1 | #include <stack>
|
---|
2 | #include <time.h>
|
---|
3 | #include <iomanip>
|
---|
4 |
|
---|
5 | #include "BvHierarchy.h"
|
---|
6 | #include "ViewCell.h"
|
---|
7 | #include "Plane3.h"
|
---|
8 | #include "Mesh.h"
|
---|
9 | #include "common.h"
|
---|
10 | #include "Environment.h"
|
---|
11 | #include "Polygon3.h"
|
---|
12 | #include "Ray.h"
|
---|
13 | #include "AxisAlignedBox3.h"
|
---|
14 | #include "Exporter.h"
|
---|
15 | #include "Plane3.h"
|
---|
16 | #include "ViewCellsManager.h"
|
---|
17 | #include "Beam.h"
|
---|
18 | #include "VspTree.h"
|
---|
19 | #include "HierarchyManager.h"
|
---|
20 |
|
---|
21 |
|
---|
22 | namespace GtpVisibilityPreprocessor {
|
---|
23 |
|
---|
24 |
|
---|
25 | #define PROBABILIY_IS_BV_VOLUME 1
|
---|
26 | #define USE_FIXEDPOINT_T 0
|
---|
27 | #define USE_VOLUMES_FOR_HEURISTICS 1
|
---|
28 |
|
---|
29 | //int BvhNode::sMailId = 10000; //2147483647;
|
---|
30 | //int BvhNode::sReservedMailboxes = 1;
|
---|
31 |
|
---|
32 | BvHierarchy *BvHierarchy::BvhSubdivisionCandidate::sBvHierarchy = NULL;
|
---|
33 |
|
---|
34 |
|
---|
35 | /// sorting operator
|
---|
36 | inline static bool ilt(Intersectable *obj1, Intersectable *obj2)
|
---|
37 | {
|
---|
38 | return obj1->mId < obj2->mId;
|
---|
39 | }
|
---|
40 |
|
---|
41 |
|
---|
42 | /// sorting operator
|
---|
43 | inline static bool smallerSize(Intersectable *obj1, Intersectable *obj2)
|
---|
44 | {
|
---|
45 | return obj1->GetBox().SurfaceArea() < obj2->GetBox().SurfaceArea();
|
---|
46 | }
|
---|
47 |
|
---|
48 |
|
---|
49 |
|
---|
50 | /***************************************************************/
|
---|
51 | /* class BvhNode implementation */
|
---|
52 | /***************************************************************/
|
---|
53 |
|
---|
54 | BvhNode::BvhNode():
|
---|
55 | mParent(NULL),
|
---|
56 | mTimeStamp(0),
|
---|
57 | mRenderCost(-1)
|
---|
58 |
|
---|
59 | {
|
---|
60 |
|
---|
61 | }
|
---|
62 |
|
---|
63 | BvhNode::BvhNode(const AxisAlignedBox3 &bbox):
|
---|
64 | mParent(NULL),
|
---|
65 | mBoundingBox(bbox),
|
---|
66 | mTimeStamp(0),
|
---|
67 | mRenderCost(-1)
|
---|
68 | {
|
---|
69 | }
|
---|
70 |
|
---|
71 |
|
---|
72 | BvhNode::BvhNode(const AxisAlignedBox3 &bbox, BvhInterior *parent):
|
---|
73 | mBoundingBox(bbox),
|
---|
74 | mParent(parent),
|
---|
75 | mTimeStamp(0),
|
---|
76 | mRenderCost(-1)
|
---|
77 | {
|
---|
78 | }
|
---|
79 |
|
---|
80 |
|
---|
81 | bool BvhNode::IsRoot() const
|
---|
82 | {
|
---|
83 | return mParent == NULL;
|
---|
84 | }
|
---|
85 |
|
---|
86 |
|
---|
87 | BvhInterior *BvhNode::GetParent()
|
---|
88 | {
|
---|
89 | return mParent;
|
---|
90 | }
|
---|
91 |
|
---|
92 |
|
---|
93 | void BvhNode::SetParent(BvhInterior *parent)
|
---|
94 | {
|
---|
95 | mParent = parent;
|
---|
96 | }
|
---|
97 |
|
---|
98 |
|
---|
99 | int BvhNode::GetRandomEdgePoint(Vector3 &point,
|
---|
100 | Vector3 &normal)
|
---|
101 | {
|
---|
102 | // get random edge
|
---|
103 | const int idx = Random(12);
|
---|
104 | Vector3 a, b;
|
---|
105 | mBoundingBox.GetEdge(idx, &a, &b);
|
---|
106 |
|
---|
107 | const float w = RandomValue(0.0f, 1.0f);
|
---|
108 |
|
---|
109 | point = a * w + b * (1.0f - w);
|
---|
110 |
|
---|
111 | // TODO
|
---|
112 | normal = Vector3(0);
|
---|
113 |
|
---|
114 | return idx;
|
---|
115 | }
|
---|
116 |
|
---|
117 |
|
---|
118 |
|
---|
119 | /******************************************************************/
|
---|
120 | /* class BvhInterior implementation */
|
---|
121 | /******************************************************************/
|
---|
122 |
|
---|
123 |
|
---|
124 | BvhLeaf::BvhLeaf(const AxisAlignedBox3 &bbox):
|
---|
125 | BvhNode(bbox),
|
---|
126 | mSubdivisionCandidate(NULL),
|
---|
127 | mGlList(0)
|
---|
128 | {
|
---|
129 | mActiveNode = this;
|
---|
130 | }
|
---|
131 |
|
---|
132 |
|
---|
133 | BvhLeaf::BvhLeaf(const AxisAlignedBox3 &bbox, BvhInterior *parent):
|
---|
134 | BvhNode(bbox, parent),
|
---|
135 | mGlList(0)
|
---|
136 |
|
---|
137 | {
|
---|
138 | mActiveNode = this;
|
---|
139 | }
|
---|
140 |
|
---|
141 |
|
---|
142 | BvhLeaf::BvhLeaf(const AxisAlignedBox3 &bbox,
|
---|
143 | BvhInterior *parent,
|
---|
144 | const int numObjects):
|
---|
145 | BvhNode(bbox, parent),
|
---|
146 | mGlList(0)
|
---|
147 |
|
---|
148 | {
|
---|
149 | mObjects.reserve(numObjects);
|
---|
150 | mActiveNode = this;
|
---|
151 | }
|
---|
152 |
|
---|
153 |
|
---|
154 | bool BvhLeaf::IsLeaf() const
|
---|
155 | {
|
---|
156 | return true;
|
---|
157 | }
|
---|
158 |
|
---|
159 |
|
---|
160 | BvhLeaf::~BvhLeaf()
|
---|
161 | {
|
---|
162 | }
|
---|
163 |
|
---|
164 |
|
---|
165 | void BvhLeaf::CollectObjects(ObjectContainer &objects)
|
---|
166 | {
|
---|
167 | ObjectContainer::const_iterator oit, oit_end = mObjects.end();
|
---|
168 | for (oit = mObjects.begin(); oit != oit_end; ++ oit)
|
---|
169 | {
|
---|
170 | objects.push_back(*oit);
|
---|
171 | }
|
---|
172 | }
|
---|
173 |
|
---|
174 | /******************************************************************/
|
---|
175 | /* class BvhInterior implementation */
|
---|
176 | /******************************************************************/
|
---|
177 |
|
---|
178 |
|
---|
179 | BvhInterior::BvhInterior(const AxisAlignedBox3 &bbox):
|
---|
180 | BvhNode(bbox), mFront(NULL), mBack(NULL)
|
---|
181 | {
|
---|
182 | }
|
---|
183 |
|
---|
184 |
|
---|
185 | BvhInterior::BvhInterior(const AxisAlignedBox3 &bbox, BvhInterior *parent):
|
---|
186 | BvhNode(bbox, parent), mFront(NULL), mBack(NULL)
|
---|
187 | {
|
---|
188 | }
|
---|
189 |
|
---|
190 |
|
---|
191 | void BvhInterior::ReplaceChildLink(BvhNode *oldChild, BvhNode *newChild)
|
---|
192 | {
|
---|
193 | if (mBack == oldChild)
|
---|
194 | mBack = newChild;
|
---|
195 | else
|
---|
196 | mFront = newChild;
|
---|
197 | }
|
---|
198 |
|
---|
199 |
|
---|
200 | bool BvhInterior::IsLeaf() const
|
---|
201 | {
|
---|
202 | return false;
|
---|
203 | }
|
---|
204 |
|
---|
205 |
|
---|
206 | BvhInterior::~BvhInterior()
|
---|
207 | {
|
---|
208 | DEL_PTR(mFront);
|
---|
209 | DEL_PTR(mBack);
|
---|
210 | }
|
---|
211 |
|
---|
212 |
|
---|
213 | void BvhInterior::SetupChildLinks(BvhNode *front, BvhNode *back)
|
---|
214 | {
|
---|
215 | mBack = back;
|
---|
216 | mFront = front;
|
---|
217 | }
|
---|
218 |
|
---|
219 |
|
---|
220 | void BvhInterior::CollectObjects(ObjectContainer &objects)
|
---|
221 | {
|
---|
222 | mFront->CollectObjects(objects);
|
---|
223 | mBack->CollectObjects(objects);
|
---|
224 | }
|
---|
225 |
|
---|
226 |
|
---|
227 | /*******************************************************************/
|
---|
228 | /* class BvHierarchy implementation */
|
---|
229 | /*******************************************************************/
|
---|
230 |
|
---|
231 |
|
---|
232 | BvHierarchy::BvHierarchy():
|
---|
233 | mRoot(NULL),
|
---|
234 | mTimeStamp(1),
|
---|
235 | mIsInitialSubdivision(false)
|
---|
236 | {
|
---|
237 | ReadEnvironment();
|
---|
238 | mSubdivisionCandidates = new SortableEntryContainer;
|
---|
239 | // for (int i = 0; i < 4; ++ i)
|
---|
240 | // mSortedObjects[i] = NULL;
|
---|
241 | }
|
---|
242 |
|
---|
243 |
|
---|
244 | BvHierarchy::~BvHierarchy()
|
---|
245 | {
|
---|
246 | // delete the local subdivision candidates
|
---|
247 | DEL_PTR(mSubdivisionCandidates);
|
---|
248 |
|
---|
249 | // delete the presorted objects
|
---|
250 | /*for (int i = 0; i < 4; ++ i)
|
---|
251 | {
|
---|
252 | DEL_PTR(mSortedObjects[i]);
|
---|
253 | }*/
|
---|
254 |
|
---|
255 | // delete the tree
|
---|
256 | DEL_PTR(mRoot);
|
---|
257 | }
|
---|
258 |
|
---|
259 |
|
---|
260 | void BvHierarchy::ReadEnvironment()
|
---|
261 | {
|
---|
262 | bool randomize = false;
|
---|
263 | Environment::GetSingleton()->GetBoolValue("BvHierarchy.Construction.randomize", randomize);
|
---|
264 |
|
---|
265 | // initialise random generator for heuristics
|
---|
266 | if (randomize)
|
---|
267 | Randomize();
|
---|
268 |
|
---|
269 | //////////////////////////////
|
---|
270 | //-- termination criteria for autopartition
|
---|
271 |
|
---|
272 | Environment::GetSingleton()->GetIntValue("BvHierarchy.Termination.maxDepth", mTermMaxDepth);
|
---|
273 | Environment::GetSingleton()->GetIntValue("BvHierarchy.Termination.maxLeaves", mTermMaxLeaves);
|
---|
274 | Environment::GetSingleton()->GetIntValue("BvHierarchy.Termination.minObjects", mTermMinObjects);
|
---|
275 | Environment::GetSingleton()->GetIntValue("BvHierarchy.Termination.minRays", mTermMinRays);
|
---|
276 | Environment::GetSingleton()->GetFloatValue(
|
---|
277 | "BvHierarchy.Termination.minProbability", mTermMinProbability);
|
---|
278 | Environment::GetSingleton()->GetIntValue("BvHierarchy.Termination.missTolerance", mTermMissTolerance);
|
---|
279 |
|
---|
280 |
|
---|
281 | //////////////////////////////
|
---|
282 | //-- max cost ratio for early tree termination
|
---|
283 |
|
---|
284 | Environment::GetSingleton()->GetFloatValue("BvHierarchy.Termination.maxCostRatio", mTermMaxCostRatio);
|
---|
285 | Environment::GetSingleton()->GetFloatValue("BvHierarchy.Termination.minGlobalCostRatio",
|
---|
286 | mTermMinGlobalCostRatio);
|
---|
287 | Environment::GetSingleton()->GetIntValue("BvHierarchy.Termination.globalCostMissTolerance",
|
---|
288 | mTermGlobalCostMissTolerance);
|
---|
289 |
|
---|
290 |
|
---|
291 | //////////////////////////////
|
---|
292 | //-- factors for subdivision heuristics
|
---|
293 |
|
---|
294 | // if only the driving axis is used for splits
|
---|
295 | Environment::GetSingleton()->GetBoolValue("BvHierarchy.splitUseOnlyDrivingAxis", mOnlyDrivingAxis);
|
---|
296 | Environment::GetSingleton()->GetFloatValue("BvHierarchy.maxStaticMemory", mMaxMemory);
|
---|
297 | Environment::GetSingleton()->GetBoolValue("BvHierarchy.useCostHeuristics", mUseCostHeuristics);
|
---|
298 | Environment::GetSingleton()->GetBoolValue("BvHierarchy.useSah", mUseSah);
|
---|
299 |
|
---|
300 | char subdivisionStatsLog[100];
|
---|
301 | Environment::GetSingleton()->GetStringValue("BvHierarchy.subdivisionStats", subdivisionStatsLog);
|
---|
302 | mSubdivisionStats.open(subdivisionStatsLog);
|
---|
303 |
|
---|
304 | Environment::GetSingleton()->GetFloatValue("BvHierarchy.Construction.renderCostDecreaseWeight", mRenderCostDecreaseWeight);
|
---|
305 | Environment::GetSingleton()->GetBoolValue("BvHierarchy.Construction.useGlobalSorting", mUseGlobalSorting);
|
---|
306 | Environment::GetSingleton()->GetIntValue("BvHierarchy.minRaysForVisibility", mMinRaysForVisibility);
|
---|
307 | Environment::GetSingleton()->GetIntValue("BvHierarchy.maxTests", mMaxTests);
|
---|
308 | Environment::GetSingleton()->GetBoolValue("BvHierarchy.Construction.useInitialSubdivision", mApplyInitialPartition);
|
---|
309 | Environment::GetSingleton()->GetIntValue("BvHierarchy.Construction.Initial.minObjects", mInitialMinObjects);
|
---|
310 | Environment::GetSingleton()->GetFloatValue("BvHierarchy.Construction.Initial.maxAreaRatio", mInitialMaxAreaRatio);
|
---|
311 | Environment::GetSingleton()->GetFloatValue("BvHierarchy.Construction.Initial.minArea", mInitialMinArea);
|
---|
312 |
|
---|
313 | //mMemoryConst = (float)(sizeof(VspLeaf) + sizeof(VspViewCell));
|
---|
314 | //mMemoryConst = (float)sizeof(BvhLeaf);
|
---|
315 | mMemoryConst = 16;//(float)sizeof(ObjectContainer);
|
---|
316 |
|
---|
317 | mUseBboxAreaForSah = true;
|
---|
318 |
|
---|
319 | /////////////
|
---|
320 | //-- debug output
|
---|
321 |
|
---|
322 | Debug << "******* Bvh hierarchy options ******** " << endl;
|
---|
323 | Debug << "max depth: " << mTermMaxDepth << endl;
|
---|
324 | Debug << "min probabiliy: " << mTermMinProbability<< endl;
|
---|
325 | Debug << "min objects: " << mTermMinObjects << endl;
|
---|
326 | Debug << "max cost ratio: " << mTermMaxCostRatio << endl;
|
---|
327 | Debug << "miss tolerance: " << mTermMissTolerance << endl;
|
---|
328 | Debug << "max leaves: " << mTermMaxLeaves << endl;
|
---|
329 | Debug << "randomize: " << randomize << endl;
|
---|
330 | Debug << "min global cost ratio: " << mTermMinGlobalCostRatio << endl;
|
---|
331 | Debug << "global cost miss tolerance: " << mTermGlobalCostMissTolerance << endl;
|
---|
332 | Debug << "only driving axis: " << mOnlyDrivingAxis << endl;
|
---|
333 | Debug << "max memory: " << mMaxMemory << endl;
|
---|
334 | Debug << "use cost heuristics: " << mUseCostHeuristics << endl;
|
---|
335 | Debug << "use surface area heuristics: " << mUseSah << endl;
|
---|
336 | Debug << "subdivision stats log: " << subdivisionStatsLog << endl;
|
---|
337 | Debug << "split borders: " << mSplitBorder << endl;
|
---|
338 | Debug << "render cost decrease weight: " << mRenderCostDecreaseWeight << endl;
|
---|
339 | Debug << "use global sort: " << mUseGlobalSorting << endl;
|
---|
340 | Debug << "minimal rays for visibility: " << mMinRaysForVisibility << endl;
|
---|
341 | Debug << "bvh mem const: " << mMemoryConst << endl;
|
---|
342 | Debug << "apply initial partition: " << mApplyInitialPartition << endl;
|
---|
343 | Debug << "min objects: " << mInitialMinObjects << endl;
|
---|
344 | Debug << "max area ratio: " << mInitialMaxAreaRatio << endl;
|
---|
345 | Debug << "min area: " << mInitialMinArea << endl;
|
---|
346 |
|
---|
347 | Debug << endl;
|
---|
348 | }
|
---|
349 |
|
---|
350 |
|
---|
351 | void BvHierarchy::AssociateObjectsWithLeaf(BvhLeaf *leaf)
|
---|
352 | {
|
---|
353 | ObjectContainer::const_iterator oit, oit_end = leaf->mObjects.end();
|
---|
354 |
|
---|
355 | for (oit = leaf->mObjects.begin(); oit != oit_end; ++ oit)
|
---|
356 | {
|
---|
357 | (*oit)->mBvhLeaf = leaf;
|
---|
358 | }
|
---|
359 | }
|
---|
360 |
|
---|
361 |
|
---|
362 | static int CountRays(const ObjectContainer &objects)
|
---|
363 | {
|
---|
364 | int nRays = 0;
|
---|
365 |
|
---|
366 | ObjectContainer::const_iterator oit, oit_end = objects.end();
|
---|
367 |
|
---|
368 | for (oit = objects.begin(); oit != oit_end; ++ oit)
|
---|
369 | {
|
---|
370 | nRays += (int)(*oit)->GetOrCreateRays()->size();
|
---|
371 | }
|
---|
372 |
|
---|
373 | return nRays;
|
---|
374 | }
|
---|
375 |
|
---|
376 |
|
---|
377 | BvhInterior *BvHierarchy::SubdivideNode(const BvhSubdivisionCandidate &sc,
|
---|
378 | BvhTraversalData &frontData,
|
---|
379 | BvhTraversalData &backData)
|
---|
380 | {
|
---|
381 | const BvhTraversalData &tData = sc.mParentData;
|
---|
382 | BvhLeaf *leaf = tData.mNode;
|
---|
383 | AxisAlignedBox3 parentBox = leaf->GetBoundingBox();
|
---|
384 |
|
---|
385 | // update stats: we have two new leaves
|
---|
386 | mBvhStats.nodes += 2;
|
---|
387 |
|
---|
388 | if (tData.mDepth > mBvhStats.maxDepth)
|
---|
389 | {
|
---|
390 | mBvhStats.maxDepth = tData.mDepth;
|
---|
391 | }
|
---|
392 |
|
---|
393 | // add the new nodes to the tree
|
---|
394 | BvhInterior *node = new BvhInterior(parentBox, leaf->GetParent());
|
---|
395 |
|
---|
396 |
|
---|
397 | //////////////////
|
---|
398 | //-- create front and back leaf
|
---|
399 |
|
---|
400 | AxisAlignedBox3 fbox = EvalBoundingBox(sc.mFrontObjects, &parentBox);
|
---|
401 | AxisAlignedBox3 bbox = EvalBoundingBox(sc.mBackObjects, &parentBox);
|
---|
402 |
|
---|
403 | BvhLeaf *back = new BvhLeaf(bbox, node, (int)sc.mBackObjects.size());
|
---|
404 | BvhLeaf *front = new BvhLeaf(fbox, node, (int)sc.mFrontObjects.size());
|
---|
405 |
|
---|
406 | BvhInterior *parent = leaf->GetParent();
|
---|
407 |
|
---|
408 | // replace a link from node's parent
|
---|
409 | if (parent)
|
---|
410 | {
|
---|
411 | parent->ReplaceChildLink(leaf, node);
|
---|
412 | node->SetParent(parent);
|
---|
413 | }
|
---|
414 | else // no parent => this node is the root
|
---|
415 | {
|
---|
416 | mRoot = node;
|
---|
417 | }
|
---|
418 |
|
---|
419 | // and setup child links
|
---|
420 | node->SetupChildLinks(front, back);
|
---|
421 |
|
---|
422 | ++ mBvhStats.splits;
|
---|
423 |
|
---|
424 |
|
---|
425 | ////////////////////////////////////////
|
---|
426 | //-- fill front and back traversal data with the new values
|
---|
427 |
|
---|
428 | frontData.mDepth = backData.mDepth = tData.mDepth + 1;
|
---|
429 |
|
---|
430 | frontData.mNode = front;
|
---|
431 | backData.mNode = back;
|
---|
432 |
|
---|
433 | back->mObjects = sc.mBackObjects;
|
---|
434 | front->mObjects = sc.mFrontObjects;
|
---|
435 |
|
---|
436 | // if the number of rays is too low, no assumptions can be made
|
---|
437 | // (=> switch to surface area heuristics?)
