { miny = -MAXFLOAT; maxy = MAXFLOAT; } else return 0; } else { float t1 = (mMin.y - ray.loc.y) / ray.dir.y; float t2 = (mMax.y - ray.loc.y) / ray.dir.y; if (t1 < t2) { miny = t1; maxy = t2; } else { miny = t2; maxy = t1; } if (maxy < 0.0) return 0; } if (fabs(ray.dir.z) < 0.001) { if (mMin.z < ray.loc.z && mMax.z > ray.loc.z) { minz = -MAXFLOAT; maxz = MAXFLOAT; } else return 0; } else { float t1 = (mMin.z - ray.loc.z) / ray.dir.z; float t2 = (mMax.z - ray.loc.z) / ray.dir.z; if (t1 < t2) { minz = t1; maxz = t2; } else { minz = t2; maxz = t1; } if (maxz < 0.0) return 0; } *tmin = minx; if (miny > *tmin) *tmin = miny; if (minz > *tmin) *tmin = minz; *tmax = maxx; if (maxy < *tmax) *tmax = maxy; if (maxz < *tmax) *tmax = maxz; return 1; // yes, intersection was found } #else // another variant of the same, with less variables int AxisAlignedBox3::ComputeMinMaxT(const Ray &ray, float *tmin, float *tmax) const { const float dirEps = 1e-8f; register float minx, maxx; ray.ComputeInvertedDir(); if (fabs(ray.dir.x) < dirEps) { if (mMin.x < ray.loc.x && mMax.x > ray.loc.x) { minx = -MAXFLOAT; maxx = MAXFLOAT; } else return 0; } else { float t1 = (mMin.x - ray.loc.x) * ray.invDir.x; float t2 = (mMax.x - ray.loc.x) * ray.invDir.x; if (t1 < t2) { minx = t1; maxx = t2; } else { minx = t2; maxx = t1; } // if (maxx < 0.0) // return 0; } *tmin = minx; *tmax = maxx; if (fabs(ray.dir.y) < dirEps) { if (mMin.y < ray.loc.y && mMax.y > ray.loc.y) { minx = -MAXFLOAT; maxx = MAXFLOAT; } else return 0; } else { float t1 = (mMin.y - ray.loc.y) * ray.invDir.y; float t2 = (mMax.y - ray.loc.y) * ray.invDir.y; if (t1 < t2) { minx = t1; maxx = t2; } else { minx = t2; maxx = t1; } // if (maxx < 0.0) // return 0; } if (minx > *tmin) *tmin = minx; if (maxx < *tmax) *tmax = maxx; if (fabs(ray.dir.z) < dirEps) { if (mMin.z < ray.loc.z && mMax.z > ray.loc.z) { minx = -MAXFLOAT; maxx = MAXFLOAT; } else return 0; } else { float t1 = (mMin.z - ray.loc.z) * ray.invDir.z; float t2 = (mMax.z - ray.loc.z) * ray.invDir.z; if (t1 < t2) { minx = t1; maxx = t2; } else { minx = t2; maxx = t1; } // if (maxx < 0.0) // return 0; } if (minx > *tmin) *tmin = minx; if (maxx < *tmax) *tmax = maxx; return 1; // yes, intersection was found } #endif // ComputeMinMaxT computes the minimum and maximum parameters // of intersection with the ray; it returns 1 if the ray hits // the bounding box and 0 if it does not. int AxisAlignedBox3::ComputeMinMaxT(const Ray &ray, float *tmin, float *tmax, EFaces &entryFace, EFaces &exitFace) const { float minx, maxx, miny, maxy, minz, maxz; int swapped[3]; if (fabs(ray.dir.x) < 0.001) { if (mMin.x < ray.loc.x && mMax.x > ray.loc.x) { minx = -MAXFLOAT; maxx = MAXFLOAT; } else return 0; } else { float t1 = (mMin.x - ray.loc.x) / ray.dir.x; float t2 = (mMax.x - ray.loc.x) / ray.dir.x; if (t1 < t2) { minx = t1; maxx = t2; swapped[0] = 0; } else { minx = t2; maxx = t1; swapped[0] = 1; } if (maxx < 0) return 0; } if (fabs(ray.dir.y) < 0.001) { if (mMin.y < ray.loc.y && mMax.y > ray.loc.y) { miny = -MAXFLOAT; maxy = MAXFLOAT; } else return 0; } else { float t1 = (mMin.y - ray.loc.y) / ray.dir.y; float t2 = (mMax.y - ray.loc.y) / ray.dir.y; if (t1 < t2) { miny = t1; maxy = t2; swapped[1] = 0; } else { miny = t2; maxy = t1; swapped[1] = 1; } if (maxy < 0.0) return 0; } if (fabs(ray.dir.z) < 0.001) { if (mMin.z < ray.loc.z && mMax.z > ray.loc.z) { minz = -MAXFLOAT; maxz = MAXFLOAT; } else return 0; } else { float t1 = (mMin.z - ray.loc.z) / ray.dir.z; float t2 = (mMax.z - ray.loc.z) / ray.dir.z; if (t1 < t2) { minz = t1; maxz = t2; swapped[2] = 0; } else { minz = t2; maxz = t1; swapped[2] = 1; } if (maxz < 0.0) return 0; } *tmin = minx; entryFace = ID_Back; if (miny > *tmin) { *tmin = miny; entryFace = ID_Left; } if (minz > *tmin) { *tmin = minz; entryFace = ID_Bottom; } *tmax = maxx; exitFace = ID_Back; if (maxy < *tmax) { *tmax = maxy; exitFace = ID_Left; } if (maxz < *tmax) { *tmax = maxz; exitFace = ID_Bottom; } if (swapped[entryFace]) entryFace = (EFaces)(entryFace + 3); if (!swapped[exitFace]) exitFace = (EFaces)(exitFace + 3); return 1; // yes, intersection was found } void AxisAlignedBox3::Describe(ostream &app, int ind) const { indent(app, ind); app << "AxisAlignedBox3: min at(" << mMin << "), max at(" << mMax << ")\n"; } // computes the passing through parameters for case tmin0 int AxisAlignedBox3::GetMinMaxT(const Ray &ray, float *tmin, float *tmax) const { if (!ComputeMinMaxT(ray, tmin, tmax)) return 0; if ( *tmax < *tmin) return 0; // the ray passes outside the box if ( *tmax < 0.0) return 0; // the intersection is not on the positive halfline return 1; // ray hits the box .. origin can be outside or inside the box } // computes the signed distances for case tmin0 int AxisAlignedBox3::GetMinMaxT(const Ray &ray, float *tmin, float *tmax, EFaces &entryFace, EFaces &exitFace) const { if (!ComputeMinMaxT(ray, tmin, tmax, entryFace, exitFace)) return 0; if ( *tmax < *tmin) return 0; // the ray passes outside the box if ( *tmax < 0.0) return 0; // the intersection is not on the positive halfline return 1; // ray hits the box .. origin can be outside or inside the box } #if 0 int AxisAlignedBox3::IsInside(const Vector3 &point) const { return (point.x >= mMin.x) && (point.x <= mMax.x) && (point.y >= mMin.y) && (point.y <= mMax.y) && (point.z >= mMin.z) && (point.z <= mMax.z); } #else int AxisAlignedBox3::IsInside(const Vector3 &v) const { return ! (v.x < mMin.x || v.x > mMax.x || v.y < mMin.y || v.y > mMax.y || v.z < mMin.z || v.z > mMax.z); } #endif bool AxisAlignedBox3::Includes(const AxisAlignedBox3 &b) const { return (b.mMin.x >= mMin.x && b.mMin.y >= mMin.y && b.mMin.z >= mMin.z && b.mMax.x <= mMax.x && b.mMax.y <= mMax.y && b.mMax.z <= mMax.z); } // compute the coordinates of one vertex of the box Vector3 