source: GTP/trunk/Lib/Vis/Preprocessing/src/AxisAlignedBox3.h @ 1415

Revision 1415, 18.2 KB checked in by mattausch, 18 years ago (diff)
Line 
1#ifndef _AxisAlignedBox3_H__
2#define _AxisAlignedBox3_H__
3
4#include "Rectangle3.h"
5#include "Matrix4x4.h"
6#include "Vector3.h"
7#include "Plane3.h"
8#include "Containers.h"
9
10namespace GtpVisibilityPreprocessor {
11
12class Ray;
13class Polygon3;
14class Mesh;
15
16/**
17        CAABox class.
18        This is a box in 3-space, defined by min and max
19        corner vectors.  Many useful operations are defined
20        on this
21*/
22class AxisAlignedBox3
23{
24protected:
25        Vector3 mMin, mMax;
26public:
27  // Constructors.
28  AxisAlignedBox3() { }
29 
30  AxisAlignedBox3(const Vector3 &nMin, const Vector3 &nMax)
31  {
32    mMin = nMin; mMax = nMax;
33  }
34
35  /** initialization to the non existing bounding box
36  */
37  void Initialize() {
38    mMin = Vector3(MAXFLOAT);
39    mMax = Vector3(-MAXFLOAT);
40  }
41
42  /** The center of the box
43  */
44  Vector3 Center() const { return 0.5 * (mMin + mMax); }
45 
46  /** The diagonal of the box
47  */
48  Vector3 Diagonal() const { return (mMax -mMin); }
49
50  float Center(const int axis) const {
51    return  0.5f * (mMin[axis] + mMax[axis]);
52  }
53
54  float Min(const int axis) const {
55    return mMin[axis];
56  }
57
58  float Max(const int axis) const {
59    return  mMax[axis];
60  }
61
62  float Size(const int axis) const {
63    return  Max(axis) - Min(axis);
64  }
65
66  // Read-only const access tomMin and max vectors using references
67  const Vector3& Min() const { return mMin;}
68  const Vector3& Max() const { return mMax;}
69
70  void Enlarge (const Vector3 &v) {
71    mMax += v;
72    mMin -= v;
73  }
74
75  void SetMin(const Vector3 &v) {
76    mMin = v;
77  }
78
79  void SetMax(const Vector3 &v) {
80    mMax = v;
81  }
82
83  void SetMin(int axis, const float value) {
84   mMin[axis] = value;
85  }
86
87  void SetMax(int axis, const float value) {
88    mMax[axis] = value;
89  }
90
91  // Decrease box by given splitting plane
92  void Reduce(int axis, int right, float value) {
93    if ( (value >=mMin[axis]) && (value <= mMax[axis]) )
94      if (right)
95                mMin[axis] = value;
96      else
97        mMax[axis] = value;
98  }
99
100 
101
102  // the size of the box along all the axes
103  Vector3 Size() const { return mMax - mMin; }
104
105  // Return whether the box is unbounded.  Unbounded boxes appear
106  // when unbounded objects such as quadric surfaces are included.
107  bool Unbounded() const;
108
109  // Expand the axis-aligned box to include the given object.
110  void Include(const Vector3 &newpt);
111  void Include(const Polygon3 &newpoly);
112  void Include(const AxisAlignedBox3 &bbox);
113  void Include (const PolygonContainer &polys);
114  void Include(Mesh *mesh);
115
116  /** Expand the axis-aligned box to include given values in particular axis.
117  */
118  void Include(const int &axis, const float &newBound);
119
120
121  int
122  Side(const Plane3 &plane) const;
123
124  // Overlap returns 1 if the two axis-aligned boxes overlap .. even weakly
125  friend inline bool Overlap(const AxisAlignedBox3 &, const AxisAlignedBox3 &);
126
127  // Overlap returns 1 if the two axis-aligned boxes overlap .. only strongly
128  friend inline bool OverlapS(const AxisAlignedBox3 &,const AxisAlignedBox3 &);
129
130  /** Overlap returns 1 if the two axis-aligned boxes overlap for a given
131          epsilon. If eps > 0.0, then the boxes has to have the real intersection
132          box, if eps < 0.0, then the boxes need not intersect really, they
133          can be at eps distance in the projection.
134          */
135  friend inline bool Overlap(const AxisAlignedBox3 &,
136                                                         const AxisAlignedBox3 &,
137                                                         float eps);
138
139  /** Returns 'factor' of overlap of first box with the second box. i.e., a number
140        between 0 (no overlap) and 1 (same box).