|
---|
438 | frontData.mNumRays = CountRays(sc.mFrontObjects);
|
---|
439 | backData.mNumRays = CountRays(sc.mBackObjects);
|
---|
440 |
|
---|
441 | AssociateObjectsWithLeaf(back);
|
---|
442 | AssociateObjectsWithLeaf(front);
|
---|
443 |
|
---|
444 | #if PROBABILIY_IS_BV_VOLUME
|
---|
445 | // volume of bvh (= probability that this bvh can be seen)
|
---|
446 | frontData.mProbability = fbox.GetVolume();
|
---|
447 | backData.mProbability = bbox.GetVolume();
|
---|
448 | #else
|
---|
449 | // compute probability of this node being visible,
|
---|
450 | // i.e., volume of the view cells that can see this node
|
---|
451 | frontData.mProbability = EvalViewCellsVolume(sc.mFrontObjects);
|
---|
452 | backData.mProbability = EvalViewCellsVolume(sc.mBackObjects);
|
---|
453 | #endif
|
---|
454 |
|
---|
455 | // how often was max cost ratio missed in this branch?
|
---|
456 | frontData.mMaxCostMisses = sc.GetMaxCostMisses();
|
---|
457 | backData.mMaxCostMisses = sc.GetMaxCostMisses();
|
---|
458 |
|
---|
459 | // set the time stamp so the order of traversal can be reconstructed
|
---|
460 | node->SetTimeStamp(mHierarchyManager->mTimeStamp ++);
|
---|
461 |
|
---|
462 | // assign the objects in sorted order
|
---|
463 | if (mUseGlobalSorting)
|
---|
464 | {
|
---|
465 | AssignSortedObjects(sc, frontData, backData);
|
---|
466 | }
|
---|
467 |
|
---|
468 | // return the new interior node
|
---|
469 | return node;
|
---|
470 | }
|
---|
471 |
|
---|
472 |
|
---|
473 | BvhNode *BvHierarchy::Subdivide(SplitQueue &tQueue,
|
---|
474 | SubdivisionCandidate *splitCandidate,
|
---|
475 | const bool globalCriteriaMet)
|
---|
476 | {
|
---|
477 | BvhSubdivisionCandidate *sc =
|
---|
478 | dynamic_cast<BvhSubdivisionCandidate *>(splitCandidate);
|
---|
479 | BvhTraversalData &tData = sc->mParentData;
|
---|
480 |
|
---|
481 | BvhNode *currentNode = tData.mNode;
|
---|
482 |
|
---|
483 | if (!LocalTerminationCriteriaMet(tData) && !globalCriteriaMet)
|
---|
484 | {
|
---|
485 | //////////////
|
---|
486 | //-- continue subdivision
|
---|
487 |
|
---|
488 | BvhTraversalData tFrontData;
|
---|
489 | BvhTraversalData tBackData;
|
---|
490 |
|
---|
491 | // create new interior node and two leaf node
|
---|
492 | currentNode = SubdivideNode(*sc, tFrontData, tBackData);
|
---|
493 |
|
---|
494 | // decrease the weighted average cost of the subdivisoin
|
---|
495 | mTotalCost -= sc->GetRenderCostDecrease();
|
---|
496 | mPvsEntries += sc->GetPvsEntriesIncr();
|
---|
497 |
|
---|
498 | // subdivision statistics
|
---|
499 | if (1) PrintSubdivisionStats(*sc);
|
---|
500 |
|
---|
501 |
|
---|
502 | ///////////////////////////
|
---|
503 | //-- push the new split candidates on the queue
|
---|
504 |
|
---|
505 | BvhSubdivisionCandidate *frontCandidate =
|
---|
506 | new BvhSubdivisionCandidate(tFrontData);
|
---|
507 | BvhSubdivisionCandidate *backCandidate =
|
---|
508 | new BvhSubdivisionCandidate(tBackData);
|
---|
509 |
|
---|
510 | EvalSubdivisionCandidate(*frontCandidate);
|
---|
511 | EvalSubdivisionCandidate(*backCandidate);
|
---|
512 |
|
---|
513 | // cross reference
|
---|
514 | tFrontData.mNode->SetSubdivisionCandidate(frontCandidate);
|
---|
515 | tBackData.mNode->SetSubdivisionCandidate(backCandidate);
|
---|
516 |
|
---|
517 | //cout << "f: " << frontCandidate->GetPriority() << " b: " << backCandidate->GetPriority() << endl;
|
---|
518 | tQueue.Push(frontCandidate);
|
---|
519 | tQueue.Push(backCandidate);
|
---|
520 | }
|
---|
521 |
|
---|
522 | /////////////////////////////////
|
---|
523 | //-- node is a leaf => terminate traversal
|
---|
524 |
|
---|
525 | if (currentNode->IsLeaf())
|
---|
526 | {
|
---|
527 | /////////////////////
|
---|
528 | //-- store additional info
|
---|
529 | EvaluateLeafStats(tData);
|
---|
530 |
|
---|
531 | // this leaf is no candidate for splitting anymore
|
---|
532 | // => detach subdivision candidate
|
---|
533 | tData.mNode->SetSubdivisionCandidate(NULL);
|
---|
534 | // detach node so we don't delete it with the traversal data
|
---|
535 | tData.mNode = NULL;
|
---|
536 | }
|
---|
537 |
|
---|
538 | return currentNode;
|
---|
539 | }
|
---|
540 |
|
---|
541 |
|
---|
542 | float BvHierarchy::EvalPriority(const BvhSubdivisionCandidate &splitCandidate,
|
---|
543 | const float renderCostDecr,
|
---|
544 | const float oldRenderCost) const
|
---|
545 | {
|
---|
546 | float priority;
|
---|
547 |
|
---|
548 | if (mIsInitialSubdivision)
|
---|
549 | {
|
---|
550 | priority = (float)-splitCandidate.mParentData.mDepth;
|
---|
551 | return priority;
|
---|
552 | }
|
---|
553 |
|
---|
554 | BvhLeaf *leaf = splitCandidate.mParentData.mNode;
|
---|
555 |
|
---|
556 | // surface area heuristics is used when there is
|
---|
557 | // no view space subdivision available.
|
---|
558 | // In order to have some prioritized traversal,
|
---|
559 | // we use this formula instead
|
---|
560 | if (mHierarchyManager->GetViewSpaceSubdivisionType() ==
|
---|
561 | HierarchyManager::NO_VIEWSPACE_SUBDIV)
|
---|
562 | {
|
---|
563 | priority = EvalSahCost(leaf);
|
---|
564 | }
|
---|
565 | else
|
---|
566 | {
|
---|
567 | // take render cost of node into account
|
---|
568 | // otherwise danger of being stuck in a local minimum!
|
---|
569 | const float factor = mRenderCostDecreaseWeight;
|
---|
570 |
|
---|
571 | priority = factor * renderCostDecr + (1.0f - factor) * oldRenderCost;
|
---|
572 |
|
---|
573 | if (mHierarchyManager->mConsiderMemory)
|
---|
574 | {
|
---|
575 | priority /= ((float)splitCandidate.GetPvsEntriesIncr() + mMemoryConst);
|
---|
576 | }
|
---|
577 | }
|
---|
578 |
|
---|
579 | // hack: don't allow empty splits to be taken
|
---|
580 | if (splitCandidate.mFrontObjects.empty() || splitCandidate.mBackObjects.empty())
|
---|
581 | priority = 0;
|
---|
582 |
|
---|
583 | return priority;
|
---|
584 | }
|
---|
585 |
|
---|
586 |
|
---|
587 | static float AvgRayContribution(const int pvs, const int nRays)
|
---|
588 | {
|
---|
589 | return (float)pvs / ((float)nRays + Limits::Small);
|
---|
590 | }
|
---|
591 |
|
---|
592 |
|
---|
593 | void BvHierarchy::EvalSubdivisionCandidate(BvhSubdivisionCandidate &splitCandidate,
|
---|
594 | bool computeSplitPlane)
|
---|
595 | {
|
---|
596 | if (computeSplitPlane)
|
---|
597 | {
|
---|
598 | const bool sufficientSamples =
|
---|
599 | splitCandidate.mParentData.mNumRays > mMinRaysForVisibility;
|
---|
600 |
|
---|
601 | const bool useVisibiliyBasedHeuristics =
|
---|
602 | !mUseSah &&
|
---|
603 | (mHierarchyManager->GetViewSpaceSubdivisionType() ==
|
---|
604 | HierarchyManager::KD_BASED_VIEWSPACE_SUBDIV) &&
|
---|
605 | sufficientSamples;
|
---|
606 |
|
---|
607 | // compute best object partition
|
---|
608 | const float ratio = SelectObjectPartition(splitCandidate.mParentData,
|
---|
609 | splitCandidate.mFrontObjects,
|
---|
610 | splitCandidate.mBackObjects,
|
---|
611 | useVisibiliyBasedHeuristics);
|
---|
612 |
|
---|
613 | // cost ratio violated?
|
---|
614 | const bool maxCostRatioViolated = mTermMaxCostRatio < ratio;
|
---|
615 | const int previousMisses = splitCandidate.mParentData.mMaxCostMisses;
|
---|
616 |
|
---|
617 | splitCandidate.SetMaxCostMisses(maxCostRatioViolated ?
|
---|
618 | previousMisses + 1 : previousMisses);
|
---|
619 | }
|
---|
620 |
|
---|
621 | BvhLeaf *leaf = splitCandidate.mParentData.mNode;
|
---|
622 |
|
---|
623 | const float oldProp = EvalViewCellsVolume(leaf->mObjects);
|
---|
624 | const float oldRenderCost = EvalRenderCost(leaf->mObjects);
|
---|
625 |
|
---|
626 | // compute global decrease in render cost
|
---|
627 | const float newRenderCost = EvalRenderCost(splitCandidate.mFrontObjects) +
|
---|
628 | EvalRenderCost(splitCandidate.mBackObjects);
|
---|
629 |
|
---|
630 | const float renderCostDecr = oldRenderCost - newRenderCost;
|
---|
631 |
|
---|
632 | splitCandidate.SetRenderCostDecrease(renderCostDecr);
|
---|
633 |
|
---|
634 | // increase in pvs entries
|
---|
635 | const int pvsEntriesIncr = EvalPvsEntriesIncr(splitCandidate);
|
---|
636 | splitCandidate.SetPvsEntriesIncr(pvsEntriesIncr);
|
---|
637 |
|
---|
638 | #ifdef GTP_DEBUG
|
---|
639 | Debug << "old render cost: " << oldRenderCost << endl;
|
---|
640 | Debug << "new render cost: " << newRenderCost << endl;
|
---|
641 | Debug << "render cost decrease: " << renderCostDecr << endl;
|
---|
642 | #endif
|
---|
643 |
|
---|
644 | float priority = EvalPriority(splitCandidate,
|
---|
645 | renderCostDecr,
|
---|
646 | oldRenderCost);
|
---|
647 |
|
---|
648 | if (USE_AVGRAYCONTRI)
|
---|
649 | {
|
---|
650 | // this leaf is a pvs entry in all the view cells
|
---|
651 | // that see one of the objects.