AxisAlignedBox3::GetVertex(int xAxis, int yAxis, int zAxis) const { Vector3 p; if (xAxis) p.x = mMax.x; else p.x = mMin.x; if (yAxis) p.y = mMax.y; else p.y = mMin.y; if (zAxis) p.z = mMax.z; else p.z = mMin.z; return p; } // compute the vertex for number N = <0..7>, N = 4.x + 2.y + z, where // x,y,z are either 0 or 1; (0 .. min coordinate, 1 .. max coordinate) void AxisAlignedBox3::GetVertex(const int N, Vector3 &vertex) const { switch (N) { case 0: vertex = mMin; break; case 1: vertex.SetValue(mMin.x, mMin.y, mMax.z); break; case 2: vertex.SetValue(mMin.x, mMax.y, mMin.z); break; case 3: vertex.SetValue(mMin.x, mMax.y, mMax.z); break; case 4: vertex.SetValue(mMax.x, mMin.y, mMin.z); break; case 5: vertex.SetValue(mMax.x, mMin.y, mMax.z); break; case 6: vertex.SetValue(mMax.x, mMax.y, mMin.z); break; case 7: vertex = mMax; break; default: { FATAL << "ERROR in AxisAlignedBox3::GetVertex N=" << N << "\n"; FATAL_ABORT; } } } // Returns region 0 .. 26 ; R = 9*x + 3*y + z ; (x,y,z) \in {0,1,2} int AxisAlignedBox3::GetRegionID(const Vector3 &point) const { int ID = 0; if (point.z >= mMin.z) { if (point.z <= mMax.z) ID += 1; // inside the two boundary planes else ID += 2; // outside } if (point.y >= mMin.y) { if (point.y <= mMax.y) ID += 3; // inside the two boundary planes else ID += 6; // outside } if (point.x >= mMin.x) { if (point.x <= mMax.x) ID += 9; // inside the two boundary planes else ID += 18; // outside } return ID; } // computes if a given box (smaller) lies at least in one // projection whole in the box (larger) = this encompasses given // ;-----; // | ;-; | // | '-' | // '-----' int AxisAlignedBox3::IsPiercedByBox(const AxisAlignedBox3 &box, int &axis) const { // test on x-axis if ( (mMax.x < box.mMin.x) || (mMin.x > box.mMax.x) ) return 0; // the boxes do not overlap at all at x-axis if ( (box.mMin.y > mMin.y) && (box.mMax.y < mMax.y) && (box.mMin.z > mMin.z) && (box.mMax.z < mMax.z) ) { axis = 0; return 1; // the boxes overlap in x-axis } // test on y-axis if ( (mMax.y < box.mMin.y) || (mMin.y > box.mMax.y) ) return 0; // the boxes do not overlap at all at y-axis if ( (box.mMin.x > mMin.x) && (box.mMax.x < mMax.x) && (box.mMin.z > mMin.z) && (box.mMax.z < mMax.z) ) { axis = 1; return 1; // the boxes overlap in y-axis } // test on z-axis if ( (mMax.z < box.mMin.z) || (mMin.z > box.mMax.z) ) return 0; // the boxes do not overlap at all at y-axis if ( (box.mMin.x > mMin.x) && (box.mMax.x < mMax.x) && (box.mMin.y > mMin.y) && (box.mMax.y < mMax.y) ) { axis = 2; return 1; // the boxes overlap in z-axis } return 0; } float AxisAlignedBox3::SurfaceArea() const { Vector3 ext = mMax - mMin; return 2.0f * (ext.x * ext.y + ext.x * ext.z + ext.y * ext.z); } const int AxisAlignedBox3::bvertices[27][9] = { // region number.. position {5,1,3,2,6,4,-1,-1,-1}, // 0 .. x=0 y=0 z=0 {4,5,1,3,2,0,-1,-1,-1}, // 1 .. x=0 y=0 z=1 {4,5,7,3,2,0,-1,-1,-1}, // 2 .. x=0 y=0 z=2 {0,1,3,2,6,4,-1,-1,-1}, // 3 .. x=0 y=1 z=0 {0,1,3,2,-1,-1,-1,-1,-1}, // 4 .. x=0 y=1 z=1 {1,5,7,3,2,0,-1,-1,-1}, // 5 .. x=0 y=1 z=2 {0,1,3,7,6,4,-1,-1,-1}, // 6 .. x=0 y=2 z=0 {0,1,3,7,6,2,-1,-1,-1}, // 7 .. x=0 y=2 z=1 {1,5,7,6,2,0,-1,-1,-1}, // 8 .. x=0 y=2 z=2 // the regions number <9,17> {5,1,0,2,6,4,-1,-1,-1}, // 9 .. x=1 y=0 z=0 {5,1,0,4,-1,-1,-1,-1,-1}, // 10 .. x=1 y=0 z=1 {7,3,1,0,4,5,-1,-1,-1}, // 11 .. x=1 y=0 z=2 {4,0,2,6,-1,-1,-1,-1,-1}, // 12 .. x=1 y=1 z=0 {0,2,3,1,5,4,6,7,-1}, // 13 .. x=1 y=1 z=1 .. inside the box {1,5,7,3,-1,-1,-1,-1,-1}, // 14 .. x=1 y=1 z=2 {4,0,2,3,7,6,-1,-1,-1}, // 15 .. x=1 y=2 z=0 {6,2,3,7,-1,-1,-1,-1,-1}, // 16 .. x=1 y=2 z=1 {1,5,7,6,2,3,-1,-1,-1}, // 17 .. x=1 y=2 z=2 // the regions number <18,26> {1,0,2,6,7,5,-1,-1,-1}, // 18 .. x=2 y=0 z=0 {1,0,4,6,7,5,-1,-1,-1}, // 19 .. x=2 y=0 z=1 {0,4,6,7,3,1,-1,-1,-1}, // 20 .. x=2 y=0 z=2 {4,0,2,6,7,5,-1,-1,-1}, // 21 .. x=2 y=1 z=0 {5,4,6,7,-1,-1,-1,-1,-1}, // 22 .. x=2 y=1 z=1 {5,4,6,7,3,1,-1,-1,-1}, // 23 .. x=2 y=1 z=2 {4,0,2,3,7,5,-1,-1,-1}, // 24 .. x=2 y=2 z=0 {5,4,6,2,3,7,-1,-1,-1}, // 25 .. x=2 y=2 z=1 {5,4,6,2,3,1,-1,-1,-1}, // 26 .. x=2 y=2 z=2 }; // the visibility of boundary faces from a given region // one to three triples: (axis, min_vertex, max_vertex), axis==-1(terminator) const int AxisAlignedBox3::bfaces[27][10] = { // region number .. position {0,0,3,1,0,5,2,0,6,-1}, // 0 .. x=0 y=0 z=0 {0,0,3,1,0,5,-1,-1,-1,-1}, // 1 .. x=0 y=0 z=1 {0,0,3,1,0,5,2,1,7,-1}, // 2 .. x=0 y=0 z=2 {0,0,3,2,0,6,-1,-1,-1,-1}, // 3 .. x=0 y=1 z=0 {0,0,3,-1,-1,-1,-1,-1,-1,-1},// 4 .. x=0 y=1 z=1 {0,0,3,2,1,7,-1,-1,-1,-1}, // 5 .. x=0 y=1 z=2 {0,0,3,1,2,7,2,0,6,-1}, // 6 .. x=0 y=2 z=0 {0,0,3,1,2,7,-1,-1,-1,-1}, // 7 .. x=0 y=2 z=1 {0,0,3,1,2,7,2,1,7,-1}, // 8 .. x=0 y=2 z=2 // the regions number <9,17> {1,0,5,2,0,6,-1,-1,-1,-1}, // 9 .. x=1 y=0 z=0 {1,0,5,-1,-1,-1,-1,-1,-1,-1},// 10 .. x=1 y=0 z=1 {1,0,5,2,1,7,-1,-1,-1,-1}, // 11 .. x=1 y=0 z=2 {2,0,6,-1,-1,-1,-1,-1,-1,-1},// 12 .. x=1 y=1 z=0 {-1,-1,-1,-1,-1,-1,-1,-1,-1,-1},// 13 .. x=1 y=1 z=1 .. inside the box {2,1,7,-1,-1,-1,-1,-1,-1,-1},// 14 .. x=1 y=1 z=2 {1,2,7,2,0,6,-1,-1,-1,-1}, // 15 .. x=1 y=2 z=0 {1,2,7,-1,-1,-1,-1,-1,-1,-1},// 16 .. x=1 y=2 z=1 {1,2,7,2,1,7,-1,-1,-1,-1}, // 17 .. x=1 y=2 z=2 // the region number <18,26> {0,4,7,1,0,5,2,0,6,-1}, // 18 .. x=2 y=0 z=0 {0,4,7,1,0,5,-1,-1,-1,-1}, // 19 .. x=2 y=0 z=1 {0,4,7,1,0,5,2,1,7,-1}, // 20 .. x=2 y=0 z=2 {0,4,7,2,0,6,-1,-1,-1,-1}, // 21 .. x=2 y=1 z=0 {0,4,7,-1,-1,-1,-1,-1,-1,-1},// 22 .. x=2 y=1 z=1 {0,4,7,2,1,7,-1,-1,-1,-1}, // 23 .. x=2 y=1 z=2 {0,4,7,1,2,7,2,0,6,-1}, // 24 .. x=2 y=2 z=0 {0,4,7,1,2,7,-1,-1,-1,-1}, // 25 .. x=2 y=2 z=1 {0,4,7,1,2,7,2,1,7,-1}, // 26 .. x=2 y=2 z=2 }; // the correct corners indexing from entry face to exit face // first index determines entry face, second index exit face, and // the two numbers (indx, inc) determines: ind = the index on the exit // face, when starting from the vertex 0 on entry face, 'inc' is // the increment when we go on entry face in order 0,1,2,3 to create // convex shaft with the rectangle on exit face. That is, inc = -1 or 1. const int AxisAlignedBox3::pairFaceRects[6][6][2] = { { // entry face = 0 {-1,0}, // exit face 0 .. no meaning {0,-1}, // 1 {0,-1}, // 2 {0,1}, // 3 .. opposite face {3,1}, // 4 {1,1} // 5 }, { // entry face = 1 {0,-1}, // exit face 0 {-1,0}, // 1 .. no meaning {0,-1}, // 2 {1,1}, // 3 {0,1}, // 4 .. opposite face {3,1} // 5 }, { // entry face = 2 {0,-1}, // 0 {0,-1}, // 1 {-1,0}, // 2 .. no meaning {3,1}, // 3 {1,1}, // 4 {0,1} // 5 .. opposite face }, { // entry face = 3 {0,1}, // 0 .. opposite face {3,-1}, // 1 {1,1}, // 2 {-1,0}, // 3 .. no meaning {0,-1}, // 4 {0,-1} // 5 }, { // entry face = 4 {1,1}, // 0 {0,1}, // 1 .. opposite face {3,1}, // 2 {0,-1}, // 3 {-1,0}, // 4 .. no meaning {0,-1} // 5 }, { // entry face = 5 {3,-1}, // 0 {1,1}, // 1 {0,1}, // 2 .. opposite face {0,-1}, // 3 {0,-1}, // 4 {-1,0} // 5 .. no meaning } }; // ------------------------------------------------------------ // The vertices that form CLOSEST points with respect to the region // for all the regions possible, number of regions is 3^3 = 27, // since two parallel sides of bbox forms three disjoint spaces. // The vertices are given in anti-clockwise order, stopped by value 15, // at most 8 points, at least 1 point. // The table includes the closest 1/2/4/8 points, followed possibly // by the set of coordinates that should be used for testing for // the proximity queries. The coordinates to be tested are described by // the pair (a,b), when a=0, we want to test min vector of the box, // when a=1, we want to test max vector of the box // b=0,1,2 corresponds to the axis (0=x,1=y,2=z) // The sequence is ended by 15, number -1 is used as the separator // between the vertices and coordinates. const int AxisAlignedBox3::cvertices[27][9] = { // region number.. position {0,15,15,15,15,15,15,15,15}, // 0 .. x=0 y=0 z=0 D one vertex {0,1,-1,0,0,0,1,15,15}, // 1 .. x=0 y=0 z=1 D two vertices foll. by 2 {1,15,15,15,15,15,15,15,15}, // 2 .. x=0 y=0 z=2 D one vertex {0,2,-1,0,0,0,2,15,15}, // 3 .. x=0 y=1 z=0 D {0,1,3,2,-1,0,0,15,15}, // 4 .. x=0 y=1 z=1 D {1,3,-1,0,0,1,2,15,15}, // 5 .. x=0 y=1 z=2 D {2,15,15,15,15,15,15,15,15}, // 6 .. x=0 y=2 z=0 D {2,3,-1,0,0,1,1,15,15}, // 7 .. x=0 y=2 z=1 D {3,15,15,15,15,15,15,15,15}, // 8 .. x=0 y=2 z=2 D // the regions number <9,17> {0,4,-1,0,1,0,2,15,15}, // 9 .. x=1 y=0 z=0 D {5,1,0,4,-1,0,1,15,15}, // 10 .. x=1 y=0 z=1 D {1,5,-1,0,1,1,2,15,15}, // 11 .. x=1 y=0 z=2 D {4,0,2,6,-1,0,2,15,15}, // 12 .. x=1 y=1 z=0 D {0,2,3,1,5,4,6,7,15}, // 13 .. x=1 y=1 z=1 .. inside the box {1,5,7,3,-1,1,2,15,15}, // 14 .. x=1 y=1 z=2 D {6,2,-1,0,2,1,1,15,15}, // 15 .. x=1 y=2 z=0 D {6,2,3,7,-1,1,1,15,15}, // 16 .. x=1 y=2 z=1 D {3,7,-1,1,1,1,2,15,15}, // 17 .. x=1 y=2 z=2 D // the regions number <18,26> {4,15,15,15,15,15,15,15,15}, // 18 .. x=2 y=0 z=0 D {4,5,-1,0,1,1,0,15,15}, // 19 .. x=2 y=0 z=1 D {5,15,15,15,15,15,15,15,15}, // 20 .. x=2 y=0 z=2 D {4,6,-1,0,2,1,0,15,15}, // 21 .. x=2 y=1 z=0 D {5,4,6,7,-1,1,0,15,15}, // 22 .. x=2 y=1 z=1 D {7,5,-1,1,0,1,2,15,15}, // 23 .. x=2 y=1 z=2 D {6,15,15,15,15,15,15,15,15}, // 24 .. x=2 y=2 z=0 D {6,7,-1,1,0,1,1,15,15}, // 25 .. x=2 y=2 z=1 D {7,15,15,15,15,15,15,15,15}, // 26 .. x=2 y=2 z=2 D }; // Table for Sphere-AABB intersection based on the region knowledge // Similar array to previous cvertices, but we omit the surfaces // which are not necessary for testing. First are vertices, // they are finished with -1. Second, there are indexes in // the pair (a,b), when a=0, we want to test min vector of the box, // when a=1, we want to test max vector of the box // b=0,1,2 corresponds to the axis (0=x,1=y,2=z) // // So either we check the vertices or only the distance in specified // dimensions. There are at all four possible cases: // // 1) we check one vertex - then sequence start with non-negative index // and is finished with 15 // 2) we check two coordinates of min/max vector describe by the pair // (a,b) .. a=min/max(0/1) b=x/y/z (0/1/2), sequence starts with 8 // and finishes with 15 // 3) we check only one coordinate of min/max, as for 2), sequence start // with 9 and ends with 15 // 4) Position 13 - sphere is inside the box, intersection always exist // the sequence start with 15 .. no further testing is necessary // in this case const int AxisAlignedBox3::csvertices[27][6] = { // region number.. position {0,15,15,15,15,15}, // 0 .. x=0 y=0 z=0 D vertex only {8,0,0,0,1,15}, // 1 .. x=0 y=0 z=1 D two coords. {1,15,15,15,15,15}, // 2 .. x=0 y=0 z=2 D vertex only {8,0,0,0,2,15}, // 3 .. x=0 y=1 z=0 D two coords {9,0,0,15,15,15}, // 4 .. x=0 y=1 z=1 D one coord {8,0,0,1,2,15}, // 5 .. x=0 y=1 z=2 D two coords. {2,15,15,15,15,15}, // 6 .. x=0 y=2 z=0 D one vertex {8,0,0,1,1,15}, // 7 .. x=0 y=2 z=1 D two coords {3,15,15,15,15,15}, // 8 .. x=0 y=2 z=2 D one vertex // the regions number <9,17> {8,0,1,0,2,15}, // 9 .. x=1 y=0 z=0 D two coords {9,0,1,15,15,15}, // 10 .. x=1 y=0 z=1 D one coord {8,0,1,1,2,15}, // 11 .. x=1 y=0 z=2 D two coords {9,0,2,15,15,15}, // 12 .. x=1 y=1 z=0 D one coord {15,15,15,15,15,15}, // 13 .. x=1 y=1 z=1 inside the box, special case/value {9,1,2,15,15,15}, // 14 .. x=1 y=1 z=2 D one corrd {8,0,2,1,1,15}, // 15 .. x=1 y=2 z=0 D two coords {9,1,1,15,15}, // 16 .. x=1 y=2 z=1 D one coord {8,1,1,1,2,15}, // 17 .. x=1 y=2 z=2 D two coords // the regions number <18,26> {4,15,15,15,15,15}, // 18 .. x=2 y=0 z=0 D one vertex {8,0,1,1,0,15}, // 19 .. x=2 y=0 z=1 D two coords {5,15,15,15,15,15}, // 20 .. x=2 y=0 z=2 D one vertex {8,0,2,1,0,15}, // 21 .. x=2 y=1 z=0 D two coords {9,1,0,15,15,15}, // 22 .. x=2 