#include #include #include #include "BvHierarchy.h" #include "ViewCell.h" #include "Plane3.h" #include "Mesh.h" #include "common.h" #include "Environment.h" #include "Polygon3.h" #include "Ray.h" #include "AxisAlignedBox3.h" #include "Exporter.h" #include "Plane3.h" #include "ViewCellsManager.h" #include "Beam.h" #include "VspTree.h" #include "HierarchyManager.h" namespace GtpVisibilityPreprocessor { #define PROBABILIY_IS_BV_VOLUME 1 #define USE_FIXEDPOINT_T 0 int BvhNode::sMailId = 10000; //2147483647; int BvhNode::sReservedMailboxes = 1; BvHierarchy *BvHierarchy::BvhSubdivisionCandidate::sBvHierarchy = NULL; /// sorting operator inline static bool ilt(Intersectable *obj1, Intersectable *obj2) { return obj1->mId < obj2->mId; } /***************************************************************/ /* class BvhNode implementation */ /***************************************************************/ BvhNode::BvhNode(): mParent(NULL), mMailbox(0) { } BvhNode::BvhNode(const AxisAlignedBox3 &bbox): mParent(NULL), mBoundingBox(bbox), mMailbox(0) { } BvhNode::BvhNode(const AxisAlignedBox3 &bbox, BvhInterior *parent): mBoundingBox(bbox), mParent(parent), mMailbox(0) { } bool BvhNode::IsRoot() const { return mParent == NULL; } BvhInterior *BvhNode::GetParent() { return mParent; } void BvhNode::SetParent(BvhInterior *parent) { mParent = parent; } /******************************************************************/ /* class BvhInterior implementation */ /******************************************************************/ BvhLeaf::BvhLeaf(const AxisAlignedBox3 &bbox): BvhNode(bbox), mSubdivisionCandidate(NULL) { } BvhLeaf::BvhLeaf(const AxisAlignedBox3 &bbox, BvhInterior *parent): BvhNode(bbox, parent) { } BvhLeaf::BvhLeaf(const AxisAlignedBox3 &bbox, BvhInterior *parent, const int numObjects): BvhNode(bbox, parent) { mObjects.reserve(numObjects); } bool BvhLeaf::IsLeaf() const { return true; } BvhLeaf::~BvhLeaf() { } /******************************************************************/ /* class BvhInterior implementation */ /******************************************************************/ BvhInterior::BvhInterior(const AxisAlignedBox3 &bbox): BvhNode(bbox), mFront(NULL), mBack(NULL) { } BvhInterior::BvhInterior(const AxisAlignedBox3 &bbox, BvhInterior *parent): BvhNode(bbox, parent), mFront(NULL), mBack(NULL) { } void BvhInterior::ReplaceChildLink(BvhNode *oldChild, BvhNode *newChild) { if (mBack == oldChild) mBack = newChild; else mFront = newChild; } bool BvhInterior::IsLeaf() const { return false; } BvhInterior::~BvhInterior() { DEL_PTR(mFront); DEL_PTR(mBack); } void BvhInterior::SetupChildLinks(BvhNode *front, BvhNode *back) { mBack = back; mFront = front; } /*******************************************************************/ /* class BvHierarchy implementation */ /*******************************************************************/ BvHierarchy::BvHierarchy(): mRoot(NULL), mTimeStamp(1) { ReadEnvironment(); mSubdivisionCandidates = new SortableEntryContainer; } BvHierarchy::~BvHierarchy() { // delete kd intersectables BvhIntersectableMap::iterator it, it_end = mBvhIntersectables.end(); for (it = mBvhIntersectables.begin(); it != mBvhIntersectables.end(); ++ it) { DEL_PTR((*it).second); } DEL_PTR(mSubdivisionCandidates); mSubdivisionStats.close(); } void BvHierarchy::ReadEnvironment() { bool randomize = false; Environment::GetSingleton()->GetBoolValue("VspTree.Construction.randomize", randomize); if (randomize) Randomize(); // initialise random generator for heuristics ///////////////////////////////////////////////////////////// //-- termination criteria for autopartition