|
---|
652 | const int pvs = CountViewCells(leaf->mObjects);
|
---|
653 | //const int pvs = (int)leaf->mObjects.size();
|
---|
654 |
|
---|
655 | // avg contribution of a ray to a pvs
|
---|
656 | const float avgRayContri =
|
---|
657 | AvgRayContribution(pvs, splitCandidate.mParentData.mNumRays);
|
---|
658 |
|
---|
659 | // high avg ray contri, the result is influenced by undersampling
|
---|
660 | // => decrease priority
|
---|
661 | if (0 && (avgRayContri > mHierarchyManager->mMaxAvgRayContri))
|
---|
662 | {
|
---|
663 | const float factor = 1.0f + avgRayContri - mHierarchyManager->mMaxAvgRayContri;
|
---|
664 | priority /= factor;
|
---|
665 | }
|
---|
666 |
|
---|
667 | //splitCandidate.SetAvgRayContri(avgRayContri);
|
---|
668 | }
|
---|
669 |
|
---|
670 | // compute global decrease in render cost
|
---|
671 | splitCandidate.SetPriority(priority);
|
---|
672 | }
|
---|
673 |
|
---|
674 |
|
---|
675 | int BvHierarchy::EvalPvsEntriesIncr(BvhSubdivisionCandidate &splitCandidate) const
|
---|
676 | {
|
---|
677 | const int oldPvsSize = CountViewCells(splitCandidate.mParentData.mNode->mObjects);
|
---|
678 |
|
---|
679 | const int fPvsSize = CountViewCells(splitCandidate.mFrontObjects);
|
---|
680 | const int bPvsSize = CountViewCells(splitCandidate.mBackObjects);
|
---|
681 |
|
---|
682 | return fPvsSize + bPvsSize - oldPvsSize;
|
---|
683 | }
|
---|
684 |
|
---|
685 |
|
---|
686 | inline bool BvHierarchy::LocalTerminationCriteriaMet(const BvhTraversalData &tData) const
|
---|
687 | {
|
---|
688 | const bool terminationCriteriaMet =
|
---|
689 | (0
|
---|
690 | || ((int)tData.mNode->mObjects.size() <= 1)//mTermMinObjects)
|
---|
691 | //|| (data.mProbability <= mTermMinProbability)
|
---|
692 | //|| (data.mNumRays <= mTermMinRays)
|
---|
693 | );
|
---|
694 |
|
---|
695 | #ifdef _DEBUG
|
---|
696 | if (terminationCriteriaMet)
|
---|
697 | {
|
---|
698 | cout << "bvh local termination criteria met:" << endl;
|
---|
699 | cout << "objects: " << (int)tData.mNode->mObjects.size() << " " << mTermMinObjects << endl;
|
---|
700 | }
|
---|
701 | #endif
|
---|
702 | return terminationCriteriaMet;
|
---|
703 | }
|
---|
704 |
|
---|
705 |
|
---|
706 | inline bool BvHierarchy::GlobalTerminationCriteriaMet(const BvhTraversalData &data) const
|
---|
707 | {
|
---|
708 | // note: tracking for global cost termination
|
---|
709 | // does not make much sense for interleaved vsp / osp partition
|
---|
710 | // as it is the responsibility of the hierarchy manager
|
---|
711 |
|
---|
712 | const bool terminationCriteriaMet =
|
---|
713 | (0
|
---|
714 | || (mBvhStats.Leaves() >= mTermMaxLeaves)
|
---|
715 | //|| (mBvhStats.mGlobalCostMisses >= mTermGlobalCostMissTolerance)
|
---|
716 | //|| mOutOfMemory
|
---|
717 | );
|
---|
718 |
|
---|
719 | #ifdef GTP_DEBUG
|
---|
720 | if (terminationCriteriaMet)
|
---|
721 | {
|
---|
722 | Debug << "bvh global termination criteria met:" << endl;
|
---|
723 | Debug << "cost misses: " << mBvhStats.mGlobalCostMisses << " " << mTermGlobalCostMissTolerance << endl;
|
---|
724 | Debug << "leaves: " << mBvhStats.Leaves() << " " << mTermMaxLeaves << endl;
|
---|
725 | }
|
---|
726 | #endif
|
---|
727 | return terminationCriteriaMet;
|
---|
728 | }
|
---|
729 |
|
---|
730 |
|
---|
731 | void BvHierarchy::EvaluateLeafStats(const BvhTraversalData &data)
|
---|
732 | {
|
---|
733 | // the node became a leaf -> evaluate stats for leafs
|
---|
734 | BvhLeaf *leaf = data.mNode;
|
---|
735 |
|
---|
736 | ++ mCreatedLeaves;
|
---|
737 |
|
---|
738 |
|
---|
739 | if (data.mProbability <= mTermMinProbability)
|
---|
740 | {
|
---|
741 | ++ mBvhStats.minProbabilityNodes;
|
---|
742 | }
|
---|
743 |
|
---|
744 | ////////////////////////////////////////////
|
---|
745 | // depth related stuff
|
---|
746 |
|
---|
747 | if (data.mDepth < mBvhStats.minDepth)
|
---|
748 | {
|
---|
749 | mBvhStats.minDepth = data.mDepth;
|
---|
750 | }
|
---|
751 |
|
---|
752 | if (data.mDepth >= mTermMaxDepth)
|
---|
753 | {
|
---|
754 | ++ mBvhStats.maxDepthNodes;
|
---|
755 | }
|
---|
756 |
|
---|
757 | // accumulate depth to compute average depth
|
---|
758 | mBvhStats.accumDepth += data.mDepth;
|
---|
759 |
|
---|
760 |
|
---|
761 | ////////////////////////////////////////////
|
---|
762 | // objects related stuff
|
---|
763 |
|
---|
764 | // note: the sum should alwaysbe total number of objects for bvh
|
---|
765 | mBvhStats.objectRefs += (int)leaf->mObjects.size();
|
---|
766 |
|
---|
767 | if ((int)leaf->mObjects.size() <= mTermMinObjects)
|
---|
768 | {
|
---|
769 | ++ mBvhStats.minObjectsNodes;
|
---|
770 | }
|
---|
771 |
|
---|
772 | if (leaf->mObjects.empty())
|
---|
773 | {
|
---|
774 | ++ mBvhStats.emptyNodes;
|
---|
775 | }
|
---|
776 |
|
---|
777 | if ((int)leaf->mObjects.size() > mBvhStats.maxObjectRefs)
|
---|
778 | {
|
---|
779 | mBvhStats.maxObjectRefs = (int)leaf->mObjects.size();
|
---|
780 | }
|
---|
781 |
|
---|
782 | if ((int)leaf->mObjects.size() < mBvhStats.minObjectRefs)
|
---|
783 | {
|
---|
784 | mBvhStats.minObjectRefs = (int)leaf->mObjects.size();
|
---|
785 | }
|
---|
786 |
|
---|
787 | ////////////////////////////////////////////
|
---|
788 | // ray related stuff
|
---|
789 |
|
---|
790 | // note: this number should always accumulate to the total number of rays
|
---|
791 | mBvhStats.rayRefs += data.mNumRays;
|
---|
792 |
|
---|
793 | if (data.mNumRays <= mTermMinRays)
|
---|
794 | {
|
---|
795 | ++ mBvhStats.minRaysNodes;
|
---|
796 | }
|
---|
797 |
|
---|
798 | if (data.mNumRays > mBvhStats.maxRayRefs)
|
---|
799 | {
|
---|
800 | mBvhStats.maxRayRefs = data.mNumRays;
|
---|
801 | }
|
---|
802 |
|
---|
803 | if (data.mNumRays < mBvhStats.minRayRefs)
|
---|
804 | {
|
---|
805 | mBvhStats.minRayRefs = data.mNumRays;
|
---|
806 | }
|
---|
807 |
|
---|
808 | #ifdef _DEBUG
|
---|
809 | cout << "depth: " << data.mDepth << " objects: " << (int)leaf->mObjects.size()
|
---|
810 | << " rays: " << data.mNumRays << " rays / objects "
|
---|
811 | << (float)data.mNumRays / (float)leaf->mObjects.size() << endl;
|
---|
812 | #endif
|
---|
813 | }
|
---|
814 |
|
---|
815 |
|
---|
816 | #if 0
|
---|
817 |
|
---|
818 | /// compute object boundaries using spatial mid split
|
---|
819 | float BvHierarchy::EvalLocalObjectPartition(const BvhTraversalData &tData,
|
---|
820 | const int axis,
|
---|
821 | ObjectContainer &objectsFront,
|
---|
822 | ObjectContainer &objectsBack)
|
---|
823 | {
|
---|
824 | const float maxBox = tData.mBoundingBox.Max(axis);
|
---|
825 | const float minBox = tData.mBoundingBox.Min(axis);
|
---|
826 |
|
---|
827 | float midPoint = (maxBox + minBox) * 0.5f;
|
---|
828 |
|
---|
829 | ObjectContainer::const_iterator oit, oit_end = tData.mNode->mObjects.end();
|
---|
830 |
|
---|
831 | for (oit = tData.mNode->mObjects.begin(); oit != oit_end; ++ oit)
|
---|
832 | {
|
---|
833 | Intersectable *obj = *oit;
|
---|
834 | const AxisAlignedBox3 box = obj->GetBox();
|
---|
835 |
|
---|
836 | const float objMid = (box.Max(axis) + box.Min(axis)) * 0.5f;
|
---|
837 |
|
---|
838 | // object mailed => belongs to back objects
|
---|
839 | if (objMid < midPoint)
|
---|
840 | {
|
---|
841 | objectsBack.push_back(obj);
|
---|
842 | }
|
---|
843 | else
|
---|
844 | {
|
---|
845 | objectsFront.push_back(obj);
|
---|
846 | }
|
---|
847 | }
|
---|
848 |
|
---|
849 | const float oldRenderCost = EvalRenderCost(tData.mNode->mObjects);
|
---|
850 | const float newRenderCost = EvalRenderCost(objectsFront) * EvalRenderCost(objectsBack);
|
---|
851 |
|
---|
852 | const float ratio = newRenderCost / oldRenderCost;
|
---|
853 | return ratio;
|
---|
854 | }
|
---|
855 |
|
---|
856 | #else
|
---|
857 |
|
---|
858 | /// compute object partition by getting balanced objects on the left and right side
|
---|
859 | float BvHierarchy::EvalLocalObjectPartition(const BvhTraversalData &tData,
|
---|
860 | const int axis,
|
---|
861 | ObjectContainer &objectsFront,
|
---|
862 | ObjectContainer &objectsBack)
|
---|
863 | {
|
---|
864 | PrepareLocalSubdivisionCandidates(tData, axis);
|
---|
865 |
|
---|
866 | SortableEntryContainer::const_iterator cit, cit_end = mSubdivisionCandidates->end();
|
---|
867 |
|
---|
868 | int i = 0;
|
---|
869 | const int border = (int)tData.mNode->mObjects.size() / 2;
|
---|
870 |
|
---|
871 | for (cit = mSubdivisionCandidates->begin(); cit != cit_end; ++ cit, ++ i)
|
---|
872 | {
|
---|
873 | Intersectable *obj = (*cit).mObject;
|
---|
874 |
|
---|
875 | // object mailed => belongs to back objects
|
---|
876 | if (i < border)
|
---|
877 | {
|
---|
878 | objectsBack.push_back(obj);
|
---|
879 | }
|
---|
880 | else
|
---|
881 | {
|
---|
882 | objectsFront.push_back(obj);
|
---|
883 | }
|
---|
884 | }
|
---|
885 |
|
---|
886 | #if 1
|
---|
887 | const float cost = (tData.mNode->GetBoundingBox().Size().DrivingAxis() == axis) ? -1.0f : 0.0f;
|
---|
888 | #else
|
---|
889 | const float oldRenderCost = EvalRenderCost(tData.mNode->mObjects);
|
---|
890 | const float newRenderCost = EvalRenderCost(objectsFront) * EvalRenderCost(objectsBack);
|
---|
891 |
|
---|
892 | const float cost = newRenderCost / oldRenderCost;
|
---|
893 | #endif
|
---|
894 |
|
---|
895 | return cost;
|
---|
896 | }
|
---|
897 | #endif
|
---|
898 |
|
---|
899 | #if 1
|
---|
900 |
|
---|
901 | float BvHierarchy::EvalSah(const BvhTraversalData &tData,
|
---|
902 | const int axis,
|
---|
903 | ObjectContainer &objectsFront,
|
---|
904 | ObjectContainer &objectsBack)
|
---|
905 | {
|
---|
906 | // go through the lists, count the number of objects left and right
|
---|
907 | // and evaluate the following cost funcion:
|
---|
908 | // C = ct_div_ci + (ol + or) / queries
|
---|
909 | PrepareLocalSubdivisionCandidates(tData, axis);
|
---|
910 |
|
---|
911 | const float totalRenderCost = EvalAbsCost(tData.mNode->mObjects);
|
---|
912 | float objectsLeft = 0, objectsRight = totalRenderCost;
|
---|
913 |
|
---|
914 | const AxisAlignedBox3 nodeBbox = tData.mNode->GetBoundingBox();
|
---|
915 | const float boxArea = nodeBbox.SurfaceArea();
|
---|
916 |
|
---|
917 | float minSum = 1e20f;
|
---|
918 |
|
---|
919 | float minBorder = nodeBbox.Max(axis);
|
---|
920 | float maxBorder = nodeBbox.Min(axis);
|
---|
921 |
|
---|
922 | float areaLeft = 0, areaRight = 0;
|
---|
923 |
|
---|
924 | SortableEntryContainer::const_iterator currentPos =
|
---|
925 | mSubdivisionCandidates->begin();
|
---|
926 |
|
---|
927 | vector<float> bordersRight;
|
---|
928 |
|
---|
929 | // we keep track of both borders of the bounding boxes =>
|
---|
930 | // store the events in descending order
|
---|
931 |
|
---|
932 | bordersRight.resize(mSubdivisionCandidates->size());
|
---|
933 |
|
---|
934 | SortableEntryContainer::reverse_iterator rcit =
|
---|
935 | mSubdivisionCandidates->rbegin(), rcit_end =
|
---|
936 | mSubdivisionCandidates->rend();
|
---|
937 |
|
---|
938 | vector<float>::reverse_iterator rbit = bordersRight.rbegin();
|
---|
939 |
|
---|
940 | for (; rcit != rcit_end; ++ rcit, ++ rbit)
|
---|
941 | {
|
---|
942 | Intersectable *obj = (*rcit).mObject;
|
---|
943 | const AxisAlignedBox3 obox = obj->GetBox();
|
---|
944 |
|
---|
945 | if (obox.Min(axis) < minBorder)
|
---|
946 | {
|
---|
947 | minBorder = obox.Min(axis);
|
---|
948 | }
|
---|
949 |
|
---|
950 | (*rbit) = minBorder;
|
---|
951 | }
|
---|
952 |
|
---|
953 | // temporary surface areas
|
---|
954 | float al = 0;
|
---|
955 | float ar = boxArea;
|
---|
956 |
|
---|
957 | vector<float>::const_iterator bit = bordersRight.begin();
|
---|
958 | SortableEntryContainer::const_iterator cit, cit_end = mSubdivisionCandidates->end();
|
---|
959 |
|
---|
960 | for (cit = mSubdivisionCandidates->begin(); cit != cit_end; ++ cit, ++ bit)
|
---|
961 | {
|
---|
962 | Intersectable *obj = (*cit).mObject;
|
---|
963 |
|
---|
964 | const float renderCost = mViewCellsManager->EvalRenderCost(obj);
|
---|
965 |
|
---|
966 | objectsLeft += renderCost;
|
---|
967 | objectsRight -= renderCost;
|
---|
968 |
|
---|
969 | const AxisAlignedBox3 obox = obj->GetBox();
|
---|
970 |
|
---|
971 | // the borders of the bounding boxes have changed
|
---|
972 | if (obox.Max(axis) > maxBorder)
|
---|
973 | {
|
---|
974 | maxBorder = obox.Max(axis);
|
---|
975 | }
|
---|
976 |
|
---|
977 | minBorder = (*bit);
|
---|
978 |
|
---|
979 | AxisAlignedBox3 lbox = nodeBbox;
|
---|
980 | AxisAlignedBox3 rbox = nodeBbox;
|
---|
981 |
|
---|
982 | lbox.SetMax(axis, maxBorder);
|
---|
983 | rbox.SetMin(axis, minBorder);
|
---|
984 |
|
---|
985 | al = lbox.SurfaceArea();
|
---|
986 | ar = rbox.SurfaceArea();
|
---|
987 |
|
---|
988 | const bool noValidSplit = ((objectsLeft <= Limits::Small) || (objectsRight <= Limits::Small));
|
---|
989 | const float sum = noValidSplit ? 1e25 : objectsLeft * al + objectsRight * ar;
|
---|
990 |
|
---|
991 | /*cout << "pos=" << (*cit).mPos << "\t q=(" << objectsLeft << "," << objectsRight <<")\t r=("
|
---|
992 | << lbox.SurfaceArea() << "," << rbox.SurfaceArea() << ")" << endl;
|
---|
993 | cout << "minborder: " << minBorder << " maxborder: " << maxBorder << endl;
|
---|
994 | cout << "cost= " << sum << endl;*/
|
---|
995 |
|
---|
996 | if (sum < minSum)
|
---|
997 | {
|
---|
998 | minSum = sum;
|
---|
999 | areaLeft = al;
|
---|
1000 | areaRight = ar;
|
---|
1001 |
|
---|
1002 | // objects belong to left side now
|
---|
1003 | for (; currentPos != (cit + 1); ++ currentPos);
|
---|
1004 | }
|
---|
1005 | }
|
---|
1006 |
|
---|
1007 | ////////////
|
---|
1008 | //-- assign object to front and back volume
|
---|
1009 |
|
---|
1010 | // belongs to back bv
|
---|
1011 | for (cit = mSubdivisionCandidates->begin(); cit != currentPos; ++ cit)
|
---|