y=1 z=1 D one coord {8,1,0,1,2,15}, // 23 .. x=2 y=1 z=2 D two coords {6,15,15,15,15,15}, // 24 .. x=2 y=2 z=0 D one vertex {8,1,0,1,1,15}, // 25 .. x=2 y=2 z=1 D two coords {7,15,15,15,15,15}, // 26 .. x=2 y=2 z=2 D one vertex }; // The vertices that form all FARTHEST points with respect to the region // for all the regions possible, number of regions is 3^3 = 27, // since two parallel sides of bbox forms three disjoint spaces. // The vertices are given in anti-clockwise order, stopped by value 15, // at most 8 points, at least 1 point. // For testing, if the AABB is whole in the sphere, it is enough // to test only vertices, either 1,2,4, or 8. const int AxisAlignedBox3::fvertices[27][9] = { // region number.. position {7,15,15,15,15,15,15,15,15}, // 0 .. x=0 y=0 z=0 D {6,7,15,15,15,15,15,15,15}, // 1 .. x=0 y=0 z=1 D {6,15,15,15,15,15,15,15,15}, // 2 .. x=0 y=0 z=2 D {5,7,15,15,15,15,15,15,15}, // 3 .. x=0 y=1 z=0 D {4,5,7,6,15,15,15,15,15}, // 4 .. x=0 y=1 z=1 D {4,6,15,15,15,15,15,15,15}, // 5 .. x=0 y=1 z=2 D {5,15,15,15,15,15,15,15,15}, // 6 .. x=0 y=2 z=0 D {4,5,15,15,15,15,15,15,15}, // 7 .. x=0 y=2 z=1 D {4,15,15,15,15,15,15,15,15}, // 8 .. x=0 y=2 z=2 D // the regions number <9,17> {3,7,15,15,15,15,15,15,15}, // 9 .. x=1 y=0 z=0 D {7,3,2,6,15,15,15,15,15}, // 10 .. x=1 y=0 z=1 D {2,6,15,15,15,15,15,15,15}, // 11 .. x=1 y=0 z=2 D {5,1,3,7,15,15,15,15,15}, // 12 .. x=1 y=1 z=0 D {0,7,1,6,3,4,5,2,15}, // 13 .. x=1 y=1 z=1 .. inside the box {0,4,6,2,15,15,15,15,15}, // 14 .. x=1 y=1 z=2 D {5,1,15,15,15,15,15,15,15}, // 15 .. x=1 y=2 z=0 D {4,0,1,5,15,15,15,15,15}, // 16 .. x=1 y=2 z=1 D {4,0,15,15,15,15,15,15,15}, // 17 .. x=1 y=2 z=2 D // the regions number <18,26> {3,15,15,15,15,15,15,15,15}, // 18 .. x=2 y=0 z=0 D {2,3,15,15,15,15,15,15,15}, // 19 .. x=2 y=0 z=1 D {2,15,15,15,15,15,15,15,15}, // 20 .. x=2 y=0 z=2 D {1,3,15,15,15,15,15,15,15}, // 21 .. x=2 y=1 z=0 D {1,0,2,3,15,15,15,15,15}, // 22 .. x=2 y=1 z=1 D {2,0,15,15,15,15,15,15,15}, // 23 .. x=2 y=1 z=2 D {1,15,15,15,15,15,15,15,15}, // 24 .. x=2 y=2 z=0 D {0,1,15,15,15,15,15,15,15}, // 25 .. x=2 y=2 z=1 D {0,15,15,15,15,15,15,15,15}, // 26 .. x=2 y=2 z=2 D }; // Similar table as above, farthest points, but only the ones // necessary for testing the intersection problem. If we do // not consider the case 13, center of the sphere is inside the // box, then we can always test at most 2 box vertices to say whether // the whole box is inside the sphere. // The number of vertices is minimized using some assumptions // about the ortogonality of vertices and sphere properties. const int AxisAlignedBox3::fsvertices[27][9] = { // region number.. position {7,15,15,15,15,15,15,15,15}, // 0 .. x=0 y=0 z=0 D 1 vertex {6,7,15,15,15,15,15,15,15}, // 1 .. x=0 y=0 z=1 D 2 vertices {6,15,15,15,15,15,15,15,15}, // 2 .. x=0 y=0 z=2 D 1 vertex {5,7,15,15,15,15,15,15,15}, // 3 .. x=0 y=1 z=0 D 2 vertices {4,7,15,5,6,15,15,15,15}, // 4 .. x=0 y=1 z=1 D 4/2 vertices {4,6,15,15,15,15,15,15,15}, // 5 .. x=0 y=1 z=2 D 2 vertices {5,15,15,15,15,15,15,15,15}, // 6 .. x=0 y=2 z=0 D 1 vertex {4,5,15,15,15,15,15,15,15}, // 7 .. x=0 y=2 z=1 D 2 vertices {4,15,15,15,15,15,15,15,15}, // 8 .. x=0 y=2 z=2 D 1 vertex // the regions number <9,17> {3,7,15,15,15,15,15,15,15}, // 9 .. x=1 y=0 z=0 D 2 vertices {7,2,15,3,6,15,15,15,15}, // 10 .. x=1 y=0 z=1 D 4/2 vertices {2,6,15,15,15,15,15,15,15}, // 11 .. x=1 y=0 z=2 D 2 vertices {5,3,15,1,7,15,15,15,15}, // 12 .. x=1 y=1 z=0 D 4/2 vertices {0,7,1,6,3,4,5,2,15}, // 13 .. x=1 y=1 z=1 .. inside the box {0,6,15,4,2,15,15,15,15}, // 14 .. x=1 y=1 z=2 D 4/2 vertices {5,1,15,15,15,15,15,15,15}, // 15 .. x=1 y=2 z=0 D 2 vertices {4,1,15,0,5,15,15,15,15}, // 16 .. x=1 y=2 z=1 D 4/2 vertices {4,0,15,15,15,15,15,15,15}, // 17 .. x=1 y=2 z=2 D 2 vertices // the regions number <18,26> {3,15,15,15,15,15,15,15,15}, // 18 .. x=2 y=0 z=0 D 1 vertex {2,3,15,15,15,15,15,15,15}, // 19 .. x=2 y=0 z=1 D 2 vertices {2,15,15,15,15,15,15,15,15}, // 20 .. x=2 y=0 z=2 D 1 vertex {1,3,15,15,15,15,15,15,15}, // 21 .. x=2 y=1 z=0 D 2 vertices {1,2,15,0,3,15,15,15,15}, // 22 .. x=2 y=1 z=1 D 4/2 vertices {2,0,15,15,15,15,15,15,15}, // 23 .. x=2 y=1 z=2 D 2 vertices {1,15,15,15,15,15,15,15,15}, // 24 .. x=2 y=2 z=0 D 1 vertex {0,1,15,15,15,15,15,15,15}, // 25 .. x=2 y=2 z=1 D 2 vertices {0,15,15,15,15,15,15,15,15}, // 26 .. x=2 y=2 z=2 D 1 vertex }; // The fast computation of arctangent .. the maximal error is less // than 4.1 degrees, according to Graphics GEMSII, 1991, pages 389--391 // Ron Capelli: "Fast approximation to the arctangent" float atan22(const float& y) { const float x = 1.0; const float c = (float)(M_PI * 0.25); if (y < 0.0) { if (y < -1.0) return c * (-2.0f + x / y); // for angle in <-PI/2, -PI/4) else return c * (y / x); // for angle in <-PI/4 , 0> } else { if (y > 1.0) return c * (2.0f - x / y); // for angle in else return c * (y / x); // for angle in <0, PI/2> } } float AxisAlignedBox3::ProjectToSphereSA(const Vector3 &viewpoint, int *tcase) const { int id = GetRegionID(viewpoint); *tcase = id; // spherical projection .. SA represents solid angle if (id == 13) // .. inside the box return (float)(4.0*M_PI); // the whole sphere float SA = 0.0; // inital value int i = 0; // the pointer in the array of vertices while (bfaces[id][i] >= 0) { int axisO = bfaces[id][i++]; int minvIdx = bfaces[id][i++]; int maxvIdx = bfaces[id][i++]; Vector3 vmin, vmax; GetVertex(minvIdx, vmin); GetVertex(maxvIdx, vmax); float h = fabs(vmin[axisO] - viewpoint[axisO]); int axis = (axisO + 1) % 3; // next axis float a = (vmin[axis] - viewpoint[axis]) / h; // minimum for v-range float b = (vmax[axis] - viewpoint[axis]) / h; // maximum for v-range //if (a > b) { // FATAL << "ProjectToSphereSA::Error a > b\n"; // FATAL_ABORT; //} //if (vmin[axisO] != vmax[axisO]) { // FATAL << "ProjectToSphereSA::Error a-axis != b-axis\n"; // FATAL_ABORT; //} axis = (axisO + 2) % 3; // next second axis float c = (vmin[axis] - viewpoint[axis]) / h; // minimum for u-range float d = (vmax[axis] - viewpoint[axis]) / h; // maximum for u-range //if (c > d) { // FATAL << "ProjectToSphereSA::Error c > d\n"; // FATAL_ABORT; //} SA +=atan22(d*b/sqrt(b*b + d*d + 1.0f)) - atan22(b*c/sqrt(b*b + c*c + 1.0f)) - atan22(d*a/sqrt(a*a + d*d + 1.0f)) + atan22(a*c/sqrt(a*a + c*c + 1.0f)); } #if 0 if ((SA > 2.0*M_PI) || (SA < 0.0)) { FATAL << "The solid angle has strange value: "; FATAL << "SA = "<< SA << endl; FATAL_ABORT; } #endif return SA; } // Projects the box to a plane given a normal vector only and // computes the surface area of the projected silhouette // no clipping of the box is performed. float AxisAlignedBox3::ProjectToPlaneSA(const Vector3 &normal) const { Vector3 size = Size(); // the surface area of the box to a yz-plane - perpendicular to x-axis float sax = size.y * size.z; // the surface area of the box to a zx-plane - perpendicular to y-axis float say = size.z * size.x; // the surface area of the box to a xy-plane - perpendicular to z-axis float saz = size.x * size.y; return sax * fabs(normal.x) + say * fabs(normal.y) + saz * fabs(normal.z); } // This definition allows to be a point when answering true bool AxisAlignedBox3::IsCorrectAndNotPoint() const { if ( (mMin.x > mMax.x) || (mMin.y > mMax.y) || (mMin.z > mMax.z) ) return false; // box is not formed if ( (mMin.x == mMax.x) && (mMin.y == mMax.y) && (mMin.z == mMax.z) ) return false; // degenerates to a point return true; } // This definition allows to be a point when answering true bool AxisAlignedBox3::IsPoint() const { if ( (mMin.x == mMax.x) && (mMin.y == mMax.y) && (mMin.z == mMax.z) ) return true; // degenerates to a point return false; } // This definition requires shape of non-zero volume bool AxisAlignedBox3::IsSingularOrIncorrect() const { if ( (mMin.x >= mMax.x) || (mMin.y >= mMax.y) || (mMin.z >= mMax.z) ) return true; // box is not formed return false; // has non-zero volume } // returns true, when the sphere specified by the origin and radius // fully contains the box bool AxisAlignedBox3::IsFullyContainedInSphere(const Vector3 ¢er, float rad) const { int region = GetRegionID(center); float rad2 = rad*rad; // vertex of the box Vector3 vertex; int i = 0; for (i = 0 ; ; i++) { int a = fsvertices[region][i]; if (a == 15) return true; // if was not false untill now, it must be contained assert( (a>=0) && (a<8) ); // normal vertex GetVertex(a, vertex); if (SqrMagnitude(vertex - center) > rad2) return false; } // for } // returns true, when the volume of the sphere and volume of the // axis aligned box has no intersection bool AxisAlignedBox3::HasNoIntersectionWithSphere(const Vector3 ¢er, float rad) const { int region = GetRegionID(center); float rad2 = rad*rad; // vertex of the box Vector3 vertex; switch (csvertices[region][0]) { case 8: { // test two coordinates described within the field int face = 3*csvertices[region][1] + csvertices[region][2]; float dist = GetExtent(face) - center[csvertices[region][2]]; dist *= dist; face = 3 * (csvertices[region][3]) + csvertices[region][4]; float dist2 = GetExtent(face) - center[csvertices[region][4]]; dist += (dist2 * dist2); if (dist > rad2) return true; // no intersection is possible } case 9: { // test one coordinate described within the field int face = 3*csvertices[region][1] + csvertices[region][2]; float dist = fabs(GetExtent(face) - center[csvertices[region][2]]); if (dist > rad) return true; // no intersection is possible } case 15: return false; // box and sphere surely has intersection default: { // test using normal vertices assert( (csvertices[region][0]>=0) && (csvertices[region][0]<8) ); // normal vertex GetVertex(csvertices[region][0], vertex); if (SqrMagnitude(vertex - center) > rad2) return true; // no intersectino is possible } } // switch return false; // partial or full containtment } #if 0 // Given the sphere, determine the mutual position between the // sphere and box // SOME BUG IS INSIDE !!!! V.H. 25/4/2001 int AxisAlignedBox3::MutualPositionWithSphere(const Vector3 ¢er, float rad) const { int region = GetRegionID(center); float rad2 = rad*rad; // vertex of the box Vector3 vertex; // first testing for full containtment - whether sphere fully // contains the box int countInside = 0; // how many points were found inside int i = 0; for (i = 0 ; ; i++) { int a = fsvertices[region][i]; if (a == 15) return 1; // the sphere fully contain the box assert( (a>=0) && (a<8) ); // normal vertex GetVertex(a, vertex); if (SqrMagnitude(vertex - center) <= rad2) countInside++; // the number of vertices inside the sphere else { if (countInside) return 0; // partiall overlap has been found // the sphere does not fully contain the box .. only way to break // this loop and go for other testing break; } } // for // now only box and sphere can partially overlap or no intersection switch (csvertices[region][0]) { case 8: { // test two coordinates described within the field int face = 3*csvertices[region][1] + csvertices[region][2]; float dist = GetExtent(face) - center[csvertices[region][2]]; dist *= dist; face = 3 * (csvertices[region][3]) + csvertices[region][4]; float dist2 = GetExtent(face) - center[csvertices[region][4]]; dist += (dist2 * dist2); if (dist > rad2 ) return -1; // no intersection is possible } case 9: { // test one coordinate described within the field int face = 3*csvertices[region][1] + csvertices[region][2]; float dist = fabs(GetExtent(face) - center[csvertices[region][2]]); if (dist > rad) return -1; // no intersection is possible } case 15: return 0 ; // partial overlap is now guaranteed default: { // test using normal vertices