Environment::GetSingleton()->GetIntValue("BvHierarchy.Termination.maxDepth", mTermMaxDepth); Environment::GetSingleton()->GetIntValue("BvHierarchy.Termination.maxLeaves", mTermMaxLeaves); Environment::GetSingleton()->GetIntValue("BvHierarchy.Termination.minObjects", mTermMinObjects); Environment::GetSingleton()->GetIntValue("BvHierarchy.Termination.minRays", mTermMinRays); Environment::GetSingleton()->GetFloatValue("BvHierarchy.Termination.minProbability", mTermMinProbability); Environment::GetSingleton()->GetIntValue("BvHierarchy.Termination.missTolerance", mTermMissTolerance); //////////////////////////////////////////////// //-- max cost ratio for early tree termination Environment::GetSingleton()->GetFloatValue("BvHierarchy.Termination.maxCostRatio", mTermMaxCostRatio); Environment::GetSingleton()->GetFloatValue("BvHierarchy.Termination.minGlobalCostRatio", mTermMinGlobalCostRatio); Environment::GetSingleton()->GetIntValue("BvHierarchy.Termination.globalCostMissTolerance", mTermGlobalCostMissTolerance); ///////////////////////////////////////// //-- factors for subdivision heuristics // if only the driving axis is used for splits Environment::GetSingleton()->GetBoolValue("BvHierarchy.splitUseOnlyDrivingAxis", mOnlyDrivingAxis); Environment::GetSingleton()->GetFloatValue("BvHierarchy.maxStaticMemory", mMaxMemory); Environment::GetSingleton()->GetBoolValue("BvHierarchy.useCostHeuristics", mUseCostHeuristics); char subdivisionStatsLog[100]; Environment::GetSingleton()->GetStringValue("BvHierarchy.subdivisionStats", subdivisionStatsLog); mSubdivisionStats.open(subdivisionStatsLog); Environment::GetSingleton()->GetFloatValue( "BvHierarchy.Construction.renderCostDecreaseWeight", mRenderCostDecreaseWeight); Environment::GetSingleton()->GetBoolValue("BvHierarchy.Construction.useGlobalSorting", mUseGlobalSorting); ///////////////////////////////// //-- debug output Debug << "******* Bvh hierarchy options ******** " << endl; Debug << "max depth: " << mTermMaxDepth << endl; Debug << "min probabiliy: " << mTermMinProbability<< endl; Debug << "min objects: " << mTermMinObjects << endl; Debug << "max cost ratio: " << mTermMaxCostRatio << endl; Debug << "miss tolerance: " << mTermMissTolerance << endl; Debug << "max leaves: " << mTermMaxLeaves << endl; Debug << "randomize: " << randomize << endl; Debug << "min global cost ratio: " << mTermMinGlobalCostRatio << endl; Debug << "global cost miss tolerance: " << mTermGlobalCostMissTolerance << endl; Debug << "only driving axis: " << mOnlyDrivingAxis << endl; Debug << "max memory: " << mMaxMemory << endl; Debug << "use cost heuristics: " << mUseCostHeuristics << endl; Debug << "subdivision stats log: " << subdivisionStatsLog << endl; Debug << "split borders: " << mSplitBorder << endl; Debug << "render cost decrease weight: " << mRenderCostDecreaseWeight << endl; Debug << "use global sort: " << mUseGlobalSorting << endl; Debug << endl; } static void AssociateObjectsWithLeaf(BvhLeaf *leaf) { ObjectContainer::const_iterator oit, oit_end = leaf->mObjects.end(); for (oit = leaf->mObjects.begin(); oit != oit_end; ++ oit) { (*oit)->mBvhLeaf = leaf; } } static int CountRays(const ObjectContainer &objects) { int nRays = 0; ObjectContainer::const_iterator oit, oit_end = objects.end(); for (oit = objects.begin(); oit != oit_end; ++ oit) { nRays += (int)(*oit)->mVssRays.size(); } return nRays; } BvhInterior *BvHierarchy::SubdivideNode(const BvhSubdivisionCandidate &sc, BvhTraversalData &frontData, BvhTraversalData &backData) { const BvhTraversalData &tData = sc.mParentData; BvhLeaf *leaf = tData.mNode; AxisAlignedBox3 parentBox = leaf->GetBoundingBox(); // update stats mBvhStats.nodes += 2; // we have two new leaves if (tData.mDepth > mBvhStats.maxDepth) { mBvhStats.maxDepth = tData.mDepth; } // add the new nodes to the tree BvhInterior *node = new BvhInterior(parentBox, leaf->GetParent()); //////////////////////////////// //-- create front and back leaf AxisAlignedBox3 fbox = ComputeBoundingBox(sc.mFrontObjects, &parentBox); AxisAlignedBox3 bbox = ComputeBoundingBox(sc.mBackObjects, &parentBox); BvhLeaf *back = new BvhLeaf(bbox, node, (int)sc.mBackObjects.size()); BvhLeaf *front = new BvhLeaf(fbox, node, (int)sc.mFrontObjects.size()); BvhInterior *parent = leaf->GetParent(); // replace a link from node's parent if (parent) { parent->ReplaceChildLink(leaf, node); node->SetParent(parent); } else // no parent => this node is the root { mRoot = node; } // and setup child links node->SetupChildLinks(front, back); ++ mBvhStats.splits; /////////////////////////////////////////////////////////////////// //-- fill front and back traversal data with the new values frontData.mDepth = backData.mDepth = tData.mDepth + 1; frontData.mNode = front; backData.mNode = back; back->mObjects = sc.mBackObjects; front->mObjects = sc.mFrontObjects; // if the number of rays is too low, no assumptions can be made // (=> switch to surface area heuristics?) frontData.mNumRays = CountRays(sc.mFrontObjects); backData.mNumRays = CountRays(sc.mBackObjects); AssociateObjectsWithLeaf(back); AssociateObjectsWithLeaf(front); #if PROBABILIY_IS_BV_VOLUME // volume of bvh (= probability that this bvh can be seen) frontData.mProbability = fbox.GetVolume(); backData.mProbability = bbox.GetVolume(); #else // compute probability of this node being visible, // i.e., volume of the view cells that can see this node frontData.mProbability = EvalViewCellsVolume(sc.mFrontObjects); backData.mProbability = EvalViewCellsVolume(sc.mBackObjects); #endif // how often was max cost ratio missed in this branch? frontData.mMaxCostMisses = sc.mMaxCostMisses; backData.mMaxCostMisses = sc.mMaxCostMisses; // assign the objects in sorted order if (mUseGlobalSorting) { AssignSortedObjects(sc, frontData, backData); } // return the new interior node return node; } BvhNode *BvHierarchy::Subdivide(SplitQueue &tQueue, SubdivisionCandidate *splitCandidate, const bool globalCriteriaMet) { BvhSubdivisionCandidate *sc = dynamic_cast(splitCandidate); BvhTraversalData &tData = sc->mParentData; BvhNode *currentNode = tData.mNode; if (!LocalTerminationCriteriaMet(tData) && !globalCriteriaMet) { ////////////////////////////////////////// //-- continue subdivision BvhTraversalData tFrontData; BvhTraversalData tBackData; // create new interior node and two leaf node currentNode = SubdivideNode( *sc, tFrontData, tBackData); // decrease the weighted average cost of the subdivisoin mTotalCost -= sc->GetRenderCostDecrease(); // subdivision statistics if (1) PrintSubdivisionStats(*sc); ///////////////////////////////////////// //-- push the new split candidates on the queue BvhSubdivisionCandidate *frontCandidate = new BvhSubdivisionCandidate(tFrontData); BvhSubdivisionCandidate *backCandidate = new BvhSubdivisionCandidate(tBackData); EvalSubdivisionCandidate(*frontCandidate); EvalSubdivisionCandidate(*backCandidate); // cross reference tFrontData.mNode->SetSubdivisionCandidate(frontCandidate); tBackData.mNode->SetSubdivisionCandidate(backCandidate); tQueue.Push(frontCandidate); tQueue.Push(backCandidate); } ///////////////////////////////// //-- node is a leaf => terminate traversal if (currentNode->IsLeaf()) { ////////////////////////////////////// //-- store additional info EvaluateLeafStats(tData); const bool mStoreRays = true; if (mStoreRays) { BvhLeaf *leaf = dynamic_cast(currentNode); CollectRays(leaf->mObjects, leaf->mVssRays); } ////////////////////////////////////// // this