source: GTP/trunk/Lib/Vis/Preprocessing/src/AxisAlignedBox3.h @ 2686

Revision 2686, 18.4 KB checked in by mattausch, 16 years ago (diff)

fixed several problems

Line 
1#ifndef _AxisAlignedBox3_H__
2#define _AxisAlignedBox3_H__
3
4#include "Rectangle3.h"
5#include "Matrix4x4.h"
6#include "Vector3.h"
7#include "Plane3.h"
8#include "Containers.h"
9
10namespace GtpVisibilityPreprocessor {
11
12class Ray;
13class Polygon3;
14class Mesh;
15class VssRay;
16struct Triangle3;
17
18/**
19        CAABox class.
20        This is a box in 3-space, defined by min and max
21        corner vectors.  Many useful operations are defined
22        on this
23*/
24class AxisAlignedBox3
25{
26protected:
27        Vector3 mMin, mMax;
28public:
29  // Constructors.
30  AxisAlignedBox3() { }
31 
32  AxisAlignedBox3(const Vector3 &nMin, const Vector3 &nMax)
33  {
34    mMin = nMin; mMax = nMax;
35  }
36
37  /** initialization to the non existing bounding box
38  */
39  void Initialize();
40
41  /** The center of the box
42  */
43  Vector3 Center() const;
44 
45  /** The diagonal of the box
46  */
47  Vector3 Diagonal() const;
48
49  float Center(const int axis) const;
50
51  float Min(const int axis) const;
52
53  float Max(const int axis) const;
54
55  float Size(const int axis) const;
56
57  // Read-only const access tomMin and max vectors using references
58  const Vector3& Min() const;
59  const Vector3& Max() const;
60
61  void Enlarge (const Vector3 &v);
62
63  void EnlargeToMinSize();
64 
65  void SetMin(const Vector3 &v);
66
67  void SetMax(const Vector3 &v);
68
69  void SetMin(int axis, const float value);
70
71  void SetMax(int axis, const float value);
72
73  // Decrease box by given splitting plane
74  void Reduce(int axis, int right, float value);
75 
76  bool Intersects(const Vector3 &lStart, const Vector3 &lEnd) const;
77
78  // the size of the box along all the axes
79  Vector3 Size() const;
80  float Radius() const { return 0.5f*Magnitude(Size()); }
81  float SqrRadius() const { return 0.5f*SqrMagnitude(Size()); }
82 
83  /** Clamps the point to the box.
84  */
85  void ClampToBox(Vector3 &pt) const;
86
87  // Return whether the box is unbounded.  Unbounded boxes appear
88  // when unbounded objects such as quadric surfaces are included.
89  bool Unbounded() const;
90
91  // Expand the axis-aligned box to include the given object.
92  void Include(const Vector3 &newpt);
93  void Include(const Polygon3 &newpoly);
94  void Include(const AxisAlignedBox3 &bbox);
95  void Include (const PolygonContainer &polys);
96  void Include(Mesh *mesh);
97
98  /** Expand the axis-aligned box to include given values in particular axis.
99  */
100  void Include(const int &axis, const float &newBound);
101
102  int Side(const Plane3 &plane) const;
103
104  // Overlap returns 1 if the two axis-aligned boxes overlap .. even weakly
105  friend inline bool Overlap(const AxisAlignedBox3 &, const AxisAlignedBox3 &);
106
107  // Overlap returns 1 if the two axis-aligned boxes overlap .. only strongly
108  friend inline bool OverlapS(const AxisAlignedBox3 &,const AxisAlignedBox3 &);
109
110  /** Overlap returns 1 if the two axis-aligned boxes overlap for a given
111          epsilon. If eps > 0.0, then the boxes has to have the real intersection
112          box, if eps < 0.0, then the boxes need not intersect really, they
113          can be at eps distance in the projection.
114          */
115  friend inline bool Overlap(const AxisAlignedBox3 &,
116                                                         const AxisAlignedBox3 &,
117                                                         float eps);
118
119  /** Returns 'factor' of overlap of first box with the second box. i.e., a number
120        between 0 (no overlap) and 1 (same box).
121  */
122  friend inline float RatioOfOverlap(const AxisAlignedBox3 &, const AxisAlignedBox3 &);
123
124  /** Includes returns true if a includes b (completely)
125  */
126  bool Includes(const AxisAlignedBox3 &b) const;
127
128  /** Returns true if this point is inside box.