assert( (csvertices[region][0]>=0) && (csvertices[region][0]<8) ); // normal vertex GetVertex(csvertices[region][0], vertex); if (SqrMagnitude(vertex - center) > rad2) return -1; // no intersection is possible } } // switch return 0; // partial intersection is guaranteed } #else // Some maybe smarter version, extendible easily to d-dimensional // space! // Given a sphere described by the center and radius, // the fullowing function returns: // -1 ... the sphere and the box are completely separate // 0 ... the sphere and the box only partially overlap // 1 ... the sphere contains fully the box // Note: the case when box fully contains the sphere is not reported // since it was not required. int AxisAlignedBox3::MutualPositionWithSphere(const Vector3 ¢er, float rad) const { //#define SPEED_UP #ifndef SPEED_UP // slow version, instructively written #if 0 // does it make sense to test // checking the sides of the box for possible non-intersection if ( ((center.x + rad) < mMin.x) || ((center.x - rad) > mMax.x) || ((center.y + rad) < mMin.y) || ((center.y - rad) > mMax.y) || ((center.z + rad) < mMin.z) || ((center.z - rad) > mMax.z) ) { // cout << "r "; return -1; // no overlap is possible } #endif // someoverlap is possible, check the distance of vertices rad = rad*rad; float sumMin = 0; // Try to minimize the function of a distance // from the sphere center // for x-axis float minSqrX = sqr(mMin.x - center.x); float maxSqrX = sqr(mMax.x - center.x); if (center.x < mMin.x) sumMin = minSqrX; else if (center.x > mMax.x) sumMin = maxSqrX; // for y-axis float minSqrY = sqr(mMin.y - center.y); float maxSqrY = sqr(mMax.y - center.y); if (center.y < mMin.y) sumMin += minSqrY; else if (center.y > mMax.y) sumMin += maxSqrY; // for z-axis float minSqrZ = sqr(mMin.z - center.z); float maxSqrZ = sqr(mMax.z - center.z); if (center.z < mMin.z) sumMin += minSqrZ; else if (center.z > mMax.z) sumMin += maxSqrZ; if (sumMin > rad) return -1; // no intersection between sphere and box // try to find out the maximum distance between the // sphere center and vertices float sumMax = 0; if (minSqrX > maxSqrX) sumMax = minSqrX; else sumMax = maxSqrX; if (minSqrY > maxSqrY) sumMax += minSqrY; else sumMax += maxSqrY; if (minSqrZ > maxSqrZ) sumMax += minSqrZ; else sumMax += maxSqrZ; // sumMin < rad if (sumMax < rad) return 1; // the sphere contains the box completely // partial intersection, part of the box is outside the sphere return 0; #else // Optimized version of the test #ifndef __VECTOR_HACK #error "__VECTOR_HACK for Vector3 was not defined" #endif // some overlap is possible, check the distance of vertices rad = rad*rad; float sumMin = 0; float sumMax = 0; // Try to minimize the function of a distance // from the sphere center const float *minp = &(min[0]); const float *maxp = &(max[0]); const float *pcenter = &(center[0]); // for x-axis for (int i = 0; i < 3; i++, minp++, maxp++, pcenter++) { float minsqr = sqr(*minp - *pcenter); float maxsqr = sqr(*maxp - *pcenter); if (*pcenter < *minp) sumMin += minsqr; else if (*pcenter > *maxp) sumMin += maxsqr; sumMax += (minsqr > maxsqr) ? minsqr : maxsqr; } if (sumMin > rad) return -1; // no intersection between sphere and box // sumMin < rad if (sumMax < rad) return 1; // the sphere contains the box completely // partial intersection, part of the box is outside the sphere return 0; #endif } #endif // Given the cube describe by the center and the half-sie, // determine the mutual position between the cube and the box int AxisAlignedBox3::MutualPositionWithCube(const Vector3 ¢er, float radius) const { // the cube is described by the center and the distance to the any face // along the axes // Note on efficiency! // Can be quite optimized using tables, but I do not have time // V.H. 18/11/2001 AxisAlignedBox3 a = AxisAlignedBox3(Vector3(center.x - radius, center.y - radius, center.z - radius), Vector3(center.x + radius, center.y + radius, center.z + radius)); if (a.Includes(*this)) return 1; // cube contains the box if (OverlapS(a,*this)) return 0; // cube partially overlap the box return -1; // completely separate } void AxisAlignedBox3::GetSqrDistances(const Vector3 &point, float &minDistance, float &maxDistance ) const { #ifndef __VECTOR_HACK #error "__VECTOR_HACK for Vector3 was not defined" #endif // some overlap is possible, check the distance of vertices float sumMin = 0; float sumMax = 0; // Try to minimize the function of a distance // from the sphere center const float *minp = &(mMin[0]); const float *maxp = &(mMax[0]); const float *pcenter = &(point[0]); // for x-axis for (int i = 0; i < 3; i++, minp++, maxp++, pcenter++) { float minsqr = sqr(*minp - *pcenter); float maxsqr = sqr(*maxp - *pcenter); if (*pcenter < *minp) sumMin += minsqr; else if (*pcenter > *maxp) sumMin += maxsqr; sumMax += (minsqr > maxsqr) ? minsqr : maxsqr; } minDistance = sumMin; maxDistance = sumMax; } int AxisAlignedBox3::Side(const Plane3 &plane) const { Vector3 v; int i, m=3, M=-3, s; for (i=0;i<8;i++) { GetVertex(i, v); if((s = plane.Side(v)) < m) m=s; if(s > M) M=s; if (m && m==-M) return 0; } return (m == M) ? m : m + M; } Plane3 AxisAlignedBox3::GetPlane(const int face) const { switch (face) { case 0: return Plane3(Vector3(-1, 0, 0), mMin); case 1: return Plane3(Vector3(1, 0, 0), mMax); case 2: return Plane3(Vector3(0, -1, 0), mMin); case 3: return Plane3(Vector3(0, 1, 0), mMax); case 4: return Plane3(Vector3(0, 0, -1), mMin); case 5: return Plane3(Vector3(0, 0, 1), mMax); } // should not come here return Plane3(); } int AxisAlignedBox3::GetFaceVisibilityMask(const Rectangle3 &rectangle) const { int mask = 0; for (int i=0; i < 4; i++) mask |= GetFaceVisibilityMask(rectangle.mVertices[i]); return mask; } int AxisAlignedBox3::GetFaceVisibilityMask(const Vector3 &position) const { // assume that we are