leaf is no candidate for splitting anymore // => detach subdivision candidate tData.mNode->SetSubdivisionCandidate(NULL); // detach node so we don't delete it with the traversal data tData.mNode = NULL; } return currentNode; } void BvHierarchy::EvalSubdivisionCandidate(BvhSubdivisionCandidate &splitCandidate) { // compute best object partition const float ratio = SelectObjectPartition( splitCandidate.mParentData, splitCandidate.mFrontObjects, splitCandidate.mBackObjects); BvhLeaf *leaf = splitCandidate.mParentData.mNode; // cost ratio violated? const bool maxCostRatioViolated = mTermMaxCostRatio < ratio; splitCandidate.mMaxCostMisses = maxCostRatioViolated ? splitCandidate.mParentData.mMaxCostMisses + 1 : splitCandidate.mParentData.mMaxCostMisses; const float oldProp = EvalViewCellsVolume(leaf->mObjects); const float oldRenderCost = EvalRenderCost(leaf->mObjects); // compute global decrease in render cost const float newRenderCost = EvalRenderCost(splitCandidate.mFrontObjects) + EvalRenderCost(splitCandidate.mBackObjects); const float renderCostDecr = oldRenderCost - newRenderCost; #ifdef _DEBUG Debug << "old render cost: " << oldRenderCost << endl; Debug << "new render cost: " << newRenderCost << endl; Debug << "render cost decrease: " << renderCostDecr << endl; #endif splitCandidate.SetRenderCostDecrease(renderCostDecr); #if 1 // take render cost of node into account // otherwise danger of being stuck in a local minimum!! const float factor = mRenderCostDecreaseWeight; const float priority = factor * renderCostDecr + (1.0f - factor) * oldRenderCost; #else const float priority = (float)-splitCandidate.mParentData.mDepth; #endif // compute global decrease in render cost splitCandidate.SetPriority(priority); } inline bool BvHierarchy::LocalTerminationCriteriaMet(const BvhTraversalData &data) const { // matt: TODO return ( 0 || ((int)data.mNode->mObjects.size() < mTermMinObjects) || (data.mProbability <= mTermMinProbability) || (data.mDepth >= mTermMaxDepth) || (data.mNumRays <= mTermMinRays) ); } inline bool BvHierarchy::GlobalTerminationCriteriaMet(const BvhTraversalData &data) const { // matt: TODO return (0 || (mBvhStats.Leaves() >= mTermMaxLeaves) || (mGlobalCostMisses >= mTermGlobalCostMissTolerance) //|| mOutOfMemory ); } void BvHierarchy::EvaluateLeafStats(const BvhTraversalData &data) { // the node became a leaf -> evaluate stats for leafs BvhLeaf *leaf = data.mNode; ++ mCreatedLeaves; if (data.mProbability <= mTermMinProbability) { ++ mBvhStats.minProbabilityNodes; } //////////////////////////////////////////// // depth related stuff if (data.mDepth < mBvhStats.minDepth) { mBvhStats.minDepth = data.mDepth; } if (data.mDepth >= mTermMaxDepth) { ++ mBvhStats.maxDepthNodes; } // accumulate depth to compute average depth mBvhStats.accumDepth += data.mDepth; //////////////////////////////////////////// // objects related stuff // note: this number should always accumulate to the total number of objects mBvhStats.objectRefs += (int)leaf->mObjects.size(); if ((int)leaf->mObjects.size() <= mTermMinObjects) { ++ mBvhStats.minObjectsNodes; } if ((int)leaf->mObjects.size() > mBvhStats.maxObjectRefs) { mBvhStats.maxObjectRefs = (int)leaf->mObjects.size(); } if ((int)leaf->mObjects.size() < mBvhStats.minObjectRefs) { mBvhStats.minObjectRefs = (int)leaf->mObjects.size(); } //////////////////////////////////////////// // ray related stuff // note: this number should always accumulate to the total number of rays mBvhStats.rayRefs += data.mNumRays; if (data.mNumRays <= mTermMinRays) { ++ mBvhStats.minRaysNodes; } if (data.mNumRays > mBvhStats.maxRayRefs) { mBvhStats.maxRayRefs = data.mNumRays; } if (data.mNumRays < mBvhStats.minRayRefs) { mBvhStats.minRayRefs = data.mNumRays; } cout << "depth: " << data.mDepth << " objects: " << (int)leaf->mObjects.size() << " rays: " << data.mNumRays << " rays / objects " << (float)data.mNumRays / (float)leaf->mObjects.size() << endl; } #if 0 /// compute object boundaries using spatial mid split float BvHierarchy::EvalLocalObjectPartition(const BvhTraversalData &tData, const int axis, ObjectContainer &objectsFront, ObjectContainer &objectsBack) { const float maxBox = tData.mBoundingBox.Max(axis); const float minBox = tData.mBoundingBox.Min(axis); float midPoint = (maxBox + minBox) * 0.5f; ObjectContainer::const_iterator oit, oit_end = tData.mNode->mObjects.end(); for (oit = tData.mNode->mObjects.begin(); oit != oit_end; ++ oit) { Intersectable *obj = *oit; const AxisAlignedBox3 box = obj->GetBox(); const float objMid = (box.Max(axis) + box.Min(axis)) * 0.5f; // object mailed => belongs to back objects if (objMid < midPoint) { objectsBack.push_back(obj); } else { objectsFront.push_back(obj); } } const float oldRenderCost = EvalRenderCost(tData.mNode->mObjects); const float newRenderCost = EvalRenderCost(objectsFront) * EvalRenderCost(objectsBack); const float ratio = newRenderCost / oldRenderCost; return ratio; } #else /// compute object partition by getting balanced objects on the left and right side float BvHierarchy::EvalLocalObjectPartition(const BvhTraversalData &tData, const int axis, ObjectContainer &objectsFront, ObjectContainer &objectsBack) { PrepareLocalSubdivisionCandidates(tData, axis); SortableEntryContainer::const_iterator cit, cit_end = mSubdivisionCandidates->end(); int i = 0; const int border = (int)tData.mNode->mObjects.size() / 2; for (cit = mSubdivisionCandidates->begin(); cit != cit_end; ++ cit, ++ i) { Intersectable *obj = (*cit).mObject; // object mailed => belongs to back objects if (i < border) { objectsBack.push_back(obj); } else { objectsFront.push_back(obj); } } const float oldRenderCost = EvalRenderCost(tData.mNode->mObjects); const float newRenderCost = EvalRenderCost(objectsFront) + EvalRenderCost(objectsBack); const float ratio = newRenderCost / oldRenderCost; return ratio; } #endif float BvHierarchy::EvalSah(const BvhTraversalData &tData, const int axis, ObjectContainer &objectsFront, ObjectContainer &objectsBack) { // go through the lists, count the number of objects left and right // and evaluate the following cost funcion: // C = ct_div_ci + (ol + or)/queries PrepareLocalSubdivisionCandidates(tData, axis); int objectsLeft = 0, objectsRight = (int)tData.mNode->mObjects.size(); AxisAlignedBox3 box = tData.mNode->GetBoundingBox(); float minBox = box.Min(axis); float maxBox = box.Max(axis); float boxArea = box.SurfaceArea(); float minSum = 1e20f; float minBorder = maxBox; float maxBorder = minBox; float areaLeft = 0, areaRight = 0; SortableEntryContainer::const_iterator currentPos = mSubdivisionCandidates->begin(); // we keep track of both borders of the bounding boxes => // store the events in descending order vector bordersRight; bordersRight.resize(mSubdivisionCandidates->size()); SortableEntryContainer::reverse_iterator rcit = mSubdivisionCandidates->rbegin(), rcit_end = mSubdivisionCandidates->rend(); vector::reverse_iterator rbit = bordersRight.rbegin(); for (; rcit != rcit_end; ++ rcit, ++ rbit) { Intersectable *obj = (*rcit).mObject; const AxisAlignedBox3 box = obj->GetBox(); if (box.Min(axis) < minBorder) { minBorder = box.Min(axis); } (*rbit) = minBorder; } vector::const_iterator bit = bordersRight.begin(); SortableEntryContainer::const_iterator cit, cit_end = mSubdivisionCandidates->end(); for (cit = mSubdivisionCandidates->begin(); cit != cit_end; ++ cit, ++ bit) { Intersectable *obj = (*cit).mObject; ++ objectsLeft; -- objectsRight; AxisAlignedBox3 lbox = box; AxisAlignedBox3 rbox = box; const AxisAlignedBox3 obox = obj->GetBox(); // the borders of the bounding boxes have changed if (obox.Max(axis) > maxBorder) { maxBorder = obox.Max(axis); } minBorder = (*bit); lbox.SetMax(axis, maxBorder); rbox.SetMin(axis, minBorder); const float al = lbox.SurfaceArea(); const float ar = rbox.SurfaceArea(); const float sum = objectsLeft * al + objectsRight * ar; /*cout << "pos=" << (*cit).mPos << "\t q=(" << objectsLeft << "," << objectsRight <<")\t r=(" << lbox.SurfaceArea() << "," << rbox.SurfaceArea() << ")" << endl; cout << "minborder: " << minBorder << " maxborder: " << maxBorder << endl; cout << "cost= " << sum << endl; */ if (sum < minSum) { minSum = sum; areaLeft = al; areaRight = ar; // objects belong to left side now for (; currentPos != (cit + 1); ++ currentPos); } } //////////////////////////////////////////// //-- assign object to front and back volume // belongs to back bv for (cit = mSubdivisionCandidates->begin(); cit != currentPos; ++ cit) objectsBack.push_back((*cit).mObject); // belongs to front bv for (cit = currentPos; cit != cit_end; ++ cit) objectsFront.push_back((*cit).mObject); float oldCost = (float)tData.mNode->mObjects.size(); float newCost = minSum / boxArea; float ratio = newCost / oldCost; #ifdef _DEBUG cout << "\n\nobjects=(" << objectsBack.size() << "," << objectsFront.size() << " of " << tData.mNode->mObjects.size() << ")\t area=(" << areaLeft << "," << areaRight << ")" << endl; cout << "cost= " << minSum << endl; #endif return ratio; } static bool PrepareOutput(const int axis, const int leaves, ofstream &sumStats, ofstream &vollStats, ofstream &volrStats) { if ((axis == 0) && (leaves > 0) && (leaves < 90)) { char str[64]; sprintf(str, "tmp/bvh_heur_sum-%04d.log", leaves); sumStats.open(str); sprintf(str, "tmp/bvh_heur_voll-%04d.log", leaves); vollStats.open(str); sprintf(str, "tmp/bvh_heur_volr-%04d.log", leaves); volrStats.open(str); } return sumStats.is_open() && vollStats.is_open() && volrStats.is_open(); } static void PrintHeuristics(const int objectsRight, const float sum, const float volLeft, const float volRight, const float viewSpaceVol, ofstream &sumStats, ofstream &vollStats, ofstream &volrStats) { sumStats << "#Position\n" << objectsRight << endl << "#Sum\n" << sum / viewSpaceVol << endl << "#Vol\n" << (volLeft + volRight) / viewSpaceVol << endl; vollStats << "#Position\n" << objectsRight << endl << "#Vol\n" << volLeft / viewSpaceVol << endl; volrStats << "#Position\n" << objectsRight << endl << "#Vol\n" << volRight / viewSpaceVol << endl; } float BvHierarchy::EvalLocalCostHeuristics(const BvhTraversalData &tData, const int axis, ObjectContainer &objectsFront, ObjectContainer &objectsBack) { //////////////////////////////////////////////////////////////// // go through the lists, count the number of objects left and right // and evaluate the cost funcion // prepare the heuristics by setting mailboxes and counters. const float totalVol = PrepareHeuristics(tData, axis); // local helper variables float volLeft = 0; float volRight = totalVol; int nObjectsLeft = 0; const int nTotalObjects = (int)tData.mNode->mObjects.size(); const float viewSpaceVol = mHierarchyManager->GetViewSpaceBox().GetVolume(); SortableEntryContainer::const_iterator backObjectsStart = mSubdivisionCandidates->begin(); ///////////////////////////////// //-- the parameters for the current optimum float volBack = volLeft; float volFront = volRight; float newRenderCost = nTotalObjects * totalVol; #ifdef _DEBUG ofstream sumStats; ofstream