129  */
130  virtual int IsInside(const Vector3 &v) const;
131 
132  /** Returns true if start and endpoint of the ray is inside box.
133  */
134  virtual int IsInside(const VssRay &v) const;
135
136  /** Test if the box makes sense.
137  */
138  virtual bool IsCorrect();
139
140  /** To answer true requires the box of real volume of non-zero value.
141  */
142  bool IsSingularOrIncorrect() const;
143
144  /** When the box is not of non-zero or negative surface area.
145  */
146  bool IsCorrectAndNotPoint() const;
147
148  /** Returns true when the box degenerates to a point.
149  */
150  bool IsPoint() const;
151
152  /** Scales the box with the factor.
153  */
154  void Scale(const float scale);
155
156  void Scale(const Vector3 &scale);
157       
158  /** Translates the box with the factor.
159  */
160  void Translate(const Vector3 &shift);
161
162  /** Returns the square of the minimal and maximal distance to
163        a point on the box.
164        */
165  void
166  GetSqrDistances(const Vector3 &point,
167                  float &minDistance,
168                  float &maxDistance
169                  ) const;
170
171  // returns true, when the sphere specified by the origin and radius
172  // fully contains the box
173  bool IsFullyContainedInSphere(const Vector3 &center, float radius) const;
174
175  // returns true, when the volume of the sphere and volume of the
176  // axis aligned box has no intersection
177  bool HasNoIntersectionWithSphere(const Vector3 &center,
178                                   float radius) const;
179
180
181  // Given a sphere described by the center and radius,
182  // the fullowing function returns:
183  //   -1 ... the sphere and the box are completely separate
184  //    0 ... the sphere and the box only partially overlap
185  //    1 ... the sphere contains fully the box
186  //  Note: the case when box fully contains the sphere is not reported
187  //        since it was not required.
188  int MutualPositionWithSphere(const Vector3 &center, float radius) const;
189
190  // Given a cube described by the center and half-size (radius),
191  // the following function returns:
192  //   -1 ... the cube and the box are completely separate
193  //    0 ... the cube and the box only partially overlap
194  //    1 ... the cube contains fully the box
195  int MutualPositionWithCube(const Vector3 &center, float halfSize) const;
196
197
198  Vector3 GetRandomPoint(const Vector3 &r) const;
199  Vector3 GetRandomPoint() const;
200  Vector3 GetRandomSurfacePoint() const;
201  Vector3 GetUniformRandomSurfacePoint() const;
202
203  Vector3 GetPoint(const Vector3 &p) const {
204    return mMin + p*Size();
205  }
206
207  // Returns the smallest axis-aligned box that includes all points
208  // inside the two given boxes.
209  friend inline AxisAlignedBox3 Union(const AxisAlignedBox3 &x,
210                             const AxisAlignedBox3 &y);
211
212  // Returns the intersection of two axis-aligned boxes.
213  friend inline AxisAlignedBox3 Intersect(const AxisAlignedBox3 &x,
214                                                                                  const AxisAlignedBox3 &y);
215
216  // Given 4x4 matrix, transform the current box to new one.
217  friend inline AxisAlignedBox3 Transform(const AxisAlignedBox3 &box,
218                                                                                  const Matrix4x4 &tform);
219
220 
221  // returns true when two boxes are completely equal
222  friend inline int operator== (const AxisAlignedBox3 &A,
223                                                                const AxisAlignedBox3 &B);
224 
225  virtual float SurfaceArea() const;
226  virtual float GetVolume() const
227  {
228          return (mMax.x - mMin.x) * (mMax.y - mMin.y) * (mMax.z - mMin.z);
229  }
230
231  // Six faces are distuinguished by their name.
232  enum EFaces {ID_Back = 0,
233                           ID_Left = 1,
234                           ID_Bottom = 2,
235                           ID_Front = 3,
236                           ID_Right = 4,
237                           ID_Top = 5};
238 
239  int  ComputeMinMaxT(const Vector3 &origin,
240                      const Vector3 &direction,
241                      float *tmin,
242                      float *tmax) const;
243       
244  // Compute tmin and tmax for a ray, whenever required .. need not pierce box
245  int ComputeMinMaxT(const Ray &ray, float *tmin, float *tmax) const;
246
247  // Compute tmin and tmax for a ray, whenever required .. need not pierce box
248  int ComputeMinMaxT(const Ray &ray,
249                     float *tmin,
250                     float *tmax,
251                     EFaces &entryFace,
252                     EFaces &exitFace) const;
253 
254  // If a ray pierces the box .. returns 1, otherwise 0.