not inside the box int c=0; if (position.x<(mMin.x-Limits::Small)) c|=1; else if (position.x>(mMax.x+Limits::Small)) c|=2; if (position.y<(mMin.y-Limits::Small)) c|=4; else if (position.y>(mMax.y+Limits::Small)) c|=8; if (position.z<(mMin.z-Limits::Small)) c|=16; else if (position.z>(mMax.z+Limits::Small)) c|=32; return c; } Rectangle3 AxisAlignedBox3::GetFace(const int face) const { Vector3 v[4]; switch (face) { case 0: v[3].SetValue(mMin.x,mMin.y,mMin.z); v[2].SetValue(mMin.x,mMax.y,mMin.z); v[1].SetValue(mMin.x,mMax.y,mMax.z); v[0].SetValue(mMin.x,mMin.y,mMax.z); break; case 1: v[0].SetValue(mMax.x,mMin.y,mMin.z); v[1].SetValue(mMax.x,mMax.y,mMin.z); v[2].SetValue(mMax.x,mMax.y,mMax.z); v[3].SetValue(mMax.x,mMin.y,mMax.z); break; case 2: v[3].SetValue(mMin.x,mMin.y,mMin.z); v[2].SetValue(mMin.x,mMin.y,mMax.z); v[1].SetValue(mMax.x,mMin.y,mMax.z); v[0].SetValue(mMax.x,mMin.y,mMin.z); break; case 3: v[0].SetValue(mMin.x,mMax.y,mMin.z); v[1].SetValue(mMin.x,mMax.y,mMax.z); v[2].SetValue(mMax.x,mMax.y,mMax.z); v[3].SetValue(mMax.x,mMax.y,mMin.z); break; case 4: v[3].SetValue(mMin.x,mMin.y,mMin.z); v[2].SetValue(mMax.x,mMin.y,mMin.z); v[1].SetValue(mMax.x,mMax.y,mMin.z); v[0].SetValue(mMin.x,mMax.y,mMin.z); break; case 5: v[0].SetValue(mMin.x,mMin.y,mMax.z); v[1].SetValue(mMax.x,mMin.y,mMax.z); v[2].SetValue(mMax.x,mMax.y,mMax.z); v[3].SetValue(mMin.x,mMax.y,mMax.z); break; } return Rectangle3(v[0], v[1], v[2], v[3]); } struct VertexData { Vector3 mVertex; float mAngle; VertexData(Vector3 vtx, float angle): mVertex(vtx), mAngle(angle) {} bool operator<(const VertexData &b) const { return mAngle > b.mAngle; } }; // TODO: use a table to avoid normal and distance computations Polygon3 *AxisAlignedBox3::CrossSection(const Plane3 &plane) const { Polygon3 *planePoly = new Polygon3(); int side[8]; bool onFrontSide = false, onBackSide = false; Vector3 vtx; //-- compute classification of vertices for (int i = 0; i < 8; ++i) { GetVertex(i, vtx); side[i] = plane.Side(vtx); if (side[i] > 0) onFrontSide = true; else if (side[i] < 0) onBackSide = true; else // vertex coincident => push_back planePoly->mVertices.push_back(vtx); } //-- find intersections if (onFrontSide && onBackSide) { Vector3 ptA, ptB; for (int i = 0; i < 12; ++ i) { int aIdx, bIdx; GetEdge(i, aIdx, bIdx); ptA = GetVertex(aIdx); ptB = GetVertex(bIdx); int sideA = side[aIdx]; int sideB = side[bIdx]; if (((sideA > 0) && (sideB < 0)) || (sideA < 0) && (sideB > 0)) planePoly->mVertices.push_back(plane.FindIntersection(ptA, ptB)); } } // order intersections if (planePoly->mVertices.size() > 3) { Vector3 centerOfMass(0); int i; // compute center of mass for (i = 0; i < (int)planePoly->mVertices.size(); ++ i) centerOfMass += planePoly->mVertices[i]; centerOfMass /= (float)planePoly->mVertices.size(); vector vertexData; Vector3 refVec = Normalize(centerOfMass - planePoly->mVertices[0]); // compute angle to reference point for (i = 1; i < (int)planePoly->mVertices.size(); ++ i) { float angle = Angle(refVec, centerOfMass - planePoly->mVertices[i], plane.mNormal); vertexData.push_back(VertexData(planePoly->mVertices[i], angle)); } std::stable_sort(vertexData.begin(), vertexData.end()); // update vertices for (i = 1; i < (int)planePoly->mVertices.size(); ++ i) planePoly->mVertices[i] = vertexData[i - 1].mVertex; } else if (planePoly->mVertices.size() == 3) { // fix orientation if needed if (DotProd(planePoly->GetNormal(), plane.mNormal) < 0) { Vector3 v = planePoly->mVertices[1]; planePoly->mVertices[1] = planePoly->mVertices[2]; planePoly->mVertices[2] = v; } } return planePoly; } bool AxisAlignedBox3::GetRaySegment(const Ray &ray, float &minT, float &maxT) const { maxT = 1e15f; minT = 0; // test with bounding box if (!GetMinMaxT(ray, &minT, &maxT)) return false; if (minT < 0) minT = 0; // bound ray or line segment if (//(ray.GetType() == Ray::LOCAL_RAY) && !ray.intersections.empty() && (ray.intersections[0].mT <= maxT)) { maxT = ray.intersections[0].mT; } return true; } // Compute tmin and tmax for a ray, whenever required .. need not pierce box int AxisAlignedBox3::ComputeMinMaxT(const Vector3 &origin, const Vector3 &direction, float *tmin, float *tmax) const { register float minx, maxx; Vector3 invDirection; const float eps = 1e-6f; const float invEps = 1e6f; // it does change the ray direction very slightly, // but the size direction vector is not practically changed if (fabs(direction.x) < eps) { if (direction.x < 0.0f) invDirection.x = -invEps; else invDirection.x = invEps; } else invDirection.x = 1.0f / direction.x; if (fabs(direction.y) < eps) { if (direction.y < 0.0) invDirection.y = -invEps; else invDirection.y = invEps; } else invDirection.y = 1.0f / direction.y; if (fabs(direction.z) < eps) { if (direction.z < 0.0f) invDirection.z = -invEps; else invDirection.z = invEps; } else invDirection.z = 1.0f / direction.z; if (fabs(direction.x) < 0.001f) { if (mMin.x < origin.x && mMax.x > origin.x) { minx = -MAXFLOAT; maxx = MAXFLOAT; } else return 0; } else { float t1 = (mMin.x - origin.x) * invDirection.x; float t2 = (mMax.x - origin.x) * invDirection.x; if (t1 < t2) { minx = t1; maxx = t2; } else { minx = t2; maxx = t1; } // if (maxx < 0.0) // return 0; } *tmin = minx; *tmax = maxx; if (fabs(direction.y) < 0.001) { if (mMin.y < origin.y && mMax.y > origin.y) { minx = -MAXFLOAT; maxx = MAXFLOAT; } else return 0; } else { float t1 = (mMin.y - origin.y) * invDirection.y; float t2 = (mMax.y - origin.y) * invDirection.y; if (t1 < t2) { minx = t1; maxx = t2; } else { minx = t2; maxx = t1; } // if (maxx < 0.0) // return 0; } if (minx > *tmin) *tmin = minx; if (maxx < *tmax) *tmax = maxx; if (fabs(direction.z) < 0.001) { if (mMin.z < origin.z && mMax.z > origin.z) { minx = -MAXFLOAT; maxx = MAXFLOAT; } else return 0; } else { float t1 = (mMin.z - origin.z) * invDirection.z; float t2 = (mMax.z - origin.z) * invDirection.z; if (t1 < t2) { minx = t1; maxx = t2; } else { minx = t2; maxx = t1; } // if (maxx < 0.0) // return 0; } if (minx > *tmin) *tmin = minx; if (maxx < *tmax) *tmax = maxx; return 1; // yes, intersection was found } bool AxisAlignedBox3::GetIntersectionFace(Rectangle3 &face, const AxisAlignedBox3 &neighbour) const { if (EpsilonEqual(mMin[0], neighbour.Max(0))) { float maxy = min(mMax.y, neighbour.mMax.y); float maxz = min(mMax.z, neighbour.mMax.z); float miny = max(mMin.y, neighbour.mMin.y); float minz = max(mMin.z, neighbour.mMin.z); face.mVertices[3].SetValue(mMin.x, miny, minz); face.mVertices[2].SetValue(mMin.x, maxy, minz); face.mVertices[1].SetValue(mMin.x, maxy, maxz); face.mVertices[0].SetValue(mMin.x, miny, maxz); return true; } if (EpsilonEqual(mMax[0], neighbour.Min(0))) { float maxy = min(mMax.y, neighbour.mMax.y); float maxz = min(mMax.z, neighbour.mMax.z); float miny = max(mMin.y, neighbour.mMin.y); float minz = max(mMin.z, neighbour.mMin.z); face.mVertices[0].SetValue(mMax.x, miny, minz); face.mVertices[1].SetValue(mMax.x, maxy, minz); face.mVertices[2].SetValue(mMax.x, maxy, maxz); face.mVertices[3].SetValue(mMax.x, miny, maxz); return true; } if (EpsilonEqual(mMin[1], neighbour.Max(1))) { float maxx = min(mMax.x, neighbour.mMax.x); float maxz = min(mMax.z, neighbour.mMax.z); float minx = max(mMin.x, neighbour.mMin.x); float minz = max(mMin.z, neighbour.mMin.z); face.mVertices[3].SetValue(minx, mMin.y, minz); face.mVertices[2].SetValue(minx, mMin.y, maxz); face.mVertices[1].SetValue(maxx, mMin.y, maxz); face.mVertices[0].SetValue(maxx, mMin.y, minz); return true; } if (EpsilonEqual(mMax[1], neighbour.Min(1))) { float maxx = min(mMax.x, neighbour.mMax.x); float maxz = min(mMax.z, neighbour.mMax.z); float minx = max(mMin.x, neighbour.mMin.x); float minz = max(mMin.z, neighbour.mMin.z); face.mVertices[0].SetValue(minx, mMax.y, minz); face.mVertices[1].SetValue(minx, mMax.y, maxz); face.mVertices[2].SetValue(maxx, mMax.y, maxz); face.mVertices[3].SetValue(maxx, mMax.y, minz); return true; } if (EpsilonEqual(mMin[2], neighbour.Max(2))) { float maxx = min(mMax.x, neighbour.mMax.x); float maxy = min(mMax.y, neighbour.mMax.y); float minx = max(mMin.x, neighbour.mMin.x); float miny = max(mMin.y, neighbour.mMin.y); face.mVertices[3].SetValue(minx, miny, mMin.z); face.mVertices[2].SetValue(maxx, miny, mMin.z); face.mVertices[1].SetValue(maxx, maxy, mMin.z); face.mVertices[0].SetValue(minx, maxy, mMin.z); return true; } if (EpsilonEqual(mMax[2], neighbour.Min(2))) { float maxx = min(mMax.x, neighbour.mMax.x); float maxy = min(mMax.y, neighbour.mMax.y); float minx = max(mMin.x, neighbour.mMin.x); float miny = max(mMin.y, neighbour.mMin.y); face.mVertices[0].SetValue(minx, miny, mMax.z); face.mVertices[1].SetValue(maxx, miny, mMax.z); face.mVertices[2].SetValue(maxx, maxy, mMax.z); face.mVertices[3].SetValue(minx, maxy, mMax.z); return true; } return false; } void IncludeBoxInMesh(const AxisAlignedBox3 &box, Mesh &mesh) { // add 6 vertices of the box int index = (int)mesh.mVertices.size(); for (int i=0; i < 8; ++ i) { Vector3 v; box.GetVertex(i, v); mesh.mVertices.push_back(v); } mesh.AddFace(new Face(index + 0, index + 1, index + 3, index + 2) ); mesh.AddFace(new Face(index + 0, index + 2, index + 6, index + 4) ); mesh.AddFace(new Face(index + 4, index + 6, index + 7, index + 5) ); mesh.AddFace(new Face(index + 3, index + 1, index + 5, index + 7) ); mesh.AddFace(new Face(index + 0, index + 4, index + 5, index + 1) ); mesh.AddFace(new Face(index + 2, index + 3, index + 7, index + 6) ); } void AxisAlignedBox3::ExtractPolys(PolygonContainer &polys) const { Polygon3 *face1 = new Polygon3(); polys.push_back(face1); face1->mVertices.push_back(Vector3(mMin.x, mMin.y, mMax.z)); face1->mVertices.push_back(Vector3(mMin.x, mMax.y, mMax.z)); face1->mVertices.push_back(Vector3(mMin.x, mMax.y ,mMin.z)); face1->mVertices.push_back(Vector3(mMin.x, mMin.y, mMin.z)); Polygon3 *face2 = new Polygon3(); polys.push_back(face2); face2->mVertices.push_back(Vector3(mMax.x, mMin.y, mMin.z)); face2->mVertices.push_back(Vector3(mMax.x, mMax.y, mMin.z)); face2->mVertices.push_back(Vector3(mMax.x, mMax.y, mMax.z)); face2->mVertices.push_back(Vector3(mMax.x, mMin.y, mMax.z)); Polygon3 *face3 = new Polygon3(); polys.push_back(face3); face3->mVertices.push_back(Vector3(mMax.x, mMin.y ,mMin.z)); face3->mVertices.push_back(Vector3(mMax.x, mMin.y, mMax.z)); face3->mVertices.push_back(Vector3(mMin.x, mMin.y, mMax.z)); face3->mVertices.push_back(Vector3(mMin.x, mMin.y, mMin.z)); Polygon3 *face4 = new Polygon3(); polys.push_back(face4); face4->mVertices.push_back(Vector3(mMin.x, mMax.y, mMin.z)); face4->mVertices.push_back(Vector3(mMin.x, mMax.y, mMax.z)); face4->mVertices.push_back(Vector3(mMax.x, mMax.y, mMax.z)); face4->mVertices.push_back(Vector3(mMax.x, mMax.y, mMin.z)); Polygon3 *face5 = new Polygon3(); polys.push_back(face5); face5->mVertices.push_back(Vector3(mMin.x, mMax.y, mMin.z)); face5->mVertices.push_back(Vector3(mMax.x, mMax.y, mMin.z)); face5->mVertices.push_back(Vector3(mMax.x, mMin.y, mMin.z)); face5->mVertices.push_back(Vector3(mMin.x, mMin.y, mMin.z)); Polygon3 *face6 = new Polygon3(); polys.push_back(face6); face6->mVertices.push_back(Vector3(mMin.x, mMin.y, mMax.z)); face6->mVertices.push_back(Vector3(mMax.x, mMin.y, mMax.z)); face6->mVertices.push_back(Vector3(mMax.x, mMax.y, mMax.z)); face6->mVertices.push_back(Vector3(mMin.x, mMax.y, mMax.z)); } void AxisAlignedBox3::Split(const int axis, const float value, AxisAlignedBox3 &left, AxisAlignedBox3 &right) const { if ( (value >= mMin[axis]) && (value <= mMax[axis]) ) { left.mMin = mMin; left.mMax = mMax; right.mMin = mMin; right.mMax = mMax; left.mMax[axis] = value; right.mMin[axis] = value; } } }