1012 | objectsBack.push_back((*cit).mObject);
|
---|
1013 |
|
---|
1014 | // belongs to front bv
|
---|
1015 | for (cit = currentPos; cit != cit_end; ++ cit)
|
---|
1016 | objectsFront.push_back((*cit).mObject);
|
---|
1017 |
|
---|
1018 | float newCost = minSum / boxArea;
|
---|
1019 | float ratio = newCost / totalRenderCost;
|
---|
1020 |
|
---|
1021 | #ifdef GTP_DEBUG
|
---|
1022 | cout << "\n\nobjects=(" << (int)objectsBack.size() << "," << (int)objectsFront.size() << " of "
|
---|
1023 | << (int)tData.mNode->mObjects.size() << ")\t area=("
|
---|
1024 | << areaLeft << ", " << areaRight << ", " << boxArea << ")" << endl
|
---|
1025 | << "cost= " << newCost << " oldCost=" << totalRenderCost / boxArea << endl;
|
---|
1026 | #endif
|
---|
1027 |
|
---|
1028 | return ratio;
|
---|
1029 | }
|
---|
1030 |
|
---|
1031 | #else
|
---|
1032 |
|
---|
1033 | float BvHierarchy::EvalSah(const BvhTraversalData &tData,
|
---|
1034 | const int axis,
|
---|
1035 | ObjectContainer &objectsFront,
|
---|
1036 | ObjectContainer &objectsBack)
|
---|
1037 | {
|
---|
1038 | // go through the lists, count the number of objects left and right
|
---|
1039 | // and evaluate the following cost funcion:
|
---|
1040 | // C = ct_div_ci + (ol + or) / queries
|
---|
1041 | PrepareLocalSubdivisionCandidates(tData, axis);
|
---|
1042 |
|
---|
1043 | const float totalRenderCost = EvalAbsCost(tData.mNode->mObjects);
|
---|
1044 | float objectsLeft = 0, objectsRight = totalRenderCost;
|
---|
1045 |
|
---|
1046 | const AxisAlignedBox3 nodeBbox = tData.mNode->GetBoundingBox();
|
---|
1047 |
|
---|
1048 | const float minBox = nodeBbox.Min(axis);
|
---|
1049 | const float maxBox = nodeBbox.Max(axis);
|
---|
1050 | const float boxArea = nodeBbox.SurfaceArea();
|
---|
1051 |
|
---|
1052 | float minSum = 1e20f;
|
---|
1053 |
|
---|
1054 | Vector3 minBorder = nodeBbox.Max();
|
---|
1055 | Vector3 maxBorder = nodeBbox.Min();
|
---|
1056 |
|
---|
1057 | float areaLeft = 0, areaRight = 0;
|
---|
1058 |
|
---|
1059 | SortableEntryContainer::const_iterator currentPos =
|
---|
1060 | mSubdivisionCandidates->begin();
|
---|
1061 |
|
---|
1062 | vector<Vector3> bordersRight;
|
---|
1063 |
|
---|
1064 | // we keep track of both borders of the bounding boxes =>
|
---|
1065 | // store the events in descending order
|
---|
1066 | bordersRight.resize(mSubdivisionCandidates->size());
|
---|
1067 |
|
---|
1068 | SortableEntryContainer::reverse_iterator rcit =
|
---|
1069 | mSubdivisionCandidates->rbegin(), rcit_end =
|
---|
1070 | mSubdivisionCandidates->rend();
|
---|
1071 |
|
---|
1072 | vector<Vector3>::reverse_iterator rbit = bordersRight.rbegin();
|
---|
1073 |
|
---|
1074 | for (; rcit != rcit_end; ++ rcit, ++ rbit)
|
---|
1075 | {
|
---|
1076 | Intersectable *obj = (*rcit).mObject;
|
---|
1077 | const AxisAlignedBox3 obox = obj->GetBox();
|
---|
1078 |
|
---|
1079 | for (int i = 0; i < 3; ++ i)
|
---|
1080 | {
|
---|
1081 | if (obox.Min(i) < minBorder[i])
|
---|
1082 | {
|
---|
1083 | minBorder[i] = obox.Min(i);
|
---|
1084 | }
|
---|
1085 | }
|
---|
1086 |
|
---|
1087 | (*rbit) = minBorder;
|
---|
1088 | }
|
---|
1089 |
|
---|
1090 | // temporary surface areas
|
---|
1091 | float al = 0;
|
---|
1092 | float ar = boxArea;
|
---|
1093 |
|
---|
1094 | vector<Vector3>::const_iterator bit = bordersRight.begin();
|
---|
1095 | SortableEntryContainer::const_iterator cit, cit_end =
|
---|
1096 | mSubdivisionCandidates->end();
|
---|
1097 |
|
---|
1098 | for (cit = mSubdivisionCandidates->begin(); cit != cit_end; ++ cit, ++ bit)
|
---|
1099 | {
|
---|
1100 | Intersectable *obj = (*cit).mObject;
|
---|
1101 |
|
---|
1102 | const float renderCost = mViewCellsManager->EvalRenderCost(obj);
|
---|
1103 |
|
---|
1104 | objectsLeft += renderCost;
|
---|
1105 | objectsRight -= renderCost;
|
---|
1106 |
|
---|
1107 | const AxisAlignedBox3 obox = obj->GetBox();
|
---|
1108 |
|
---|
1109 | AxisAlignedBox3 lbox = nodeBbox;
|
---|
1110 | AxisAlignedBox3 rbox = nodeBbox;
|
---|
1111 |
|
---|
1112 | // the borders of the left bounding box have changed
|
---|
1113 | for (int i = 0; i < 3; ++ i)
|
---|
1114 | {
|
---|
1115 | if (obox.Max(i) > maxBorder[i])
|
---|
1116 | {
|
---|
1117 | maxBorder[i] = obox.Max(i);
|
---|
1118 | }
|
---|
1119 | }
|
---|
1120 |
|
---|
1121 | minBorder = (*bit);
|
---|
1122 |
|
---|
1123 | lbox.SetMax(maxBorder);
|
---|
1124 | rbox.SetMin(minBorder);
|
---|
1125 |
|
---|
1126 | al = lbox.SurfaceArea();
|
---|
1127 | ar = rbox.SurfaceArea();
|
---|
1128 |
|
---|
1129 | const bool noValidSplit = ((objectsLeft <= Limits::Small) || (objectsRight <= Limits::Small));
|
---|
1130 | const float sum = noValidSplit ? 1e25 : objectsLeft * al + objectsRight * ar;
|
---|
1131 |
|
---|
1132 | /*cout << "pos=" << (*cit).mPos << "\t q=(" << objectsLeft << "," << objectsRight <<")\t r=("
|
---|
1133 | << lbox.SurfaceArea() << "," << rbox.SurfaceArea() << ")" << endl;
|
---|
1134 | cout << "minborder: " << minBorder << " maxborder: " << maxBorder << endl;
|
---|
1135 | cout << "cost= " << sum << endl;*/
|
---|
1136 |
|
---|
1137 | if (sum < minSum)
|
---|
1138 | {
|
---|
1139 | minSum = sum;
|
---|
1140 | areaLeft = al;
|
---|
1141 | areaRight = ar;
|
---|
1142 |
|
---|
1143 | // objects belong to left side now
|
---|
1144 | for (; currentPos != (cit + 1); ++ currentPos);
|
---|
1145 | }
|
---|
1146 | }
|
---|
1147 |
|
---|
1148 | /////////////
|
---|
1149 | //-- assign object to front and back volume
|
---|
1150 |
|
---|
1151 | // belongs to back bv
|
---|
1152 | for (cit = mSubdivisionCandidates->begin(); cit != currentPos; ++ cit)
|
---|
1153 | objectsBack.push_back((*cit).mObject);
|
---|
1154 |
|
---|
1155 | // belongs to front bv
|
---|
1156 | for (cit = currentPos; cit != cit_end; ++ cit)
|
---|
1157 | objectsFront.push_back((*cit).mObject);
|
---|
1158 |
|
---|
1159 | float newCost = minSum / boxArea;
|
---|
1160 | float ratio = newCost / totalRenderCost;
|
---|
1161 |
|
---|
1162 | #ifdef GTP_DEBUG
|
---|
1163 | cout << "\n\nobjects=(" << (int)objectsBack.size() << "," << (int)objectsFront.size() << " of "
|
---|
1164 | << (int)tData.mNode->mObjects.size() << ")\t area=("
|
---|
1165 | << areaLeft << ", " << areaRight << ", " << boxArea << ")" << endl
|
---|
1166 | << "cost= " << newCost << " oldCost=" << totalRenderCost / boxArea << endl;
|
---|
1167 | #endif
|
---|
1168 |
|
---|
1169 | return ratio;
|
---|
1170 | }
|
---|
1171 |
|
---|
1172 | #endif
|
---|
1173 |
|
---|
1174 | static bool PrepareOutput(const int axis,
|
---|
1175 | const int leaves,
|
---|
1176 | ofstream &sumStats,
|
---|
1177 | ofstream &vollStats,
|
---|
1178 | ofstream &volrStats)
|
---|
1179 | {
|
---|
1180 | if ((axis == 0) && (leaves > 0) && (leaves < 90))
|
---|
1181 | {
|
---|
1182 | char str[64];
|
---|
1183 | sprintf(str, "tmp/bvh_heur_sum-%04d.log", leaves);
|
---|
1184 | sumStats.open(str);
|
---|
1185 | sprintf(str, "tmp/bvh_heur_voll-%04d.log", leaves);
|
---|
1186 | vollStats.open(str);
|
---|
1187 | sprintf(str, "tmp/bvh_heur_volr-%04d.log", leaves);
|
---|
1188 | volrStats.open(str);
|
---|
1189 | }
|
---|
1190 |
|
---|
1191 | return sumStats.is_open() && vollStats.is_open() && volrStats.is_open();
|
---|
1192 | }
|
---|
1193 |
|
---|
1194 |
|
---|
1195 | static void PrintHeuristics(const float objectsRight,
|
---|
1196 | const float sum,
|
---|
1197 | const float volLeft,
|
---|
1198 | const float volRight,
|
---|
1199 | const float viewSpaceVol,
|
---|
1200 | ofstream &sumStats,
|
---|
1201 | ofstream &vollStats,
|
---|
1202 | ofstream &volrStats)
|
---|
1203 | {
|
---|
1204 | sumStats
|
---|
1205 | << "#Position\n" << objectsRight << endl
|
---|
1206 | << "#Sum\n" << sum / viewSpaceVol << endl
|
---|
1207 | << "#Vol\n" << (volLeft + volRight) / viewSpaceVol << endl;
|
---|
1208 |
|
---|
1209 | vollStats
|
---|
1210 | << "#Position\n" << objectsRight << endl
|
---|
1211 | << "#Vol\n" << volLeft / viewSpaceVol << endl;
|
---|
1212 |
|
---|
1213 | volrStats
|
---|
1214 | << "#Position\n" << objectsRight << endl
|
---|
1215 | << "#Vol\n" << volRight / viewSpaceVol << endl;
|
---|
1216 | }
|
---|
1217 |
|
---|
1218 |
|
---|
1219 | float BvHierarchy::EvalLocalCostHeuristics(const BvhTraversalData &tData,
|
---|
1220 | const int axis,
|
---|
1221 | ObjectContainer &objectsFront,
|
---|
1222 | ObjectContainer &objectsBack)
|
---|
1223 | {
|
---|
1224 | /////////////////////////////////////////////
|
---|
1225 | //-- go through the lists, count the number of objects
|
---|
1226 | //-- left and right and evaluate the cost funcion
|
---|
1227 |
|
---|
1228 | // prepare the heuristics by setting mailboxes and counters
|
---|
1229 | const float totalVol = PrepareHeuristics(tData, axis);
|
---|
1230 |
|
---|
1231 | // local helper variables
|
---|
1232 | float volLeft = 0;
|
---|
1233 | float volRight = totalVol;
|
---|
1234 |
|
---|
1235 | const float nTotalObjects = EvalAbsCost(tData.mNode->mObjects);
|
---|
1236 | float nObjectsLeft = 0;
|
---|
1237 | float nObjectsRight = nTotalObjects;
|
---|
1238 |
|
---|
1239 | const float viewSpaceVol =
|
---|
1240 | mViewCellsManager->GetViewSpaceBox().GetVolume();
|
---|
1241 |
|
---|
1242 | SortableEntryContainer::const_iterator backObjectsStart =
|
---|
1243 | mSubdivisionCandidates->begin();
|
---|
1244 |
|
---|
1245 | /////////////////////////////////
|
---|
1246 | //-- the parameters for the current optimum
|
---|
1247 |
|
---|
1248 | float volBack = volLeft;
|
---|
1249 | float volFront = volRight;
|
---|
1250 | float newRenderCost = nTotalObjects * totalVol;
|
---|
1251 |
|
---|
1252 | #ifdef GTP_DEBUG
|
---|
1253 | ofstream sumStats;
|
---|
1254 | ofstream vollStats;
|
---|
1255 | ofstream volrStats;
|
---|
1256 |
|
---|
1257 | const bool printStats = PrepareOutput(axis,
|
---|
1258 | mBvhStats.Leaves(),
|
---|
1259 | sumStats,
|
---|
1260 | vollStats,
|
---|
1261 | volrStats);
|
---|
1262 | #endif
|
---|
1263 |
|
---|
1264 | ///////////////////////
|
---|
1265 | //-- the sweep heuristics
|
---|
1266 | //-- traverse through events and find best split plane
|
---|
1267 |
|
---|
1268 | SortableEntryContainer::const_iterator cit,
|
---|
1269 | cit_end = cit_end = mSubdivisionCandidates->end();
|
---|
1270 |
|
---|
1271 | for (cit = mSubdivisionCandidates->begin(); cit != cit_end; ++ cit)
|
---|
1272 | {
|
---|
1273 | Intersectable *object = (*cit).mObject;
|
---|
1274 |
|
---|
1275 | // evaluate change in l and r volume
|
---|
1276 | // voll = view cells that see only left node (i.e., left pvs)
|
---|
1277 | // volr = view cells that see only right node (i.e., right pvs)
|
---|
1278 | EvalHeuristicsContribution(object, volLeft, volRight);
|
---|
1279 |
|
---|
1280 | const float rc = mViewCellsManager->EvalRenderCost(object);
|
---|
1281 |
|
---|
1282 | nObjectsLeft += rc;
|
---|
1283 | nObjectsRight -= rc;
|
---|
1284 |
|
---|
1285 | // split is only valid if #objects on left and right is not zero
|
---|
1286 | const bool noValidSplit = ((nObjectsLeft <= Limits::Small) ||
|
---|
1287 | (nObjectsRight <= Limits::Small));
|
---|
1288 |
|
---|
1289 | // the heuristics
|
---|
1290 | const float sum = noValidSplit ?
|
---|
1291 | 1e25 : volLeft * (float)nObjectsLeft + volRight * (float)nObjectsRight;
|
---|
1292 |
|
---|
1293 | #ifdef GTP_DEBUG
|
---|
1294 | if (printStats)
|
---|
1295 | {
|
---|
1296 | PrintHeuristics(nObjectsRight, sum, volLeft, volRight, viewSpaceVol,
|
---|
1297 | sumStats, vollStats, volrStats);
|
---|
1298 | }
|
---|
1299 | #endif
|
---|
1300 |
|
---|
1301 | if (sum < newRenderCost)
|
---|
1302 | {
|
---|
1303 | newRenderCost = sum;
|
---|
1304 |
|
---|
1305 | volBack = volLeft;
|
---|
1306 | volFront = volRight;
|
---|
1307 |
|
---|
1308 | // objects belongs to left side now
|
---|
1309 | for (; backObjectsStart != (cit + 1); ++ backObjectsStart);
|
---|
1310 | }
|
---|
1311 | }
|
---|
1312 |
|
---|
1313 | ////////////////////////////////////////
|
---|
1314 | //-- assign object to front and back volume
|
---|
1315 |
|
---|
1316 | // belongs to back bv
|
---|
1317 | for (cit = mSubdivisionCandidates->begin(); cit != backObjectsStart; ++ cit)
|
---|
1318 | {
|
---|
1319 | objectsBack.push_back((*cit).mObject);
|
---|
1320 | }
|
---|
1321 | // belongs to front bv
|
---|
1322 | for (cit = backObjectsStart; cit != cit_end; ++ cit)
|
---|
1323 | {
|
---|
1324 | objectsFront.push_back((*cit).mObject);
|
---|
1325 | }
|
---|
1326 |
|
---|
1327 | // render cost of the old parent
|
---|
1328 | const float oldRenderCost = (float)nTotalObjects * totalVol + Limits::Small;
|
---|
1329 | // the relative cost ratio
|
---|
1330 | const float ratio = newRenderCost / oldRenderCost;
|
---|
1331 |
|
---|
1332 | #ifdef GTP_DEBUG
|
---|
1333 | Debug << "\n§§§§ bvh eval const decrease §§§§" << endl
|
---|
1334 | << "back pvs: " << (int)objectsBack.size() << " front pvs: "
|
---|
1335 | << (int)objectsFront.size() << " total pvs: " << nTotalObjects << endl
|
---|
1336 | << "back p: " << volBack / viewSpaceVol << " front p "
|
---|
1337 | << volFront / viewSpaceVol << " p: " << totalVol / viewSpaceVol << endl
|
---|
1338 | << "old rc: " << oldRenderCost / viewSpaceVol << " new rc: "
|
---|
1339 | << newRenderCost / viewSpaceVol << endl
|
---|
1340 | << "render cost decrease: "
|
---|
1341 | << oldRenderCost / viewSpaceVol - newRenderCost / viewSpaceVol << endl;
|
---|
1342 | #endif
|
---|
1343 |
|
---|
1344 | return ratio;
|
---|
1345 | }
|
---|
1346 |
|
---|
1347 |
|
---|
1348 | void BvHierarchy::PrepareLocalSubdivisionCandidates(const BvhTraversalData &tData,
|
---|
1349 | const int axis)
|
---|
1350 | {
|
---|
1351 | //-- insert object queries
|
---|
1352 | ObjectContainer *objects = mUseGlobalSorting ?