255  // Computes the signed distances for case: tmin < tmax and tmax > 0
256  int GetMinMaxT(const Ray &ray, float *tmin, float *tmax) const;
257  // computes the signed distances for case: tmin < tmax and tmax > 0
258  int GetMinMaxT(const Ray &ray, float *tmin, float *tmax,
259                 EFaces &entryFace, EFaces &exitFace) const;
260 
261  // Writes a brief description of the object, indenting by the given
262  // number of spaces first.
263  virtual void Describe(std::ostream& app, int ind) const;
264
265  // For edge .. number <0..11> returns two incident vertices
266  void GetEdge(const int edge, Vector3 *a, Vector3 *b) const;
267
268  // Compute the coordinates of one vertex of the box for 0/1 in each axis
269  // 0 .. smaller coordinates, 1 .. large coordinates
270  Vector3 GetVertex(int xAxis, int yAxis, int zAxis) const;
271
272  // Compute the vertex for number N=<0..7>, N = 4*x + 2*y + z, where
273  // x,y,z are either 0 or 1; (0 .. lower coordinate, 1 .. large coordinate)
274  // (xmin,ymin, zmin) .. N = 0, (xmax, ymax, zmax) .. N= 7
275  void GetVertex(const int N, Vector3 &vertex) const;
276
277  Vector3 GetVertex(const int N) const {
278    Vector3 v;
279    GetVertex(N, v);
280    return v;
281  }
282
283  // Returns 1, if the box includes on arbitrary face a given box
284  int IsPiercedByBox(const AxisAlignedBox3 &box, int &axis) const;
285
286
287  int GetFaceVisibilityMask(const Vector3 &position) const;
288  int GetFaceVisibilityMask(const Rectangle3 &rectangle) const;
289
290  Rectangle3 GetFace(const int face) const;
291 
292  /** Extracts plane of bounding box.
293  */
294  Plane3 GetPlane(const int face) const;
295 
296  // For a given point returns the region, where the point is located
297  // there are 27 regions (0..26) .. determined by the planes embedding in the
298  // sides of the bounding box (0 .. lower the position of the box,
299  // 1 .. inside the box, 2 .. greater than box). The region number is given as
300  // R = 9*x + 3*y + z  ; e.g. region .. inside the box is 13.
301  int GetRegionID(const Vector3 &point) const;
302 
303  // Set the corner point of rectangle on the face of bounding box
304  // given by the index number and the rectangle lying on this face
305  //  void GetFaceRectCorner(const CRectLeaf2D *rect, EFaces faceIndx,
306  //                     const int &cornerIndx, Vector3 &cornerPoint);
307
308  // Project the box to a plane given a normal vector of this plane. Computes
309  // the surface area of projected silhouettes for parallel projection.
310  float ProjectToPlaneSA(const Vector3 &normal) const;
311
312  // Computes projected surface area of the box to a given viewing plane
313  // given a viewpoint. This corresponds the probability, the box will
314  // be hit by the ray .. moreover returns .. the region number (0-26).
315  // the function supposes all the points lie of the box lies in the viewing
316  // frustrum !!! The positive halfspace of viewplane has to contain
317  // viewpoint. "projectionType" == 0 .. perspective projection,
318  // == 1 .. parallel projection.
319  float ProjectToPlaneSA(const Plane3 &viewplane,
320                         const Vector3 &viewpoint,
321                         int *tcase,
322                         const float &maxSA,
323                         int projectionType) const;
324
325  // Computes projected surface area of the box to a given viewing plane
326  // and viewpoint. It clipps the area by all the planes given .. they should
327  // define the viewing frustrum. Variable tclip defines, which planes are
328  // used for clipping, parameter 31 is the most general, clip all the plane.
329  // 1 .. clip left, 2 .. clip top, 4 .. clip right, 8 .. clip bottom,
330  // 16 .. clip supporting plane(its normal towards the viewing frustrum).
331  // "typeProjection" == 0 .. perspective projection,
332  // == 1 .. parallel projection
333  float ProjectToPlaneSA(const Plane3 &viewplane,
334                         const Vector3 &viewpoint,
335                         int *tcase, int &tclip,
336                         const Plane3 &leftPlane,
337                         const Plane3 &topPlane,
338                         const Plane3 &rightPlane,
339                         const Plane3 &bottomPlane,
340                         const Plane3 &suppPlane,
341                         const float &maxSA,
342                         int typeProjection) const;
343
344  // Projects the box to a unit sphere enclosing a given viewpoint and
345  // returns the solid angle of the box projected to a unit sphere
346  float ProjectToSphereSA(const Vector3 &viewpoint, int *tcase) const;
347
348  /** Returns vertex indices of edge.