141  */
142  friend inline float RatioOfOverlap(const AxisAlignedBox3 &, const AxisAlignedBox3 &);
143
144  /** Includes returns true if a includes b (completely)
145  */
146  bool Includes(const AxisAlignedBox3 &b) const;
147
148  virtual int IsInside(const Vector3 &v) const;
149 
150  /** Test if the box makes sense.
151  */
152  virtual bool IsCorrect();
153
154  /** To answer true requires the box of real volume of non-zero value.
155  */
156  bool IsSingularOrIncorrect() const;
157
158  /** When the box is not of non-zero or negative surface area.
159  */
160  bool IsCorrectAndNotPoint() const;
161
162  /** Returns true when the box degenerates to a point.
163  */
164  bool IsPoint() const;
165
166  /** Scales the box with the factor.
167  */
168  void Scale(const float scale);
169
170  void Scale(const Vector3 &scale);
171       
172  /** Translates the box with the factor.
173  */
174  void Translate(const Vector3 &shift);
175
176  /** Returns the square of the minimal and maximal distance to
177        a point on the box.
178        */
179  void
180  GetSqrDistances(const Vector3 &point,
181                  float &minDistance,
182                  float &maxDistance
183                  ) const;
184
185  // returns true, when the sphere specified by the origin and radius
186  // fully contains the box
187  bool IsFullyContainedInSphere(const Vector3 &center, float radius) const;
188
189  // returns true, when the volume of the sphere and volume of the
190  // axis aligned box has no intersection
191  bool HasNoIntersectionWithSphere(const Vector3 &center,
192                                   float radius) const;
193
194
195  // Given a sphere described by the center and radius,
196  // the fullowing function returns:
197  //   -1 ... the sphere and the box are completely separate
198  //    0 ... the sphere and the box only partially overlap
199  //    1 ... the sphere contains fully the box
200  //  Note: the case when box fully contains the sphere is not reported
201  //        since it was not required.
202  int MutualPositionWithSphere(const Vector3 &center, float radius) const;
203
204  // Given a cube described by the center and half-size (radius),
205  // the following function returns:
206  //   -1 ... the cube and the box are completely separate
207  //    0 ... the cube and the box only partially overlap
208  //    1 ... the cube contains fully the box
209  int MutualPositionWithCube(const Vector3 &center, float halfSize) const;
210
211
212  Vector3 GetRandomPoint() const {
213    Vector3 size = Size();
214    return mMin + Vector3(RandomValue(0.0f, size.x),
215                                                  RandomValue(0.0f, size.y),
216                                                  RandomValue(0.0f, size.z));
217  }
218
219
220  Vector3 GetPoint(const Vector3 &p) const {
221    return mMin + p*Size();
222  }
223
224  // Returns the smallest axis-aligned box that includes all points
225  // inside the two given boxes.
226  friend inline AxisAlignedBox3 Union(const AxisAlignedBox3 &x,
227                             const AxisAlignedBox3 &y);
228
229  // Returns the intersection of two axis-aligned boxes.
230  friend inline AxisAlignedBox3 Intersect(const AxisAlignedBox3 &x,
231                                 const AxisAlignedBox3 &y);
232
233  // Given 4x4 matrix, transform the current box to new one.
234  friend inline AxisAlignedBox3 Transform(const AxisAlignedBox3 &box,
235                                          const Matrix4x4 &tform);
236
237 
238  // returns true when two boxes are completely equal
239  friend inline int operator== (const AxisAlignedBox3 &A, const AxisAlignedBox3 &B);
240 
241  virtual float SurfaceArea() const;
242  virtual float GetVolume() const {
243    return (mMax.x - mMin.x) * (mMax.y - mMin.y) * (mMax.z - mMin.z);
244  }
245
246  // Six faces are distuinguished by their name.
247  enum EFaces { ID_Back = 0, ID_Left = 1, ID_Bottom = 2, ID_Front = 3,
248                ID_Right = 4, ID_Top = 5};
249 
250  int
251  ComputeMinMaxT(const Vector3 &origin,
252                                 const Vector3 &direction,
253                                 float *tmin,
254                                 float *tmax) const;
255       
256  // Compute tmin and tmax for a ray, whenever required .. need not pierce box
257  int ComputeMinMaxT(const Ray &ray, float *tmin, float *tmax) const;
258
259  // Compute tmin and tmax for a ray, whenever required .. need not pierce box
260  int ComputeMinMaxT(const Ray &ray,
261                                         float *tmin,
262                                         float *tmax,
263                                         EFaces &entryFace,
264                                         EFaces &exitFace) const;
265 
266  // If a ray pierces the box .. returns 1, otherwise 0.