|
---|
1353 | tData.mSortedObjects[axis] : &tData.mNode->mObjects;
|
---|
1354 |
|
---|
1355 | CreateLocalSubdivisionCandidates(*objects, &mSubdivisionCandidates, !mUseGlobalSorting, axis);
|
---|
1356 | }
|
---|
1357 |
|
---|
1358 |
|
---|
1359 | void BvHierarchy::CreateLocalSubdivisionCandidates(const ObjectContainer &objects,
|
---|
1360 | SortableEntryContainer **subdivisionCandidates,
|
---|
1361 | const bool sort,
|
---|
1362 | const int axis)
|
---|
1363 | {
|
---|
1364 | (*subdivisionCandidates)->clear();
|
---|
1365 |
|
---|
1366 | // compute requested size and look if subdivision candidate has to be recomputed
|
---|
1367 | const int requestedSize = (int)objects.size() * 2;
|
---|
1368 |
|
---|
1369 | // creates a sorted split candidates array
|
---|
1370 | if ((*subdivisionCandidates)->capacity() > 500000 &&
|
---|
1371 | requestedSize < (int)((*subdivisionCandidates)->capacity() / 10) )
|
---|
1372 | {
|
---|
1373 | delete (*subdivisionCandidates);
|
---|
1374 | (*subdivisionCandidates) = new SortableEntryContainer;
|
---|
1375 | }
|
---|
1376 |
|
---|
1377 | (*subdivisionCandidates)->reserve(requestedSize);
|
---|
1378 |
|
---|
1379 | ObjectContainer::const_iterator oit, oit_end = objects.end();
|
---|
1380 |
|
---|
1381 | for (oit = objects.begin(); oit < oit_end; ++ oit)
|
---|
1382 | {
|
---|
1383 | Intersectable *object = *oit;
|
---|
1384 | const AxisAlignedBox3 &box = object->GetBox();
|
---|
1385 | const float midPt = (box.Min(axis) + box.Max(axis)) * 0.5f;
|
---|
1386 |
|
---|
1387 | (*subdivisionCandidates)->push_back(SortableEntry(object, midPt));
|
---|
1388 | }
|
---|
1389 |
|
---|
1390 | if (sort)
|
---|
1391 | { // no presorted candidate list
|
---|
1392 | stable_sort((*subdivisionCandidates)->begin(), (*subdivisionCandidates)->end());
|
---|
1393 | }
|
---|
1394 | }
|
---|
1395 |
|
---|
1396 |
|
---|
1397 | const BvhStatistics &BvHierarchy::GetStatistics() const
|
---|
1398 | {
|
---|
1399 | return mBvhStats;
|
---|
1400 | }
|
---|
1401 |
|
---|
1402 |
|
---|
1403 | float BvHierarchy::PrepareHeuristics(const BvhTraversalData &tData,
|
---|
1404 | const int axis)
|
---|
1405 | {
|
---|
1406 | BvhLeaf *leaf = tData.mNode;
|
---|
1407 | float vol = 0;
|
---|
1408 |
|
---|
1409 | // sort so we can use a sweep from right to left
|
---|
1410 | PrepareLocalSubdivisionCandidates(tData, axis);
|
---|
1411 |
|
---|
1412 | // collect and mark the view cells as belonging to front pvs
|
---|
1413 | ViewCellContainer viewCells;
|
---|
1414 |
|
---|
1415 | const int numRays = CollectViewCells(tData.mNode->mObjects, viewCells, true, true);
|
---|
1416 | //cout << "number of rays: " << numRays << endl;
|
---|
1417 |
|
---|
1418 | ViewCellContainer::const_iterator vit, vit_end = viewCells.end();
|
---|
1419 | for (vit = viewCells.begin(); vit != vit_end; ++ vit)
|
---|
1420 | {
|
---|
1421 | #if USE_VOLUMES_FOR_HEURISTICS
|
---|
1422 | const float volIncr = (*vit)->GetVolume();
|
---|
1423 | #else
|
---|
1424 | const float volIncr = 1.0f;
|
---|
1425 | #endif
|
---|
1426 | vol += volIncr;
|
---|
1427 | }
|
---|
1428 |
|
---|
1429 | // we will mail view cells switching to the back side
|
---|
1430 | ViewCell::NewMail();
|
---|
1431 |
|
---|
1432 | return vol;
|
---|
1433 | }
|
---|
1434 |
|
---|
1435 | ///////////////////////////////////////////////////////////
|
---|
1436 |
|
---|
1437 |
|
---|
1438 | void BvHierarchy::EvalHeuristicsContribution(Intersectable *obj,
|
---|
1439 | float &volLeft,
|
---|
1440 | float &volRight)
|
---|
1441 | {
|
---|
1442 | // collect all view cells associated with this objects
|
---|
1443 | // (also multiple times, if they are pierced by several rays)
|
---|
1444 | ViewCellContainer viewCells;
|
---|
1445 | const bool useMailboxing = false;
|
---|
1446 |
|
---|
1447 | CollectViewCells(obj, viewCells, useMailboxing, false, true);
|
---|
1448 |
|
---|
1449 | // classify view cells and compute volume contri accordingly
|
---|
1450 | // possible view cell classifications:
|
---|
1451 | // view cell mailed => view cell can be seen from left child node
|
---|
1452 | // view cell counter > 0 view cell can be seen from right child node
|
---|
1453 | // combined: view cell volume belongs to both nodes
|
---|
1454 | ViewCellContainer::const_iterator vit, vit_end = viewCells.end();
|
---|
1455 |
|
---|
1456 | for (vit = viewCells.begin(); vit != vit_end; ++ vit)
|
---|
1457 | {
|
---|
1458 | // view cells can also be seen from left child node
|
---|
1459 | ViewCell *viewCell = *vit;
|
---|
1460 | #if USE_VOLUMES_FOR_HEURISTICS
|
---|
1461 | const float vol = viewCell->GetVolume();
|
---|
1462 | #else
|
---|
1463 | const float vol = 1.0f;
|
---|
1464 | #endif
|
---|
1465 | if (!viewCell->Mailed())
|
---|
1466 | {
|
---|
1467 | viewCell->Mail();
|
---|
1468 | // we now see view cell from both nodes
|
---|
1469 | // => add volume to left node
|
---|
1470 | volLeft += vol;
|
---|
1471 | }
|
---|
1472 |
|
---|
1473 | // last reference into the right node
|
---|
1474 | if (-- viewCell->mCounter == 0)
|
---|
1475 | {
|
---|
1476 | // view cell was previously seen from both nodes =>
|
---|
1477 | // remove volume from right node
|
---|
1478 | volRight -= vol;
|
---|
1479 | }
|
---|
1480 | }
|
---|
1481 | }
|
---|
1482 |
|
---|
1483 |
|
---|
1484 | void BvHierarchy::SetViewCellsManager(ViewCellsManager *vcm)
|
---|
1485 | {
|
---|
1486 | mViewCellsManager = vcm;
|
---|
1487 | }
|
---|
1488 |
|
---|
1489 |
|
---|
1490 | AxisAlignedBox3 BvHierarchy::GetBoundingBox() const
|
---|
1491 | {
|
---|
1492 | return mBoundingBox;
|
---|
1493 | }
|
---|
1494 |
|
---|
1495 |
|
---|
1496 | float BvHierarchy::SelectObjectPartition(const BvhTraversalData &tData,
|
---|
1497 | ObjectContainer &frontObjects,
|
---|
1498 | ObjectContainer &backObjects,
|
---|
1499 | bool useVisibilityBasedHeuristics)
|
---|
1500 | {
|
---|
1501 | if (mIsInitialSubdivision)
|
---|
1502 | {
|
---|
1503 | ApplyInitialSplit(tData, frontObjects, backObjects);
|
---|
1504 | return 0;
|
---|
1505 | }
|
---|
1506 |
|
---|
1507 | ObjectContainer nFrontObjects[3];
|
---|
1508 | ObjectContainer nBackObjects[3];
|
---|
1509 | float nCostRatio[3];
|
---|
1510 |
|
---|
1511 | int sAxis = 0;
|
---|
1512 | int bestAxis = -1;
|
---|
1513 |
|
---|
1514 | if (mOnlyDrivingAxis)
|
---|
1515 | {
|
---|
1516 | const AxisAlignedBox3 box = tData.mNode->GetBoundingBox();
|
---|
1517 | sAxis = box.Size().DrivingAxis();
|
---|
1518 | }
|
---|
1519 |
|
---|
1520 | // only use a subset of the rays for visibility based heuristics
|
---|
1521 | if (mUseCostHeuristics && useVisibilityBasedHeuristics)
|
---|
1522 | {
|
---|
1523 | VssRayContainer rays;
|
---|
1524 | // maximal 2 objects share the same ray
|
---|
1525 | rays.reserve(tData.mNumRays * 2);
|
---|
1526 | CollectRays(tData.mNode->mObjects, rays);
|
---|
1527 |
|
---|
1528 | const float prop = (float)mMaxTests / (float)tData.mNumRays;
|
---|
1529 |
|
---|
1530 | VssRay::NewMail();
|
---|
1531 |
|
---|
1532 | VssRayContainer::const_iterator rit, rit_end = rays.end();
|
---|
1533 |
|
---|
1534 | int nRays = 0;
|
---|
1535 |
|
---|
1536 | for (rit = rays.begin(); rit != rit_end; ++ rit)
|
---|
1537 | {
|
---|
1538 | if ((mMaxTests >= (int)rays.size()) || (Random(1.0f) < prop))
|
---|
1539 | {
|
---|
1540 | (*rit)->Mail();
|
---|
1541 | ++ nRays;
|
---|
1542 | }
|
---|
1543 | }
|
---|
1544 | }
|
---|
1545 |
|
---|
1546 | ////////////////////////////////////
|
---|
1547 | //-- evaluate split cost for all three axis
|
---|
1548 |
|
---|
1549 | for (int axis = 0; axis < 3; ++ axis)
|
---|
1550 | {
|
---|
1551 | if (!mOnlyDrivingAxis || (axis == sAxis))
|
---|
1552 | {
|
---|
1553 | if (mUseCostHeuristics)
|
---|
1554 | {
|
---|
1555 | //////////////////////////////////
|
---|
1556 | //-- split objects using heuristics
|
---|
1557 |
|
---|
1558 | if (useVisibilityBasedHeuristics)
|
---|
1559 | {
|
---|
1560 | ///////////
|
---|
1561 | //-- heuristics using objects weighted by view cells volume
|
---|
1562 | nCostRatio[axis] =
|
---|
1563 | EvalLocalCostHeuristics(tData,
|
---|
1564 | axis,
|
---|
1565 | nFrontObjects[axis],
|
---|
1566 | nBackObjects[axis]);
|
---|
1567 | }
|
---|
1568 | else
|
---|
1569 | {
|
---|
1570 | //////////////////
|
---|
1571 | //-- view cells not constructed yet => use surface area heuristic
|
---|
1572 | nCostRatio[axis] = EvalSah(tData,
|
---|
1573 | axis,
|
---|
1574 | nFrontObjects[axis],
|
---|
1575 | nBackObjects[axis]);
|
---|
1576 | }
|
---|
1577 | }
|
---|
1578 | else
|
---|
1579 | {
|
---|
1580 | //-- split objects using some simple criteria
|
---|
1581 | nCostRatio[axis] =
|
---|
1582 | EvalLocalObjectPartition(tData, axis, nFrontObjects[axis], nBackObjects[axis]);
|
---|
1583 | }
|
---|
1584 |
|
---|
1585 | // no good results for degenerate axis split
|
---|
1586 | if (1 &&
|
---|
1587 | (tData.mNode->GetBoundingBox().Size(axis) < 0.0001))//Limits::Small))
|
---|
1588 | {
|
---|
1589 | nCostRatio[axis] += 9999;
|
---|
1590 | }
|
---|
1591 |
|
---|
1592 | if ((bestAxis == -1) || (nCostRatio[axis] < nCostRatio[bestAxis]))
|
---|
1593 | {
|
---|
1594 | bestAxis = axis;
|
---|
1595 | }
|
---|
1596 | }
|
---|
1597 | }
|
---|
1598 |
|
---|
1599 | ////////////////
|
---|
1600 | //-- assign values
|
---|
1601 |
|
---|
1602 | frontObjects = nFrontObjects[bestAxis];
|
---|
1603 | backObjects = nBackObjects[bestAxis];
|
---|
1604 |
|
---|
1605 | //cout << "val: " << nCostRatio[bestAxis] << " axis: " << bestAxis << endl;
|
---|
1606 | return nCostRatio[bestAxis];
|
---|
1607 | }
|
---|
1608 |
|
---|
1609 |
|
---|
1610 | int BvHierarchy::AssociateObjectsWithRays(const VssRayContainer &rays) const
|
---|
1611 | {
|
---|
1612 | int nRays = 0;
|
---|
1613 | VssRayContainer::const_iterator rit, rit_end = rays.end();
|
---|
1614 |
|
---|
1615 | VssRay::NewMail();
|
---|
1616 |
|
---|
1617 | for (rit = rays.begin(); rit != rays.end(); ++ rit)
|
---|
1618 | {
|
---|
1619 | VssRay *ray = (*rit);
|
---|
1620 |
|
---|
1621 | if (ray->mTerminationObject)
|
---|
1622 | {
|
---|
1623 | ray->mTerminationObject->GetOrCreateRays()->push_back(ray);
|
---|
1624 | if (!ray->Mailed())
|
---|
1625 | {
|
---|
1626 | ray->Mail();
|
---|
1627 | ++ nRays;
|
---|
1628 | }
|
---|
1629 | }
|
---|
1630 |
|
---|
1631 | #if COUNT_ORIGIN_OBJECTS
|
---|
1632 |
|
---|
1633 | if (ray->mOriginObject)
|
---|
1634 | {
|
---|
1635 | ray->mOriginObject->GetOrCreateRays()->push_back(ray);
|
---|
1636 |
|
---|
1637 | if (!ray->Mailed())
|
---|
1638 | {
|
---|
1639 | ray->Mail();
|
---|
1640 | ++ nRays;
|
---|
1641 | }
|
---|
1642 | }
|
---|
1643 | #endif
|
---|
1644 | }
|
---|
1645 |
|
---|
1646 | return nRays;
|
---|
1647 | }
|
---|
1648 |
|
---|
1649 |
|
---|
1650 | void BvHierarchy::PrintSubdivisionStats(const SubdivisionCandidate &sc)
|
---|
1651 | {
|
---|
1652 | const float costDecr = sc.GetRenderCostDecrease();
|
---|
1653 |
|
---|
1654 | mSubdivisionStats
|
---|
1655 | << "#Leaves\n" << mBvhStats.Leaves() << endl
|
---|
1656 | << "#RenderCostDecrease\n" << costDecr << endl
|
---|
1657 | << "#TotalRenderCost\n" << mTotalCost << endl
|
---|
1658 | << "#EntriesInPvs\n" << mPvsEntries << endl;
|
---|
1659 | }
|
---|
1660 |
|
---|
1661 |
|
---|
1662 | void BvHierarchy::CollectRays(const ObjectContainer &objects,
|
---|
1663 | VssRayContainer &rays) const
|
---|
1664 | {
|
---|
1665 | VssRay::NewMail();
|
---|
1666 | ObjectContainer::const_iterator oit, oit_end = objects.end();
|
---|
1667 |
|
---|
1668 | // evaluate reverse pvs and view cell volume on left and right cell
|
---|
1669 | // note: should I take all leaf objects or rather the objects hit by rays?
|
---|
1670 | for (oit = objects.begin(); oit != oit_end; ++ oit)
|
---|
1671 | {
|
---|
1672 | Intersectable *obj = *oit;
|
---|
1673 | VssRayContainer::const_iterator rit, rit_end = obj->GetOrCreateRays()->end();
|
---|
1674 |
|
---|
1675 | for (rit = obj->GetOrCreateRays()->begin(); rit < rit_end; ++ rit)
|
---|
1676 | {
|
---|
1677 | VssRay *ray = (*rit);
|
---|
1678 |
|
---|
1679 | if (!ray->Mailed())
|
---|
1680 | {
|
---|
1681 | ray->Mail();
|
---|
1682 | rays.push_back(ray);
|
---|
1683 | }
|
---|
1684 | }
|
---|
1685 | }
|
---|
1686 | }
|
---|
1687 |
|
---|
1688 |
|
---|
1689 | float BvHierarchy::EvalAbsCost(const ObjectContainer &objects)// const
|
---|
1690 | {
|
---|
1691 | #if USE_BETTER_RENDERCOST_EST
|
---|
1692 | ObjectContainer::const_iterator oit, oit_end = objects.end();
|
---|
1693 |
|
---|
1694 | for (oit = objects.begin(); oit != oit_end; ++ oit)
|
---|
1695 | {
|
---|
1696 | objRenderCost += ViewCellsManager::GetRendercost(*oit);
|
---|
1697 | }
|
---|
1698 | #else
|
---|
1699 | return (float)objects.size();
|
---|
1700 | #endif
|
---|
1701 | }
|
---|
1702 |
|
---|
1703 |
|
---|
1704 | float BvHierarchy::EvalSahCost(BvhLeaf *leaf) const
|
---|
1705 | {
|
---|
1706 | ////////////////
|
---|
1707 | //-- surface area heuristics
|
---|
1708 | if (leaf->mObjects.empty())
|
---|
1709 | return 0.0f;
|
---|
1710 |
|
---|
1711 | const AxisAlignedBox3 box = GetBoundingBox(leaf);
|
---|
1712 | const float area = box.SurfaceArea();
|
---|
1713 | const float viewSpaceArea = mViewCellsManager->GetViewSpaceBox().SurfaceArea();
|
---|
1714 |
|
---|
1715 | return EvalAbsCost(leaf->mObjects) * area / viewSpaceArea;
|
---|
1716 | }
|
---|
1717 |
|
---|
1718 |
|
---|
1719 | float BvHierarchy::EvalRenderCost(const ObjectContainer &objects) const
|
---|
1720 | {
|
---|
1721 | ///////////////
|
---|
1722 | //-- render cost heuristics
|
---|
1723 |
|
---|
1724 | const float viewSpaceVol = mViewCellsManager->GetViewSpaceBox().GetVolume();
|
---|
1725 |
|
---|
1726 | // probability that view point lies in a view cell which sees this node
|
---|
1727 | const float p = EvalViewCellsVolume(objects) / viewSpaceVol;
|
---|
1728 | const float objRenderCost = EvalAbsCost(objects);
|
---|
1729 |
|
---|
1730 | return objRenderCost * p;
|
---|
1731 | }
|
---|
1732 |
|
---|
1733 |
|
---|
1734 | AxisAlignedBox3 BvHierarchy::EvalBoundingBox(const ObjectContainer &objects,
|
---|
1735 | const AxisAlignedBox3 *parentBox) const
|
---|
1736 | {
|
---|
1737 | // if there are no objects in this box, box size is set to parent box size.