349  */
350  void GetEdge(const int edge, int  &aIdx, int &bIdx) const;
351
352  /** Computes cross section of plane with box (i.e., bounds box).
353          @returns the cross section
354  */
355  Polygon3 *CrossSection(const Plane3 &plane) const;
356
357  /** Computes minimal and maximal t of ray, including the object intersections.
358          @returns true if ray hits the bounding box.
359  */
360  bool GetRaySegment(const Ray &ray, float &minT, float &maxT) const;
361
362  /** If the boxes are intersecting on a common face, this function
363          returns the face intersection, false otherwise.
364   
365          @param neighbour the neighbouring box intersecting with this box.
366  */
367  bool GetIntersectionFace(Rectangle3 &face,
368                                                   const AxisAlignedBox3 &neighbour) const;
369
370  /** Includes the box faces to the mesh description
371  */
372  friend void IncludeBoxInMesh(const AxisAlignedBox3 &box, Mesh &mesh);
373
374  /** Box faces are turned into polygons.
375  */
376  void ExtractPolys(PolygonContainer &polys) const;
377
378  /** Returns true if the mesh intersects the bounding box.
379  */
380  bool Intersects(const Mesh &mesh) const;
381   /** Returns true if the triangle intersects the bounding box.
382  */
383  bool Intersects(const Triangle3 &tri) const;
384  /** Splits the box into two separate boxes with respect to the split plane
385  */
386  void Split(const int axis,
387                         const float value,
388                         AxisAlignedBox3 &left,
389                         AxisAlignedBox3 &right) const;
390
391#define __EXTENT_HACK
392  // get the extent of face
393  float GetExtent(const int &face) const {
394#if defined(__EXTENT_HACK) && defined(__VECTOR_HACK)
395    return mMin[face];
396#else
397    if (face < 3)
398      return mMin[face];
399    else
400      return mMax[face-3];
401#endif
402  }
403
404  // The vertices that form boundaries of the projected bounding box
405  // for all the regions possible, number of regions is 3^3 = 27,
406  // since two parallel sides of bbox forms three disjoint spaces
407  // the vertices are given in anti-clockwise order .. stopped by -1 elem.
408  static const int bvertices[27][9];
409
410  // The list of all faces visible from a given region (except region 13)
411  // the faces are identified by triple: (axis, min-vertex, max-vertex),
412  // that is maximaly three triples are defined. axis = 0 (x-axis),
413  // axis = 1 (y-axis), axis = 2 (z-axis), -1 .. terminator. Is is always
414  // true that: min-vertex < max-vertex for all coordinates excluding axis
415  static const int bfaces[27][10];
416 
417  // The correct corners indexed starting from entry face to exit face
418  // first index determines entry face, second index exit face, and
419  // the two numbers (indx, inc) determines: ind = the index on the exit
420  // face, when starting from the vertex 0 on entry face, 'inc' is
421  // the increment when we go on entry face in order 0,1,2,3 to create
422  // convex shaft with the rectangle on exit face. That is, inc = -1 or 1.
423  static const int pairFaceRects[6][6][2];
424
425  // The vertices that form CLOSEST points with respect to the region
426  // for all the regions possible, number of regions is 3^3 = 27,
427  // since two parallel sides of bbox forms three disjoint spaces.
428  // The vertices are given in anti-clockwise order, stopped by -1 elem,
429  // at most 8 points, at least 1 point.
430  static const int cvertices[27][9];
431  static const int csvertices[27][6];
432
433  // The vertices that form FARTHEST points with respect to the region
434  // for all the regions possible, number of regions is 3^3 = 27,
435  // since two parallel sides of bbox forms three disjoint spaces.
436  // The vertices are given in anti-clockwise order, stopped by -1 elem,
437  // at most 8 points, at least 1 point.