267  // Computes the signed distances for case: tmin < tmax and tmax > 0
268  int GetMinMaxT(const Ray &ray, float *tmin, float *tmax) const;
269  // computes the signed distances for case: tmin < tmax and tmax > 0
270  int GetMinMaxT(const Ray &ray, float *tmin, float *tmax,
271                 EFaces &entryFace, EFaces &exitFace) const;
272 
273  // Writes a brief description of the object, indenting by the given
274  // number of spaces first.
275  virtual void Describe(ostream& app, int ind) const;
276
277  // For edge .. number <0..11> returns two incident vertices
278  void GetEdge(const int edge, Vector3 *a, Vector3 *b) const;
279
280  // Compute the coordinates of one vertex of the box for 0/1 in each axis
281  // 0 .. smaller coordinates, 1 .. large coordinates
282  Vector3 GetVertex(int xAxis, int yAxis, int zAxis) const;
283
284  // Compute the vertex for number N=<0..7>, N = 4*x + 2*y + z, where
285  // x,y,z are either 0 or 1; (0 .. lower coordinate, 1 .. large coordinate)
286  // (xmin,ymin, zmin) .. N = 0, (xmax, ymax, zmax) .. N= 7
287  void GetVertex(const int N, Vector3 &vertex) const;
288
289  Vector3 GetVertex(const int N) const {
290    Vector3 v;
291    GetVertex(N, v);
292    return v;
293  }
294
295  // Returns 1, if the box includes on arbitrary face a given box
296  int IsPiercedByBox(const AxisAlignedBox3 &box, int &axis) const;
297
298
299  int GetFaceVisibilityMask(const Vector3 &position) const;
300  int GetFaceVisibilityMask(const Rectangle3 &rectangle) const;
301
302  Rectangle3 GetFace(const int face) const;
303 
304  /** Extracts plane of bounding box.
305  */
306  Plane3 GetPlane(const int face) const;
307 
308  // For a given point returns the region, where the point is located
309  // there are 27 regions (0..26) .. determined by the planes embedding in the
310  // sides of the bounding box (0 .. lower the position of the box,
311  // 1 .. inside the box, 2 .. greater than box). The region number is given as
312  // R = 9*x + 3*y + z  ; e.g. region .. inside the box is 13.
313  int GetRegionID(const Vector3 &point) const;
314 
315  // Set the corner point of rectangle on the face of bounding box
316  // given by the index number and the rectangle lying on this face
317  //  void GetFaceRectCorner(const CRectLeaf2D *rect, EFaces faceIndx,
318  //                     const int &cornerIndx, Vector3 &cornerPoint);
319
320  // Project the box to a plane given a normal vector of this plane. Computes
321  // the surface area of projected silhouettes for parallel projection.
322  float ProjectToPlaneSA(const Vector3 &normal) const;
323
324  // Computes projected surface area of the box to a given viewing plane
325  // given a viewpoint. This corresponds the probability, the box will
326  // be hit by the ray .. moreover returns .. the region number (0-26).
327  // the function supposes all the points lie of the box lies in the viewing
328  // frustrum !!! The positive halfspace of viewplane has to contain
329  // viewpoint. "projectionType" == 0 .. perspective projection,
330  // == 1 .. parallel projection.
331  float ProjectToPlaneSA(const Plane3 &viewplane,
332                         const Vector3 &viewpoint,
333                         int *tcase,
334                         const float &maxSA,
335                         int projectionType) const;
336
337  // Computes projected surface area of the box to a given viewing plane
338  // and viewpoint. It clipps the area by all the planes given .. they should
339  // define the viewing frustrum. Variable tclip defines, which planes are
340  // used for clipping, parameter 31 is the most general, clip all the plane.
341  // 1 .. clip left, 2 .. clip top, 4 .. clip right, 8 .. clip bottom,
342  // 16 .. clip supporting plane(its normal towards the viewing frustrum).