|
---|
1738 | // Question: Invalidate box instead?
|
---|
1739 | if (parentBox && objects.empty())
|
---|
1740 | return *parentBox;
|
---|
1741 |
|
---|
1742 | AxisAlignedBox3 box;
|
---|
1743 | box.Initialize();
|
---|
1744 |
|
---|
1745 | ObjectContainer::const_iterator oit, oit_end = objects.end();
|
---|
1746 |
|
---|
1747 | for (oit = objects.begin(); oit != oit_end; ++ oit)
|
---|
1748 | {
|
---|
1749 | Intersectable *obj = *oit;
|
---|
1750 | // grow bounding box to include all objects
|
---|
1751 | box.Include(obj->GetBox());
|
---|
1752 | }
|
---|
1753 |
|
---|
1754 | return box;
|
---|
1755 | }
|
---|
1756 |
|
---|
1757 |
|
---|
1758 | void BvHierarchy::CollectLeaves(BvhNode *root, vector<BvhLeaf *> &leaves) const
|
---|
1759 | {
|
---|
1760 | stack<BvhNode *> nodeStack;
|
---|
1761 | nodeStack.push(root);
|
---|
1762 |
|
---|
1763 | while (!nodeStack.empty())
|
---|
1764 | {
|
---|
1765 | BvhNode *node = nodeStack.top();
|
---|
1766 | nodeStack.pop();
|
---|
1767 |
|
---|
1768 | if (node->IsLeaf())
|
---|
1769 | {
|
---|
1770 | BvhLeaf *leaf = (BvhLeaf *)node;
|
---|
1771 | leaves.push_back(leaf);
|
---|
1772 | }
|
---|
1773 | else
|
---|
1774 | {
|
---|
1775 | BvhInterior *interior = (BvhInterior *)node;
|
---|
1776 |
|
---|
1777 | nodeStack.push(interior->GetBack());
|
---|
1778 | nodeStack.push(interior->GetFront());
|
---|
1779 | }
|
---|
1780 | }
|
---|
1781 | }
|
---|
1782 |
|
---|
1783 |
|
---|
1784 | AxisAlignedBox3 BvHierarchy::GetBoundingBox(BvhNode *node) const
|
---|
1785 | {
|
---|
1786 | return node->GetBoundingBox();
|
---|
1787 | }
|
---|
1788 |
|
---|
1789 |
|
---|
1790 | int BvHierarchy::CollectViewCells(const ObjectContainer &objects,
|
---|
1791 | ViewCellContainer &viewCells,
|
---|
1792 | const bool setCounter,
|
---|
1793 | const bool onlyMailedRays) const
|
---|
1794 | {
|
---|
1795 | ViewCell::NewMail();
|
---|
1796 | ObjectContainer::const_iterator oit, oit_end = objects.end();
|
---|
1797 |
|
---|
1798 | int numRays = 0;
|
---|
1799 | // loop through all object and collect view cell pvs of this node
|
---|
1800 | for (oit = objects.begin(); oit != oit_end; ++ oit)
|
---|
1801 | {
|
---|
1802 | // always use only mailed objects
|
---|
1803 | numRays += CollectViewCells(*oit, viewCells, true, setCounter, onlyMailedRays);
|
---|
1804 | }
|
---|
1805 |
|
---|
1806 | return numRays;
|
---|
1807 | }
|
---|
1808 |
|
---|
1809 |
|
---|
1810 | int BvHierarchy::CollectViewCells(Intersectable *obj,
|
---|
1811 | ViewCellContainer &viewCells,
|
---|
1812 | const bool useMailBoxing,
|
---|
1813 | const bool setCounter,
|
---|
1814 | const bool onlyMailedRays) const
|
---|
1815 | {
|
---|
1816 | VssRayContainer::const_iterator rit, rit_end = obj->GetOrCreateRays()->end();
|
---|
1817 |
|
---|
1818 | int numRays = 0;
|
---|
1819 |
|
---|
1820 | for (rit = obj->GetOrCreateRays()->begin(); rit < rit_end; ++ rit)
|
---|
1821 | {
|
---|
1822 | VssRay *ray = (*rit);
|
---|
1823 |
|
---|
1824 | if (onlyMailedRays && !ray->Mailed())
|
---|
1825 | {
|
---|
1826 | continue;
|
---|
1827 | }
|
---|
1828 |
|
---|
1829 | ++ numRays;
|
---|
1830 |
|
---|
1831 | ViewCellContainer tmpViewCells;
|
---|
1832 | mHierarchyManager->mVspTree->GetViewCells(*ray, tmpViewCells);
|
---|
1833 |
|
---|
1834 | // matt: probably slow to allocate memory for view cells every time
|
---|
1835 | ViewCellContainer::const_iterator vit, vit_end = tmpViewCells.end();
|
---|
1836 |
|
---|
1837 | for (vit = tmpViewCells.begin(); vit != vit_end; ++ vit)
|
---|
1838 | {
|
---|
1839 | ViewCell *vc = *vit;
|
---|
1840 |
|
---|
1841 | // store view cells
|
---|
1842 | if (!useMailBoxing || !vc->Mailed())
|
---|
1843 | {
|
---|
1844 | if (useMailBoxing) // => view cell not mailed
|
---|
1845 | {
|
---|
1846 | vc->Mail();
|
---|
1847 | if (setCounter)
|
---|
1848 | {
|
---|
1849 | vc->mCounter = 0;
|
---|
1850 | }
|
---|
1851 | }
|
---|
1852 |
|
---|
1853 | viewCells.push_back(vc);
|
---|
1854 | }
|
---|
1855 |
|
---|
1856 | if (setCounter)
|
---|
1857 | {
|
---|
1858 | ++ vc->mCounter;
|
---|
1859 | }
|
---|
1860 | }
|
---|
1861 | }
|
---|
1862 |
|
---|
1863 | return numRays;
|
---|
1864 | }
|
---|
1865 |
|
---|
1866 |
|
---|
1867 | int BvHierarchy::CountViewCells(Intersectable *obj) const
|
---|
1868 | {
|
---|
1869 | int result = 0;
|
---|
1870 |
|
---|
1871 | VssRayContainer::const_iterator rit, rit_end = obj->GetOrCreateRays()->end();
|
---|
1872 |
|
---|
1873 | for (rit = obj->GetOrCreateRays()->begin(); rit < rit_end; ++ rit)
|
---|
1874 | {
|
---|
1875 | VssRay *ray = (*rit);
|
---|
1876 | ViewCellContainer tmpViewCells;
|
---|
1877 |
|
---|
1878 | mHierarchyManager->mVspTree->GetViewCells(*ray, tmpViewCells);
|
---|
1879 |
|
---|
1880 | ViewCellContainer::const_iterator vit, vit_end = tmpViewCells.end();
|
---|
1881 | for (vit = tmpViewCells.begin(); vit != vit_end; ++ vit)
|
---|
1882 | {
|
---|
1883 | ViewCell *vc = *vit;
|
---|
1884 |
|
---|
1885 | // store view cells
|
---|
1886 | if (!vc->Mailed())
|
---|
1887 | {
|
---|
1888 | vc->Mail();
|
---|
1889 | ++ result;
|
---|
1890 | }
|
---|
1891 | }
|
---|
1892 | }
|
---|
1893 |
|
---|
1894 | return result;
|
---|
1895 | }
|
---|
1896 |
|
---|
1897 |
|
---|
1898 | int BvHierarchy::CountViewCells(const ObjectContainer &objects) const
|
---|
1899 | {
|
---|
1900 | int nViewCells = 0;
|
---|
1901 | ViewCell::NewMail();
|
---|
1902 | ObjectContainer::const_iterator oit, oit_end = objects.end();
|
---|
1903 |
|
---|
1904 | // loop through all object and collect view cell pvs of this node
|
---|
1905 | for (oit = objects.begin(); oit != oit_end; ++ oit)
|
---|
1906 | {
|
---|
1907 | nViewCells += CountViewCells(*oit);
|
---|
1908 | }
|
---|
1909 |
|
---|
1910 | return nViewCells;
|
---|
1911 | }
|
---|
1912 |
|
---|
1913 |
|
---|
1914 | void BvHierarchy::CollectDirtyCandidates(BvhSubdivisionCandidate *sc,
|
---|
1915 | vector<SubdivisionCandidate *> &dirtyList,
|
---|
1916 | const bool onlyUnmailed)
|
---|
1917 | {
|
---|
1918 | BvhTraversalData &tData = sc->mParentData;
|
---|
1919 | BvhLeaf *node = tData.mNode;
|
---|
1920 |
|
---|
1921 | ViewCellContainer viewCells;
|
---|
1922 | //ViewCell::NewMail();
|
---|
1923 | int numRays = CollectViewCells(node->mObjects, viewCells, false, false);
|
---|
1924 |
|
---|
1925 | if (0) cout << "collected " << (int)viewCells.size() << " dirty candidates" << endl;
|
---|
1926 |
|
---|
1927 | // split candidates handling
|
---|
1928 | // these view cells are thrown into dirty list
|
---|
1929 | ViewCellContainer::const_iterator vit, vit_end = viewCells.end();
|
---|
1930 |
|
---|
1931 | for (vit = viewCells.begin(); vit != vit_end; ++ vit)
|
---|
1932 | {
|
---|
1933 | VspViewCell *vc = dynamic_cast<VspViewCell *>(*vit);
|
---|
1934 | VspLeaf *leaf = vc->mLeaves[0];
|
---|
1935 |
|
---|
1936 | SubdivisionCandidate *candidate = leaf->GetSubdivisionCandidate();
|
---|
1937 |
|
---|
1938 | // is this leaf still a split candidate?
|
---|
1939 | if (candidate && (!onlyUnmailed || !candidate->Mailed()))
|
---|
1940 | {
|
---|
1941 | candidate->Mail();
|
---|
1942 | candidate->SetDirty(true);
|
---|
1943 | dirtyList.push_back(candidate);
|
---|
1944 | }
|
---|
1945 | }
|
---|
1946 | }
|
---|
1947 |
|
---|
1948 |
|
---|
1949 | BvhNode *BvHierarchy::GetRoot() const
|
---|
1950 | {
|
---|
1951 | return mRoot;
|
---|
1952 | }
|
---|
1953 |
|
---|
1954 |
|
---|
1955 | bool BvHierarchy::IsObjectInLeaf(BvhLeaf *leaf, Intersectable *object) const
|
---|
1956 | {
|
---|
1957 | ObjectContainer::const_iterator oit =
|
---|
1958 | lower_bound(leaf->mObjects.begin(), leaf->mObjects.end(), object, ilt);
|
---|
1959 |
|
---|
1960 | // objects sorted by id
|
---|
1961 | if ((oit != leaf->mObjects.end()) && ((*oit)->GetId() == object->GetId()))
|
---|
1962 | {
|
---|
1963 | return true;
|
---|
1964 | }
|
---|
1965 | else
|
---|
1966 | {
|
---|
1967 | return false;
|
---|
1968 | }
|
---|
1969 | }
|
---|
1970 |
|
---|
1971 |
|
---|
1972 | BvhLeaf *BvHierarchy::GetLeaf(Intersectable *object, BvhNode *node) const
|
---|
1973 | {
|
---|
1974 | // rather use the simple version
|
---|
1975 | if (!object)
|
---|
1976 | return NULL;
|
---|
1977 | return object->mBvhLeaf;
|
---|
1978 |
|
---|
1979 | ///////////////////////////////////////
|
---|
1980 | // start from root of tree
|
---|
1981 |
|
---|
1982 | if (node == NULL)
|
---|
1983 | node = mRoot;
|
---|
1984 |
|
---|
1985 | vector<BvhLeaf *> leaves;
|
---|
1986 |
|
---|
1987 | stack<BvhNode *> nodeStack;
|
---|
1988 | nodeStack.push(node);
|
---|
1989 |
|
---|
1990 | BvhLeaf *leaf = NULL;
|
---|
1991 |
|
---|
1992 | while (!nodeStack.empty())
|
---|
1993 | {
|
---|
1994 | BvhNode *node = nodeStack.top();
|
---|
1995 | nodeStack.pop();
|
---|
1996 |
|
---|
1997 | if (node->IsLeaf())
|
---|
1998 | {
|
---|
1999 | leaf = dynamic_cast<BvhLeaf *>(node);
|
---|
2000 |
|
---|
2001 | if (IsObjectInLeaf(leaf, object))
|
---|
2002 | {
|
---|
2003 | return leaf;
|
---|
2004 | }
|
---|
2005 | }
|
---|
2006 | else
|
---|
2007 | {
|
---|
2008 | // find point
|
---|
2009 | BvhInterior *interior = dynamic_cast<BvhInterior *>(node);
|
---|
2010 |
|
---|
2011 | if (interior->GetBack()->GetBoundingBox().Includes(object->GetBox()))
|
---|
2012 | {
|
---|
2013 | nodeStack.push(interior->GetBack());
|
---|
2014 | }
|
---|
2015 |
|
---|
2016 | // search both sides as we are using bounding volumes
|
---|
2017 | if (interior->GetFront()->GetBoundingBox().Includes(object->GetBox()))
|
---|
2018 | {
|
---|
2019 | nodeStack.push(interior->GetFront());
|
---|
2020 | }
|
---|
2021 | }
|
---|
2022 | }
|
---|
2023 |
|
---|
2024 | return leaf;
|
---|
2025 | }
|
---|
2026 |
|
---|
2027 |
|
---|
2028 | bool BvHierarchy::Export(OUT_STREAM &stream)
|
---|
2029 | {
|
---|
2030 | ExportNode(mRoot, stream);
|
---|
2031 |
|
---|
2032 | return true;
|
---|
2033 | }
|
---|
2034 |
|
---|
2035 |
|
---|
2036 | void BvHierarchy::ExportObjects(BvhLeaf *leaf, OUT_STREAM &stream)
|
---|
2037 | {
|
---|
2038 | ObjectContainer::const_iterator oit, oit_end = leaf->mObjects.end();
|
---|
2039 | for (oit = leaf->mObjects.begin(); oit != oit_end; ++ oit)
|
---|
2040 | {
|
---|
2041 | stream << (*oit)->GetId() << " ";
|
---|
2042 | }
|
---|
2043 | }
|
---|
2044 |
|
---|
2045 |
|
---|
2046 | void BvHierarchy::ExportNode(BvhNode *node, OUT_STREAM &stream)
|
---|
2047 | {
|
---|
2048 | if (node->IsLeaf())
|
---|
2049 | {
|
---|
2050 | BvhLeaf *leaf = dynamic_cast<BvhLeaf *>(node);
|
---|
2051 | const AxisAlignedBox3 box = leaf->GetBoundingBox();
|
---|
2052 | stream << "<Leaf"
|
---|
2053 | << " min=\"" << box.Min().x << " " << box.Min().y << " " << box.Min().z << "\""
|
---|
2054 | << " max=\"" << box.Max().x << " " << box.Max().y << " " << box.Max().z << "\""
|
---|
2055 | << " objects=\"";
|
---|
2056 |
|
---|
2057 | //-- export objects
|
---|
2058 | // tmp matt
|
---|
2059 | if (0) ExportObjects(leaf, stream);
|
---|
2060 |
|
---|
2061 | stream << "\" />" << endl;
|
---|
2062 | }
|
---|
2063 | else
|
---|
2064 | {
|
---|
2065 | BvhInterior *interior = dynamic_cast<BvhInterior *>(node);
|
---|
2066 | const AxisAlignedBox3 box = interior->GetBoundingBox();
|
---|
2067 |
|
---|
2068 | stream << "<Interior"
|
---|
2069 | << " min=\"" << box.Min().x << " " << box.Min().y << " " << box.Min().z << "\""
|
---|
2070 | << " max=\"" << box.Max().x << " " << box.Max().y << " " << box.Max().z
|
---|
2071 | << "\">" << endl;
|
---|
2072 |
|
---|
2073 | ExportNode(interior->GetBack(), stream);
|
---|
2074 | ExportNode(interior->GetFront(), stream);
|
---|
2075 |
|
---|
2076 | stream << "</Interior>" << endl;
|
---|
2077 | }
|
---|
2078 | }
|
---|
2079 |
|
---|
2080 |
|
---|
2081 | float BvHierarchy::EvalViewCellsVolume(const ObjectContainer &objects) const
|
---|
2082 | {
|
---|
2083 | float vol = 0;
|
---|
2084 |
|
---|
2085 | ViewCellContainer viewCells;
|
---|
2086 |
|
---|
2087 | // we have to account for all view cells that can
|
---|
2088 | // be seen from the objects
|
---|
2089 | int numRays = CollectViewCells(objects, viewCells, false, false);
|
---|
2090 |
|
---|
2091 | ViewCellContainer::const_iterator vit, vit_end = viewCells.end();
|
---|
2092 |
|
---|
2093 | for (vit = viewCells.begin(); vit != vit_end; ++ vit)
|
---|
2094 | {
|
---|
2095 | vol += (*vit)->GetVolume();
|
---|
2096 | }
|
---|
2097 |
|
---|
2098 | return vol;
|
---|
2099 | }
|
---|
2100 |
|
---|
2101 |
|
---|
2102 | void BvHierarchy::Initialise(const ObjectContainer &objects)
|
---|
2103 | {
|
---|
2104 | AxisAlignedBox3 box = EvalBoundingBox(objects);
|
---|
2105 |
|
---|
2106 | ///////
|
---|
2107 | //-- create new root
|
---|
2108 |
|
---|
2109 | BvhLeaf *bvhleaf = new BvhLeaf(box, NULL, (int)objects.size());
|
---|
2110 | bvhleaf->mObjects = objects;
|
---|
2111 | mRoot = bvhleaf;
|
---|
2112 |
|
---|
2113 | // compute bounding box from objects
|
---|
2114 | mBoundingBox = mRoot->GetBoundingBox();
|
---|
2115 |
|
---|
2116 | // associate root with current objects
|
---|
2117 | AssociateObjectsWithLeaf(bvhleaf);
|
---|
2118 | }
|
---|
2119 |
|
---|
2120 |
|
---|
2121 | /*
|
---|
2122 | Mesh *BvHierarchy::MergeLeafToMesh()
|
---|
2123 | {
|
---|
2124 | vector<BvhLeaf *> leaves;
|
---|
2125 | CollectLeaves(leaves);
|
---|
2126 |
|
---|
2127 | vector<BvhLeaf *>::const_iterator lit, lit_end = leaves.end();
|
---|
2128 |
|
---|
2129 | for (lit = leaves.begin(); lit != lit_end; ++ lit)
|
---|
2130 | {
|
---|
2131 | Mesh *mesh = MergeLeafToMesh(*lit);
|
---|
2132 | }
|
---|
2133 | }*/
|
---|
2134 |
|
---|
2135 |
|
---|
2136 | void BvHierarchy::PrepareConstruction(SplitQueue &tQueue,
|
---|
2137 | const VssRayContainer &sampleRays,
|
---|
2138 | const ObjectContainer &objects)
|
---|
2139 | {
|
---|
2140 | ///////////////////////////////////////
|
---|
2141 | //-- we assume that we have objects sorted by their id =>
|
---|
2142 | //-- we don't have to sort them here and an binary search
|
---|
2143 | //-- for identifying if a object is in a leaf.