438  static const int fvertices[27][9]; 
439  static const int fsvertices[27][9];
440
441  // input and output operator with stream
442  friend std::ostream& operator<<(std::ostream &s, const AxisAlignedBox3 &A);
443  friend std::istream& operator>>(std::istream &s, AxisAlignedBox3 &A);
444
445protected:
446  // definition of friend functions
447  friend class Ray;
448};
449
450// --------------------------------------------------------------------------
451// Implementation of inline (member) functions
452 
453inline bool
454Overlap(const AxisAlignedBox3 &x, const AxisAlignedBox3 &y)
455{
456  if (x.mMax.x < y.mMin.x ||
457      x.mMin.x > y.mMax.x ||
458      x.mMax.y < y.mMin.y ||
459      x.mMin.y > y.mMax.y ||
460      x.mMax.z < y.mMin.z ||
461      x.mMin.z > y.mMax.z) {
462    return false;
463  }
464  return true;
465}
466
467inline bool
468OverlapS(const AxisAlignedBox3 &x, const AxisAlignedBox3 &y)
469{
470  if (x.mMax.x <= y.mMin.x ||
471      x.mMin.x >= y.mMax.x ||
472      x.mMax.y <= y.mMin.y ||
473      x.mMin.y >= y.mMax.y ||
474      x.mMax.z <= y.mMin.z ||
475      x.mMin.z >= y.mMax.z) {
476    return false;
477  }
478  return true;
479}
480
481inline bool
482Overlap(const AxisAlignedBox3 &x, const AxisAlignedBox3 &y, float eps)
483{
484  if ( (x.mMax.x - eps) < y.mMin.x ||
485       (x.mMin.x + eps) > y.mMax.x ||
486       (x.mMax.y - eps) < y.mMin.y ||
487       (x.mMin.y + eps) > y.mMax.y ||
488       (x.mMax.z - eps) < y.mMin.z ||
489       (x.mMin.z + eps) > y.mMax.z ) {
490    return false;
491  }
492  return true;
493}
494
495inline AxisAlignedBox3
496Intersect(const AxisAlignedBox3 &x, const AxisAlignedBox3 &y)
497{
498  if (x.Unbounded())
499    return y;
500  else
501    if (y.Unbounded())
502      return x;
503  AxisAlignedBox3 ret = x;
504  if (Overlap(ret, y)) {
505    Maximize(ret.mMin, y.mMin);
506    Minimize(ret.mMax, y.mMax);
507    return ret;
508  }
509  else      // Null intersection.
510    return AxisAlignedBox3(Vector3(0), Vector3(0));
511  // return AxisAlignedBox3(Vector3(0), Vector3(-1));
512}
513
514inline AxisAlignedBox3
515Union(const AxisAlignedBox3 &x, const AxisAlignedBox3 &y)
516{
517  Vector3 min = x.mMin;
518  Vector3 max = x.mMax;
519  Minimize(min, y.mMin);
520  Maximize(max, y.mMax);
521  return AxisAlignedBox3(min, max);
522}
523
524inline AxisAlignedBox3
525Transform(const AxisAlignedBox3 &box, const Matrix4x4 &tform)
526{
527  Vector3 mmin(MAXFLOAT);
528  Vector3 mmax(-MAXFLOAT);
529
530  AxisAlignedBox3 ret(mmin, mmax);
531  ret.Include(tform * Vector3(box.mMin.x, box.mMin.y, box.mMin.z));
532  ret.Include(tform * Vector3(box.mMin.x, box.mMin.y, box.mMax.z));
533  ret.Include(tform * Vector3(box.mMin.x, box.mMax.y, box.mMin.z));
534  ret.Include(tform * Vector3(box.mMin.x, box.mMax.y, box.mMax.z));
535  ret.Include(tform * Vector3(box.mMax.x, box.mMin.y, box.mMin.z));
536  ret.Include(tform * Vector3(box.mMax.x, box.mMin.y, box.mMax.z));
537  ret.Include(tform * Vector3(box.mMax.x, box.mMax.y, box.mMin.z));
538  ret.Include(tform * Vector3(box.mMax.x, box.mMax.y, box.mMax.z));
539  return ret;
540}
541
542inline float RatioOfOverlap(const AxisAlignedBox3 &box1, const AxisAlignedBox3 &box2)
543{
544        // return ratio of intersection to union
545        const AxisAlignedBox3 bisect = Intersect(box1, box2);
546        const AxisAlignedBox3 bunion = Union(box1, box2);
547
548        return bisect.GetVolume() / bunion.GetVolume();
549}
550
551inline int operator==(const AxisAlignedBox3 &A, const AxisAlignedBox3 &B)
552{
553  return (A.mMin == B.mMin) && (A.mMax == B.mMax);
554}
555
556 
557}
558
559
560#endif
Note: See TracBrowser for help on using the repository browser.