343  // "typeProjection" == 0 .. perspective projection,
344  // == 1 .. parallel projection
345  float ProjectToPlaneSA(const Plane3 &viewplane,
346                         const Vector3 &viewpoint,
347                         int *tcase, int &tclip,
348                         const Plane3 &leftPlane,
349                         const Plane3 &topPlane,
350                         const Plane3 &rightPlane,
351                         const Plane3 &bottomPlane,
352                         const Plane3 &suppPlane,
353                         const float &maxSA,
354                         int typeProjection) const;
355
356  // Projects the box to a unit sphere enclosing a given viewpoint and
357  // returns the solid angle of the box projected to a unit sphere
358  float ProjectToSphereSA(const Vector3 &viewpoint, int *tcase) const;
359
360  /** Returns vertex indices of edge.
361  */
362  void GetEdge(const int edge, int  &aIdx, int &bIdx) const;
363
364  /** Computes cross section of plane with box (i.e., bounds box).
365          @returns the cross section
366  */
367  Polygon3 *CrossSection(const Plane3 &plane) const;
368
369  /** Computes minimal and maximal t of ray, including the object intersections.
370          @returns true if ray hits the bounding box.
371  */
372  bool GetRaySegment(const Ray &ray, float &minT, float &maxT) const;
373
374  /** If the boxes are intersecting on a common face, this function
375          returns the face intersection, false otherwise.
376   
377          @param neighbour the neighbouring box intersecting with this box.
378  */
379  bool GetIntersectionFace(Rectangle3 &face,
380                                                   const AxisAlignedBox3 &neighbour) const;
381
382  /** Includes the box faces to the mesh description
383  */
384  friend void IncludeBoxInMesh(const AxisAlignedBox3 &box, Mesh &mesh);
385
386  /** Box faces are turned into polygons.
387  */
388  void ExtractPolys(PolygonContainer &polys) const;
389
390  /** Splits the box into two separate boxes with respect to the split plane
391  */
392  void Split(const int axis, const float value, AxisAlignedBox3 &left, AxisAlignedBox3 &right) const;
393
394#define __EXTENT_HACK
395  // get the extent of face
396  float GetExtent(const int &face) const {
397#if defined(__EXTENT_HACK) && defined(__VECTOR_HACK)
398    return mMin[face];
399#else
400    if (face < 3)
401      return mMin[face];
402    else
403      return mMax[face-3];
404#endif
405  }
406
407  // The vertices that form boundaries of the projected bounding box
408  // for all the regions possible, number of regions is 3^3 = 27,
409  // since two parallel sides of bbox forms three disjoint spaces
410  // the vertices are given in anti-clockwise order .. stopped by -1 elem.
411  static const int bvertices[27][9];
412
413  // The list of all faces visible from a given region (except region 13)
414  // the faces are identified by triple: (axis, min-vertex, max-vertex),
415  // that is maximaly three triples are defined. axis = 0 (x-axis),
416  // axis = 1 (y-axis), axis = 2 (z-axis), -1 .. terminator. Is is always
417  // true that: min-vertex < max-vertex for all coordinates excluding axis
418  static const int bfaces[27][10];
419 
420  // The correct corners indexed starting from entry face to exit face
421  // first index determines entry face, second index exit face, and
422  // the two numbers (indx, inc) determines: ind = the index on the exit
423  // face, when starting from the vertex 0 on entry face, 'inc' is
424  // the increment when we go on entry face in order 0,1,2,3 to create
425  // convex shaft with the rectangle on exit face. That is, inc = -1 or 1.
426  static const int pairFaceRects[6][6][2];
427
428  // The vertices that form CLOSEST points with respect to the region
429  // for all the regions possible, number of regions is 3^3 = 27,
430  // since two parallel sides of bbox forms three disjoint spaces.
431  // The vertices are given in anti-clockwise order, stopped by -1 elem,
432  // at most 8 points, at least 1 point.
433  static const int cvertices[27][9];
434  static const int csvertices[27][6];
435
436  // The vertices that form FARTHEST points with respect to the region
437  // for all the regions possible, number of regions is 3^3 = 27,
438  // since two parallel sides of bbox forms three disjoint spaces.
439  // The vertices are given in anti-clockwise order, stopped by -1 elem,
440  // at most 8 points, at least 1 point.