|
---|
2144 |
|
---|
2145 | mBvhStats.Reset();
|
---|
2146 | mBvhStats.Start();
|
---|
2147 | mBvhStats.nodes = 1;
|
---|
2148 |
|
---|
2149 | // store pointer to this tree
|
---|
2150 | BvhSubdivisionCandidate::sBvHierarchy = this;
|
---|
2151 |
|
---|
2152 | // root and bounding box was already constructed
|
---|
2153 | BvhLeaf *bvhLeaf = dynamic_cast<BvhLeaf *>(mRoot);
|
---|
2154 |
|
---|
2155 | // multiply termination criterium for comparison,
|
---|
2156 | // so it can be set between zero and one and
|
---|
2157 | // no division is necessary during traversal
|
---|
2158 |
|
---|
2159 | #if PROBABILIY_IS_BV_VOLUME
|
---|
2160 | mTermMinProbability *= mBoundingBox.GetVolume();
|
---|
2161 | // probability that bounding volume is seen
|
---|
2162 | const float prop = GetBoundingBox().GetVolume();
|
---|
2163 | #else
|
---|
2164 | mTermMinProbability *= mVspTree->GetBoundingBox().GetVolume();
|
---|
2165 | // probability that volume is "seen" from the view cells
|
---|
2166 | const float prop = EvalViewCellsVolume(objects);
|
---|
2167 | #endif
|
---|
2168 |
|
---|
2169 | // only rays intersecting objects in node are interesting
|
---|
2170 | const int nRays = AssociateObjectsWithRays(sampleRays);
|
---|
2171 | //cout << "using " << nRays << " of " << (int)sampleRays.size() << " rays" << endl;
|
---|
2172 |
|
---|
2173 | // create bvh traversal data
|
---|
2174 | BvhTraversalData oData(bvhLeaf, 0, prop, nRays);
|
---|
2175 |
|
---|
2176 | // create sorted object lists for the first data
|
---|
2177 | if (mUseGlobalSorting)
|
---|
2178 | {
|
---|
2179 | AssignInitialSortedObjectList(oData, objects);
|
---|
2180 | }
|
---|
2181 |
|
---|
2182 |
|
---|
2183 | ///////////////////
|
---|
2184 | //-- add first candidate for object space partition
|
---|
2185 |
|
---|
2186 | BvhSubdivisionCandidate *oSubdivisionCandidate =
|
---|
2187 | new BvhSubdivisionCandidate(oData);
|
---|
2188 |
|
---|
2189 | bvhLeaf->SetSubdivisionCandidate(oSubdivisionCandidate);
|
---|
2190 |
|
---|
2191 | mTotalCost = EvalRenderCost(objects);
|
---|
2192 | mPvsEntries = CountViewCells(objects);
|
---|
2193 |
|
---|
2194 | if (mApplyInitialPartition)
|
---|
2195 | {
|
---|
2196 | vector<SubdivisionCandidate *> candidateContainer;
|
---|
2197 |
|
---|
2198 | mIsInitialSubdivision = true;
|
---|
2199 |
|
---|
2200 | // evaluate priority
|
---|
2201 | EvalSubdivisionCandidate(*oSubdivisionCandidate);
|
---|
2202 | PrintSubdivisionStats(*oSubdivisionCandidate);
|
---|
2203 |
|
---|
2204 | ApplyInitialSubdivision(oSubdivisionCandidate, candidateContainer);
|
---|
2205 |
|
---|
2206 | mIsInitialSubdivision = false;
|
---|
2207 |
|
---|
2208 | vector<SubdivisionCandidate *>::const_iterator cit, cit_end = candidateContainer.end();
|
---|
2209 |
|
---|
2210 | for (cit = candidateContainer.begin(); cit != cit_end; ++ cit)
|
---|
2211 | {
|
---|
2212 | BvhSubdivisionCandidate *sCandidate = dynamic_cast<BvhSubdivisionCandidate *>(*cit);
|
---|
2213 |
|
---|
2214 | // reevaluate priority
|
---|
2215 | EvalSubdivisionCandidate(*sCandidate);
|
---|
2216 | tQueue.Push(sCandidate);
|
---|
2217 | }
|
---|
2218 | }
|
---|
2219 | else
|
---|
2220 | {
|
---|
2221 | // evaluate priority
|
---|
2222 | EvalSubdivisionCandidate(*oSubdivisionCandidate);
|
---|
2223 | PrintSubdivisionStats(*oSubdivisionCandidate);
|
---|
2224 |
|
---|
2225 | tQueue.Push(oSubdivisionCandidate);
|
---|
2226 | }
|
---|
2227 |
|
---|
2228 | cout << "size of initial bv subdivision: " << GetStatistics().Leaves() << endl;
|
---|
2229 | }
|
---|
2230 |
|
---|
2231 |
|
---|
2232 | void BvHierarchy::AssignInitialSortedObjectList(BvhTraversalData &tData,
|
---|
2233 | const ObjectContainer &objects)
|
---|
2234 | {
|
---|
2235 | // we sort the objects as a preprocess so they don't have
|
---|
2236 | // to be sorted for each split
|
---|
2237 | for (int i = 0; i < 3; ++ i)
|
---|
2238 | {
|
---|
2239 | SortableEntryContainer *sortedObjects = new SortableEntryContainer();
|
---|
2240 |
|
---|
2241 | CreateLocalSubdivisionCandidates(objects,
|
---|
2242 | &sortedObjects,
|
---|
2243 | true,
|
---|
2244 | i);
|
---|
2245 |
|
---|
2246 | // copy list into traversal data list
|
---|
2247 | tData.mSortedObjects[i] = new ObjectContainer();
|
---|
2248 | tData.mSortedObjects[i]->reserve((int)objects.size());
|
---|
2249 |
|
---|
2250 | SortableEntryContainer::const_iterator oit, oit_end = sortedObjects->end();
|
---|
2251 |
|
---|
2252 | for (oit = sortedObjects->begin(); oit != oit_end; ++ oit)
|
---|
2253 | {
|
---|
2254 | tData.mSortedObjects[i]->push_back((*oit).mObject);
|
---|
2255 | }
|
---|
2256 |
|
---|
2257 | delete sortedObjects;
|
---|
2258 | }
|
---|
2259 |
|
---|
2260 | // last sorted list: by size
|
---|
2261 | tData.mSortedObjects[3] = new ObjectContainer();
|
---|
2262 | tData.mSortedObjects[3]->reserve((int)objects.size());
|
---|
2263 |
|
---|
2264 | *(tData.mSortedObjects[3]) = objects;
|
---|
2265 | stable_sort(tData.mSortedObjects[3]->begin(), tData.mSortedObjects[3]->end(), smallerSize);
|
---|
2266 | }
|
---|
2267 |
|
---|
2268 |
|
---|
2269 | void BvHierarchy::AssignSortedObjects(const BvhSubdivisionCandidate &sc,
|
---|
2270 | BvhTraversalData &frontData,
|
---|
2271 | BvhTraversalData &backData)
|
---|
2272 | {
|
---|
2273 | Intersectable::NewMail();
|
---|
2274 |
|
---|
2275 | // we sorted the objects as a preprocess so they don't have
|
---|
2276 | // to be sorted for each split
|
---|
2277 | ObjectContainer::const_iterator fit, fit_end = sc.mFrontObjects.end();
|
---|
2278 |
|
---|
2279 | for (fit = sc.mFrontObjects.begin(); fit != fit_end; ++ fit)
|
---|
2280 | {
|
---|
2281 | (*fit)->Mail();
|
---|
2282 | }
|
---|
2283 |
|
---|
2284 | for (int i = 0; i < 4; ++ i)
|
---|
2285 | {
|
---|
2286 | frontData.mSortedObjects[i] = new ObjectContainer();
|
---|
2287 | backData.mSortedObjects[i] = new ObjectContainer();
|
---|
2288 |
|
---|
2289 | frontData.mSortedObjects[i]->reserve((int)sc.mFrontObjects.size());
|
---|
2290 | backData.mSortedObjects[i]->reserve((int)sc.mFrontObjects.size());
|
---|
2291 |
|
---|
2292 | ObjectContainer::const_iterator oit, oit_end = sc.mParentData.mSortedObjects[i]->end();
|
---|
2293 |
|
---|
2294 | for (oit = sc.mParentData.mSortedObjects[i]->begin(); oit != oit_end; ++ oit)
|
---|
2295 | {
|
---|
2296 | if ((*oit)->Mailed())
|
---|
2297 | {
|
---|
2298 | frontData.mSortedObjects[i]->push_back(*oit);
|
---|
2299 | }
|
---|
2300 | else
|
---|
2301 | {
|
---|
2302 | backData.mSortedObjects[i]->push_back(*oit);
|
---|
2303 | }
|
---|
2304 | }
|
---|
2305 | }
|
---|
2306 | }
|
---|
2307 |
|
---|
2308 |
|
---|
2309 | void BvHierarchy::Reset(SplitQueue &tQueue,
|
---|
2310 | const VssRayContainer &sampleRays,
|
---|
2311 | const ObjectContainer &objects)
|
---|
2312 | {
|
---|
2313 | // reset stats
|
---|
2314 | mBvhStats.Reset();
|
---|
2315 | mBvhStats.Start();
|
---|
2316 | mBvhStats.nodes = 1;
|
---|
2317 |
|
---|
2318 | // reset root
|
---|
2319 | DEL_PTR(mRoot);
|
---|
2320 |
|
---|
2321 | BvhLeaf *bvhleaf = new BvhLeaf(mBoundingBox, NULL, (int)objects.size());
|
---|
2322 | bvhleaf->mObjects = objects;
|
---|
2323 | mRoot = bvhleaf;
|
---|
2324 |
|
---|
2325 | #if PROBABILIY_IS_BV_VOLUME
|
---|
2326 | mTermMinProbability *= mBoundingBox.GetVolume();
|
---|
2327 | // probability that bounding volume is seen
|
---|
2328 | const float prop = GetBoundingBox().GetVolume();
|
---|
2329 | #else
|
---|
2330 | mTermMinProbability *= mVspTree->GetBoundingBox().GetVolume();
|
---|
2331 | // probability that volume is "seen" from the view cells
|
---|
2332 | const float prop = EvalViewCellsVolume(objects);
|
---|
2333 | #endif
|
---|
2334 |
|
---|
2335 | const int nRays = CountRays(objects);
|
---|
2336 | BvhLeaf *bvhLeaf = dynamic_cast<BvhLeaf *>(mRoot);
|
---|
2337 |
|
---|
2338 | // create bvh traversal data
|
---|
2339 | BvhTraversalData oData(bvhLeaf, 0, prop, nRays);
|
---|
2340 |
|
---|
2341 | AssignInitialSortedObjectList(oData, objects);
|
---|
2342 |
|
---|
2343 |
|
---|
2344 | ///////////////////
|
---|
2345 | //-- add first candidate for object space partition
|
---|
2346 |
|
---|
2347 | BvhSubdivisionCandidate *oSubdivisionCandidate =
|
---|
2348 | new BvhSubdivisionCandidate(oData);
|
---|
2349 |
|
---|
2350 | EvalSubdivisionCandidate(*oSubdivisionCandidate);
|
---|
2351 | bvhLeaf->SetSubdivisionCandidate(oSubdivisionCandidate);
|
---|
2352 |
|
---|
2353 | const float viewSpaceVol = mViewCellsManager->GetViewSpaceBox().GetVolume();
|
---|
2354 | mTotalCost = (float)objects.size() * prop / viewSpaceVol;
|
---|
2355 |
|
---|
2356 | PrintSubdivisionStats(*oSubdivisionCandidate);
|
---|
2357 |
|
---|
2358 | tQueue.Push(oSubdivisionCandidate);
|
---|
2359 | }
|
---|
2360 |
|
---|
2361 |
|
---|
2362 | void BvhStatistics::Print(ostream &app) const
|
---|
2363 | {
|
---|
2364 | app << "=========== BvHierarchy statistics ===============\n";
|
---|
2365 |
|
---|
2366 | app << setprecision(4);
|
---|
2367 |
|
---|
2368 | app << "#N_CTIME ( Construction time [s] )\n" << Time() << " \n";
|
---|
2369 |
|
---|
2370 | app << "#N_NODES ( Number of nodes )\n" << nodes << "\n";
|
---|
2371 |
|
---|
2372 | app << "#N_INTERIORS ( Number of interior nodes )\n" << Interior() << "\n";
|
---|
2373 |
|
---|
2374 | app << "#N_LEAVES ( Number of leaves )\n" << Leaves() << "\n";
|
---|
2375 |
|
---|
2376 | app << "#AXIS_ALIGNED_SPLITS (number of axis aligned splits)\n" << splits << endl;
|
---|
2377 |
|
---|
2378 | app << "#N_MAXCOSTNODES ( Percentage of leaves with terminated because of max cost ratio )\n"
|
---|
2379 | << maxCostNodes * 100 / (double)Leaves() << endl;
|
---|
2380 |
|
---|
2381 | app << "#N_PMINPROBABILITYLEAVES ( Percentage of leaves with mininum probability )\n"
|
---|
2382 | << minProbabilityNodes * 100 / (double)Leaves() << endl;
|
---|
2383 |
|
---|
2384 |
|
---|
2385 | //////////////////////////////////////////////////
|
---|
2386 |
|
---|
2387 | app << "#N_PMAXDEPTHLEAVES ( Percentage of leaves at maximum depth )\n"
|
---|
2388 | << maxDepthNodes * 100 / (double)Leaves() << endl;
|
---|
2389 |
|
---|
2390 | app << "#N_PMAXDEPTH ( Maximal reached depth )\n" << maxDepth << endl;
|
---|
2391 |
|
---|
2392 | app << "#N_PMINDEPTH ( Minimal reached depth )\n" << minDepth << endl;
|
---|
2393 |
|
---|
2394 | app << "#AVGDEPTH ( average depth )\n" << AvgDepth() << endl;
|
---|
2395 |
|
---|
2396 |
|
---|
2397 | ////////////////////////////////////////////////////////
|
---|
2398 |
|
---|
2399 | app << "#N_PMINOBJECTSLEAVES ( Percentage of leaves with mininum objects )\n"
|
---|
2400 | << minObjectsNodes * 100 / (double)Leaves() << endl;
|
---|
2401 |
|
---|
2402 | app << "#N_MAXOBJECTREFS ( Max number of object refs / leaf )\n" << maxObjectRefs << "\n";
|
---|
2403 |
|
---|
2404 | app << "#N_MINOBJECTREFS ( Min number of object refs / leaf )\n" << minObjectRefs << "\n";
|
---|
2405 |
|
---|
2406 | app << "#N_EMPTYLEAFS ( Empty leafs )\n" << emptyNodes << "\n";
|
---|
2407 |
|
---|
2408 | app << "#N_PAVGOBJECTSLEAVES ( average object refs / leaf)\n" << AvgObjectRefs() << endl;
|
---|
2409 |
|
---|
2410 |
|
---|
2411 | ////////////////////////////////////////////////////////
|
---|
2412 |
|
---|
2413 | app << "#N_PMINRAYSLEAVES ( Percentage of leaves with mininum rays )\n"
|
---|
2414 | << minRaysNodes * 100 / (double)Leaves() << endl;
|
---|
2415 |
|
---|
2416 | app << "#N_MAXRAYREFS ( Max number of ray refs / leaf )\n" << maxRayRefs << "\n";
|
---|
2417 |
|
---|
2418 | app << "#N_MINRAYREFS ( Min number of ray refs / leaf )\n" << minRayRefs << "\n";
|
---|
2419 |
|
---|
2420 | app << "#N_PAVGRAYLEAVES ( average ray refs / leaf )\n" << AvgRayRefs() << endl;
|
---|
2421 |
|
---|
2422 | app << "#N_PAVGRAYCONTRIBLEAVES ( Average ray contribution)\n" <<
|
---|
2423 | rayRefs / (double)objectRefs << endl;
|
---|
2424 |
|
---|
2425 | app << "#N_PMAXRAYCONTRIBLEAVES ( Percentage of leaves with maximal ray contribution )\n"<<
|
---|
2426 | maxRayContriNodes * 100 / (double)Leaves() << endl;
|
---|
2427 |
|
---|
2428 | app << "#N_PGLOBALCOSTMISSES ( Global cost misses )\n" << mGlobalCostMisses << endl;
|
---|
2429 |
|
---|
2430 | app << "========== END OF BvHierarchy statistics ==========\n";
|
---|
2431 | }
|
---|
2432 |
|
---|
2433 |
|
---|
2434 | // TODO: return memory usage in MB
|
---|
2435 | float BvHierarchy::GetMemUsage() const
|
---|
2436 | {
|
---|
2437 | return (float)(sizeof(BvHierarchy)
|
---|
2438 | + mBvhStats.Leaves() * sizeof(BvhLeaf)
|
---|
2439 | + mBvhStats.Interior() * sizeof(BvhInterior)
|
---|
2440 | ) / float(1024 * 1024);
|
---|
2441 | }
|
---|
2442 |
|
---|
2443 |
|
---|
2444 | void BvHierarchy::SetActive(BvhNode *node) const
|
---|
2445 | {
|
---|
2446 | vector<BvhLeaf *> leaves;
|
---|
2447 |
|
---|
2448 | // sets the pointers to the currently active view cells
|
---|
2449 | CollectLeaves(node, leaves);
|
---|
2450 | vector<BvhLeaf *>::const_iterator lit, lit_end = leaves.end();
|
---|
2451 |
|
---|
2452 | for (lit = leaves.begin(); lit != lit_end; ++ lit)
|
---|
2453 | {
|
---|
2454 | (*lit)->SetActiveNode(node);
|
---|
2455 | }
|
---|
2456 | }
|
---|
2457 |
|
---|
2458 |
|
---|
2459 | BvhNode *BvHierarchy::SubdivideAndCopy(SplitQueue &tQueue,
|
---|
2460 | SubdivisionCandidate *splitCandidate)
|
---|
2461 | {
|
---|
2462 | BvhSubdivisionCandidate *sc =
|
---|
2463 | dynamic_cast<BvhSubdivisionCandidate *>(splitCandidate);
|
---|
2464 | BvhTraversalData &tData = sc->mParentData;
|
---|
2465 |
|
---|
2466 | BvhNode *currentNode = tData.mNode;
|
---|
2467 | BvhNode *oldNode = (BvhNode *)splitCandidate->mEvaluationHack;
|
---|
2468 |
|
---|
2469 | if (!oldNode->IsLeaf())
|
---|
2470 | {
|
---|
2471 | //////////////
|
---|
2472 | //-- continue subdivision
|
---|
2473 |
|
---|
2474 | BvhTraversalData tFrontData;
|
---|
2475 | BvhTraversalData tBackData;
|
---|
2476 |
|
---|
2477 | BvhInterior *oldInterior = dynamic_cast<BvhInterior *>(oldNode);
|
---|
2478 |
|
---|
2479 | sc->mFrontObjects.clear();
|
---|
2480 | sc->mBackObjects.clear();
|
---|
2481 |
|
---|
2482 | oldInterior->GetFront()->CollectObjects(sc->mFrontObjects);
|
---|
2483 | oldInterior->GetBack()->CollectObjects(sc->mBackObjects);
|
---|
2484 |
|
---|
2485 | // evaluate the changes in render cost and pvs entries
|
---|
2486 | EvalSubdivisionCandidate(*sc, false);
|
---|
2487 |
|
---|
2488 | // create new interior node and two leaf node
|
---|
2489 | currentNode = SubdivideNode(*sc, tFrontData, tBackData);
|
---|
2490 |
|
---|
2491 | //oldNode->mRenderCostDecr += sc->GetRenderCostDecrease();
|
---|
2492 | //oldNode->mPvsEntriesIncr += sc->GetPvsEntriesIncr();
|
---|
2493 |
|
---|
2494 | //oldNode->mRenderCostDecr = sc->GetRenderCostDecrease();
|
---|
2495 | //oldNode->mPvsEntriesIncr = sc->GetPvsEntriesIncr();
|
---|
2496 |
|
---|
2497 | ///////////////////////////
|
---|
2498 | //-- push the new split candidates on the queue
|
---|
2499 |
|
---|
2500 | BvhSubdivisionCandidate *frontCandidate = new BvhSubdivisionCandidate(tFrontData);
|
---|
2501 | BvhSubdivisionCandidate *backCandidate = new BvhSubdivisionCandidate(tBackData);
|
---|
2502 |
|
---|
2503 | frontCandidate->SetPriority((float)-oldInterior->GetFront()->GetTimeStamp());
|
---|
2504 | backCandidate->SetPriority((float)-oldInterior->GetBack()->GetTimeStamp());
|
---|
2505 |
|
---|
2506 | frontCandidate->mEvaluationHack = oldInterior->GetFront();
|
---|
2507 | backCandidate->mEvaluationHack = oldInterior->GetBack();
|
---|
2508 |
|
---|
2509 | // cross reference
|
---|
2510 | tFrontData.mNode->SetSubdivisionCandidate(frontCandidate);
|
---|
2511 | tBackData.mNode->SetSubdivisionCandidate(backCandidate);
|
---|
2512 |
|
---|
2513 | //cout << "f: " << frontCandidate->GetPriority() << " b: " << backCandidate->GetPriority() << endl;
|
---|
2514 | tQueue.Push(frontCandidate);
|
---|
2515 | tQueue.Push(backCandidate);
|
---|
2516 | }
|
---|
2517 |
|
---|
2518 | /////////////////////////////////
|
---|
2519 | //-- node is a leaf => terminate traversal
|
---|
2520 |
|
---|
2521 | if (currentNode->IsLeaf())
|
---|
2522 | {
|
---|
2523 | // this leaf is no candidate for splitting anymore
|
---|
2524 | // => detach subdivision candidate
|
---|
2525 | tData.mNode->SetSubdivisionCandidate(NULL);
|
---|
2526 | // detach node so we don't delete it with the traversal data
|
---|
2527 | tData.mNode = NULL;
|
---|
2528 | }
|
---|
2529 |
|
---|
2530 | return currentNode;
|
---|
2531 | }
|
---|
2532 |
|
---|
2533 |
|
---|
2534 | void BvHierarchy::CollectObjects(const AxisAlignedBox3 &box,
|
---|
2535 | ObjectContainer &objects)
|
---|
2536 | {
|
---|
2537 | stack<BvhNode *> nodeStack;
|
---|
2538 |
|
---|
2539 | nodeStack.push(mRoot);
|
---|
2540 |
|
---|
2541 | while (!nodeStack.empty()) {
|
---|
2542 | BvhNode *node = nodeStack.top();
|
---|
2543 |
|
---|
2544 | nodeStack.pop();
|
---|
2545 | if (node->IsLeaf()) {
|
---|
2546 | BvhLeaf *leaf = (BvhLeaf *)node;
|
---|
2547 | if (Overlap(box, leaf->GetBoundingBox())) {
|
---|
2548 | Intersectable *object = leaf;
|
---|
2549 | if (!object->Mailed()) {
|
---|
2550 | object->Mail();
|
---|
2551 | objects.push_back(object);
|
---|
2552 | }
|
---|
2553 | }
|
---|
2554 | }
|
---|
2555 | else
|
---|
2556 | {
|
---|
2557 | BvhInterior *interior = (BvhInterior *)node;
|
---|
2558 | if (Overlap(box, interior->GetBoundingBox())) {
|
---|
2559 | bool pushed = false;
|
---|
2560 | if (!interior->GetFront()->Mailed()) {
|
---|
2561 | nodeStack.push(interior->GetFront());
|
---|
2562 | pushed = true;
|
---|
2563 | }
|
---|
2564 | if (!interior->GetBack()->Mailed()) {
|
---|
2565 | nodeStack.push(interior->GetBack());
|
---|
2566 | pushed = true;
|
---|
2567 | }
|
---|
2568 | // avoid traversal of this node in the next query
|
---|
2569 | if (!pushed)
|
---|
2570 | interior->Mail();
|
---|
2571 | }
|
---|
2572 | }
|
---|
2573 | }
|
---|
2574 | }
|
---|
2575 |
|
---|
2576 |
|
---|
2577 | void BvHierarchy::CreateUniqueObjectIds()
|
---|
2578 | {
|
---|
2579 | stack<BvhNode *> nodeStack;
|
---|
2580 | nodeStack.push(mRoot);
|
---|
2581 |
|
---|
2582 | int currentId = 0;
|
---|
2583 | while (!nodeStack.empty())
|
---|
2584 | {
|
---|
2585 | BvhNode *node = nodeStack.top();
|
---|
2586 | nodeStack.pop();
|
---|
2587 |
|
---|
2588 | node->SetId(currentId ++);
|
---|
2589 |
|
---|
2590 | if (!node->IsLeaf())
|
---|
2591 | {
|
---|
2592 | BvhInterior *interior = (BvhInterior *)node;
|
---|
2593 |
|
---|
2594 | nodeStack.push(interior->GetFront());
|
---|
2595 | nodeStack.push(interior->GetBack());
|
---|
2596 | }
|
---|
2597 | }
|
---|
2598 | }
|
---|
2599 |
|
---|
2600 |
|
---|
2601 | void BvHierarchy::ApplyInitialSubdivision(SubdivisionCandidate *firstCandidate,
|
---|
2602 | vector<SubdivisionCandidate *> &candidateContainer)
|
---|
2603 | {
|
---|
2604 | SplitQueue tempQueue;
|
---|
2605 | tempQueue.Push(firstCandidate);
|
---|
2606 |
|
---|
2607 | while (!tempQueue.Empty())
|
---|
2608 | {
|
---|
2609 | SubdivisionCandidate *candidate = tempQueue.Top();
|
---|
2610 | tempQueue.Pop();
|
---|
2611 |
|
---|
2612 | BvhSubdivisionCandidate *bsc =
|
---|
2613 | dynamic_cast<BvhSubdivisionCandidate *>(candidate);
|
---|
2614 |
|
---|
2615 | if (!InitialTerminationCriteriaMet(bsc->mParentData))
|
---|
2616 | {
|
---|
2617 | const bool globalCriteriaMet = GlobalTerminationCriteriaMet(bsc->mParentData);
|
---|
2618 |
|
---|
2619 | BvhNode *node = Subdivide(tempQueue, bsc, globalCriteriaMet);
|
---|
2620 |
|
---|
2621 | // not needed anymore
|
---|
2622 | delete bsc;
|
---|
2623 | }
|
---|
2624 | else // initial preprocessing finished for this candidate
|
---|
2625 | {
|
---|
2626 | // add to candidate container
|
---|
2627 | candidateContainer.push_back(bsc);
|
---|
2628 | }
|
---|
2629 | }
|
---|
2630 | }
|
---|
2631 |
|
---|
2632 |
|
---|
2633 | void BvHierarchy::ApplyInitialSplit(const BvhTraversalData &tData,
|
---|
2634 | ObjectContainer &frontObjects,
|
---|
2635 | ObjectContainer &backObjects)
|
---|
2636 | {
|
---|
2637 | ObjectContainer *objects = tData.mSortedObjects[3];
|
---|
2638 |
|
---|
2639 | ObjectContainer::const_iterator oit, oit_end = objects->end();
|
---|
2640 |
|
---|
2641 | float maxAreaDiff = -1.0f;
|
---|
2642 |
|
---|
2643 | ObjectContainer::const_iterator backObjectsStart = objects->begin();
|
---|
2644 |
|
---|
2645 | for (oit = objects->begin(); oit != (objects->end() - 1); ++ oit)
|
---|
2646 | {
|
---|
2647 | Intersectable *objS = *oit;
|
---|
2648 | Intersectable *objL = *(oit + 1);
|
---|
2649 |
|
---|
2650 | const float areaDiff =
|
---|
2651 | objL->GetBox().SurfaceArea() - objS->GetBox().SurfaceArea();
|
---|
2652 |
|
---|
2653 | if (areaDiff > maxAreaDiff)
|
---|
2654 | {
|
---|
2655 | maxAreaDiff = areaDiff;
|
---|
2656 | backObjectsStart = oit + 1;
|
---|
2657 | }
|
---|
2658 | }
|
---|
2659 |
|
---|
2660 | // belongs to back bv
|
---|
2661 | for (oit = objects->begin(); oit != backObjectsStart; ++ oit)
|
---|
2662 | {
|
---|
2663 | frontObjects.push_back(*oit);
|
---|
2664 | }
|
---|
2665 |
|
---|
2666 | // belongs to front bv
|
---|
2667 | for (oit = backObjectsStart; oit != oit_end; ++ oit)
|
---|
2668 | {
|
---|
2669 | backObjects.push_back(*oit);
|
---|
2670 | }
|
---|
2671 |
|
---|
2672 | cout << "front: " << (int)frontObjects.size() << " back: " << (int)backObjects.size() << " "
|
---|
2673 | << backObjects.front()->GetBox().SurfaceArea() - frontObjects.back()->GetBox().SurfaceArea() << endl;
|
---|
2674 | }
|
---|
2675 |
|
---|
2676 |
|
---|
2677 | inline static float AreaRatio(Intersectable *smallObj, Intersectable *largeObj)
|
---|
2678 | {
|
---|
2679 | const float areaSmall = smallObj->GetBox().SurfaceArea();
|
---|
2680 | const float areaLarge = largeObj->GetBox().SurfaceArea();
|
---|
2681 |
|
---|
2682 | return areaSmall / (areaLarge - areaSmall + Limits::Small);
|
---|
2683 | }
|
---|
2684 |
|
---|
2685 |
|
---|
2686 | bool BvHierarchy::InitialTerminationCriteriaMet(const BvhTraversalData &tData) const
|
---|
2687 | {
|
---|
2688 | const bool terminationCriteriaMet =
|
---|
2689 | (0
|
---|
2690 | || ((int)tData.mNode->mObjects.size() < mInitialMinObjects)
|
---|
2691 | || (tData.mNode->mObjects.back()->GetBox().SurfaceArea() < mInitialMinArea)
|
---|
2692 | || (AreaRatio(tData.mNode->mObjects.front(), tData.mNode->mObjects.back()) > mInitialMaxAreaRatio)
|
---|
2693 | );
|
---|
2694 |
|
---|
2695 | cout << "criteria met: "<< terminationCriteriaMet << "\n"
|
---|
2696 | << "size: " << (int)tData.mNode->mObjects.size() << " max: " << mInitialMinObjects << endl
|
---|
2697 | << "ratio: " << AreaRatio(tData.mNode->mObjects.front(), tData.mNode->mObjects.back()) << " max: " << mInitialMaxAreaRatio << endl
|
---|
2698 | << "area: " << tData.mNode->mObjects.back()->GetBox().SurfaceArea() << " max: " << mInitialMinArea << endl << endl;
|
---|
2699 |
|
---|
2700 | return terminationCriteriaMet;
|
---|
2701 | }
|
---|
2702 |
|
---|
2703 |
|
---|
2704 | // HACK
|
---|
2705 | float BvHierarchy::GetRenderCostIncrementially(BvhNode *node) const
|
---|
2706 | {
|
---|
2707 | if (node->mRenderCost < 0)
|
---|
2708 | {
|
---|
2709 | //cout <<"p";
|
---|
2710 | if (node->IsLeaf())
|
---|
2711 | {
|
---|
2712 | BvhLeaf *leaf = dynamic_cast<BvhLeaf *>(node);
|
---|
2713 | node->mRenderCost = EvalAbsCost(leaf->mObjects);
|
---|
2714 | }
|
---|
2715 | else
|
---|
2716 | {
|
---|
2717 | BvhInterior *interior = dynamic_cast<BvhInterior *>(node);
|
---|
2718 |
|
---|
2719 | node->mRenderCost = GetRenderCostIncrementially(interior->GetFront()) +
|
---|
2720 | GetRenderCostIncrementially(interior->GetBack());
|
---|
2721 | }
|
---|
2722 | }
|
---|
2723 |
|
---|
2724 | return node->mRenderCost;
|
---|
2725 | }
|
---|
2726 |
|
---|
2727 |
|
---|
2728 | void BvHierarchy::Compress()
|
---|
2729 | {
|
---|
2730 | }
|
---|
2731 |
|
---|
2732 |
|
---|
2733 | }
|
---|