441  static const int fvertices[27][9]; 
442  static const int fsvertices[27][9];
443
444  // input and output operator with stream
445  friend ostream& operator<<(ostream &s, const AxisAlignedBox3 &A);
446  friend istream& operator>>(istream &s, AxisAlignedBox3 &A);
447
448protected:
449  // definition of friend functions
450  friend class Ray;
451};
452
453// --------------------------------------------------------------------------
454// Implementation of inline (member) functions
455 
456inline bool
457Overlap(const AxisAlignedBox3 &x, const AxisAlignedBox3 &y)
458{
459  if (x.mMax.x < y.mMin.x ||
460      x.mMin.x > y.mMax.x ||
461      x.mMax.y < y.mMin.y ||
462      x.mMin.y > y.mMax.y ||
463      x.mMax.z < y.mMin.z ||
464      x.mMin.z > y.mMax.z) {
465    return false;
466  }
467  return true;
468}
469
470inline bool
471OverlapS(const AxisAlignedBox3 &x, const AxisAlignedBox3 &y)
472{
473  if (x.mMax.x <= y.mMin.x ||
474      x.mMin.x >= y.mMax.x ||
475      x.mMax.y <= y.mMin.y ||
476      x.mMin.y >= y.mMax.y ||
477      x.mMax.z <= y.mMin.z ||
478      x.mMin.z >= y.mMax.z) {
479    return false;
480  }
481  return true;
482}
483
484inline bool
485Overlap(const AxisAlignedBox3 &x, const AxisAlignedBox3 &y, float eps)
486{
487  if ( (x.mMax.x - eps) < y.mMin.x ||
488       (x.mMin.x + eps) > y.mMax.x ||
489       (x.mMax.y - eps) < y.mMin.y ||
490       (x.mMin.y + eps) > y.mMax.y ||
491       (x.mMax.z - eps) < y.mMin.z ||
492       (x.mMin.z + eps) > y.mMax.z ) {
493    return false;
494  }
495  return true;
496}
497
498inline AxisAlignedBox3
499Intersect(const AxisAlignedBox3 &x, const AxisAlignedBox3 &y)
500{
501  if (x.Unbounded())
502    return y;
503  else
504    if (y.Unbounded())
505      return x;
506  AxisAlignedBox3 ret = x;
507  if (Overlap(ret, y)) {
508    Maximize(ret.mMin, y.mMin);
509    Minimize(ret.mMax, y.mMax);
510    return ret;
511  }
512  else      // Null intersection.
513    return AxisAlignedBox3(Vector3(0), Vector3(0));
514  // return AxisAlignedBox3(Vector3(0), Vector3(-1));
515}
516
517inline AxisAlignedBox3
518Union(const AxisAlignedBox3 &x, const AxisAlignedBox3 &y)
519{
520  Vector3 min = x.mMin;
521  Vector3 max = x.mMax;
522  Minimize(min, y.mMin);
523  Maximize(max, y.mMax);
524  return AxisAlignedBox3(min, max);
525}
526
527inline AxisAlignedBox3
528Transform(const AxisAlignedBox3 &box, const Matrix4x4 &tform)
529{
530  Vector3 mmin(MAXFLOAT);
531  Vector3 mmax(-MAXFLOAT);
532
533  AxisAlignedBox3 ret(mmin, mmax);
534  ret.Include(tform * Vector3(box.mMin.x, box.mMin.y, box.mMin.z));
535  ret.Include(tform * Vector3(box.mMin.x, box.mMin.y, box.mMax.z));
536  ret.Include(tform * Vector3(box.mMin.x, box.mMax.y, box.mMin.z));
537  ret.Include(tform * Vector3(box.mMin.x, box.mMax.y, box.mMax.z));
538  ret.Include(tform * Vector3(box.mMax.x, box.mMin.y, box.mMin.z));
539  ret.Include(tform * Vector3(box.mMax.x, box.mMin.y, box.mMax.z));
540  ret.Include(tform * Vector3(box.mMax.x, box.mMax.y, box.mMin.z));
541  ret.Include(tform * Vector3(box.mMax.x, box.mMax.y, box.mMax.z));
542  return ret;
543}
544
545inline float RatioOfOverlap(const AxisAlignedBox3 &box1, const AxisAlignedBox3 &box2)
546{
547        // return ratio of intersection to union
548        const AxisAlignedBox3 bisect = Intersect(box1, box2);
549        const AxisAlignedBox3 bunion = Union(box1, box2);
550
551        return bisect.GetVolume() / bunion.GetVolume();
552}
553
554inline int operator==(const AxisAlignedBox3 &A, const AxisAlignedBox3 &B)
555{
556  return (A.mMin == B.mMin) && (A.mMax == B.mMax);
557}
558
559 
560}
561
562
563#endif
Note: See TracBrowser for help on using the repository browser.