vollStats; ofstream volrStats; const bool printStats = PrepareOutput(axis, mBvhStats.Leaves(), sumStats, vollStats, volrStats); #endif /////////////////////////////////////////////////// //-- the sweep heuristics //-- traverse through events and find best split plane SortableEntryContainer::const_iterator cit, cit_end = cit_end = mSubdivisionCandidates->end(); for (cit = mSubdivisionCandidates->begin(); cit != cit_end; ++ cit) { Intersectable *object = (*cit).mObject; // evaluate change in l and r volume // voll = view cells that see only left node (i.e., left pvs) // volr = view cells that see only right node (i.e., right pvs) EvalHeuristicsContribution(object, volLeft, volRight); ++ nObjectsLeft; const int nObjectsRight = nTotalObjects - nObjectsLeft; // the heuristics const float sum = volLeft * (float)nObjectsLeft + volRight * (float)nObjectsRight; #ifdef _DEBUG if (printStats) { PrintHeuristics(nObjectsRight, sum, volLeft, volRight, viewSpaceVol, sumStats, vollStats, volrStats); } #endif if (sum < newRenderCost) { newRenderCost = sum; volBack = volLeft; volFront = volRight; // objects belongs to left side now for (; backObjectsStart != (cit + 1); ++ backObjectsStart); } } //////////////////////////////////////////// //-- assign object to front and back volume // belongs to back bv for (cit = mSubdivisionCandidates->begin(); cit != backObjectsStart; ++ cit) { objectsBack.push_back((*cit).mObject); } // belongs to front bv for (cit = backObjectsStart; cit != cit_end; ++ cit) { objectsFront.push_back((*cit).mObject); } // render cost of the old parent const float oldRenderCost = (float)nTotalObjects * totalVol + Limits::Small; // the relative cost ratio const float ratio = newRenderCost / oldRenderCost; #ifdef _DEBUG Debug << "\n§§§§ eval local cost §§§§" << endl << "back pvs: " << (int)objectsBack.size() << " front pvs: " << (int)objectsFront.size() << " total pvs: " << nTotalObjects << endl << "back p: " << volBack / viewSpaceVol << " front p " << volFront / viewSpaceVol << " p: " << totalVol / viewSpaceVol << endl << "old rc: " << oldRenderCost / viewSpaceVol << " new rc: " << newRenderCost / viewSpaceVol << endl << "render cost decrease: " << oldRenderCost / viewSpaceVol - newRenderCost / viewSpaceVol << endl; #endif return ratio; } void BvHierarchy::PrepareLocalSubdivisionCandidates(const BvhTraversalData &tData, const int axis) { //-- insert object queries ObjectContainer *objects = mUseGlobalSorting ? tData.mSortedObjects[axis] : &tData.mNode->mObjects; CreateLocalSubdivisionCandidates(*objects, &mSubdivisionCandidates, !mUseGlobalSorting, axis); } void BvHierarchy::CreateLocalSubdivisionCandidates(const ObjectContainer &objects, SortableEntryContainer **subdivisionCandidates, const bool sort, const int axis) { (*subdivisionCandidates)->clear(); // compute requested size and look if subdivision candidate has to be recomputed const int requestedSize = (int)objects.size() * 2; // creates a sorted split candidates array if ((*subdivisionCandidates)->capacity() > 500000 && requestedSize < (int)((*subdivisionCandidates)->capacity() / 10) ) { delete (*subdivisionCandidates); (*subdivisionCandidates) = new SortableEntryContainer; } (*subdivisionCandidates)->reserve(requestedSize); ObjectContainer::const_iterator oit, oit_end = objects.end(); for (oit = objects.begin(); oit < oit_end; ++ oit) { Intersectable *object = *oit; const AxisAlignedBox3 &box = object->GetBox(); const float midPt = (box.Min(axis) + box.Max(axis)) * 0.5f; (*subdivisionCandidates)->push_back(SortableEntry(object, midPt)); } if (sort) { stable_sort((*subdivisionCandidates)->begin(), (*subdivisionCandidates)->end()); } } const BvhStatistics &BvHierarchy::GetStatistics() const { return mBvhStats; } float BvHierarchy::PrepareHeuristics(const BvhTraversalData &tData, const int axis) { BvhLeaf *leaf = tData.mNode; float vol = 0; // sort so we can use a sweep from right to left PrepareLocalSubdivisionCandidates(tData, axis); // collect and mark the view cells as belonging to front pvs ViewCellContainer viewCells; CollectViewCells(tData.mNode->mObjects, viewCells, true); ViewCellContainer::const_iterator vit, vit_end = viewCells.end(); for (vit = viewCells.begin(); vit != vit_end; ++ vit) { vol += (*vit)->GetVolume(); } // we will mail view cells switching to the back side ViewCell::NewMail(); return vol; } /////////////////////////////////////////////////////////// void BvHierarchy::EvalHeuristicsContribution(Intersectable *obj, float &volLeft, float &volRight) { // collect all view cells associated with this objects // (also multiple times, if they are pierced by several rays) ViewCellContainer viewCells; const bool useMailboxing = false; CollectViewCells(obj, viewCells, useMailboxing); // classify view cells and compute volume contri accordingly // possible view cell classifications: // view cell mailed => view cell can be seen from left child node // view cell counter > 0 view cell can be seen from right child node // combined: view cell volume belongs to both nodes ViewCellContainer::const_iterator vit, vit_end = viewCells.end(); for (vit = viewCells.begin(); vit != vit_end; ++ vit) { // view cells can also be seen from left child node ViewCell *viewCell = *vit; const float vol = viewCell->GetVolume(); if (!viewCell->Mailed()) { viewCell->Mail(); // we now see view cell from both nodes // => add volume to left node volLeft += vol; } // last reference into the right node if (-- viewCell->mCounter == 0) { // view cell was previously seen from both nodes => // remove volume from right node volRight -= vol; } } } void BvHierarchy::SetViewCellsManager(ViewCellsManager *vcm) { mViewCellsManager = vcm; } AxisAlignedBox3 BvHierarchy::GetBoundingBox() const { return mBoundingBox; } float BvHierarchy::SelectObjectPartition(const BvhTraversalData &tData, ObjectContainer &frontObjects, ObjectContainer &backObjects) { ObjectContainer nFrontObjects[3]; ObjectContainer nBackObjects[3]; float nCostRatio[3]; int sAxis = 0; int bestAxis = -1; if (mOnlyDrivingAxis) { const AxisAlignedBox3 box = tData.mNode->GetBoundingBox(); sAxis = box.Size().DrivingAxis(); } //////////////////////////////////////////// //-- evaluate split cost for all three axis for (int axis = 0; axis < 3; ++ axis) { if (!mOnlyDrivingAxis || (axis == sAxis)) { if (mUseCostHeuristics) { ////////////////////////////////// //-- split objects using heuristics if (mHierarchyManager->GetViewSpaceSubdivisionType() == HierarchyManager::KD_BASED_VIEWSPACE_SUBDIV) { //-- heuristics using objects weighted by view cells volume nCostRatio[axis] = EvalLocalCostHeuristics( tData, axis, nFrontObjects[axis], nBackObjects[axis]); } else { //-- use surface area heuristic because view cells not constructed yet nCostRatio[axis] = EvalSah( tData, axis, nFrontObjects[axis], nBackObjects[axis]); } } else { //-- split objects using some simple criteria nCostRatio[axis] = EvalLocalObjectPartition( tData, axis, nFrontObjects[axis], nBackObjects[axis]); } if (bestAxis == -1) { bestAxis = axis; } else if (nCostRatio[axis] < nCostRatio[bestAxis]) { bestAxis = axis; } } } ///////////////////////////////////// //-- assign values frontObjects = nFrontObjects[bestAxis]; backObjects = nBackObjects[bestAxis]; //Debug << "val: " << nCostRatio[bestAxis] << " axis: " << bestAxis << endl; return nCostRatio[bestAxis]; } int BvHierarchy::AssociateObjectsWithRays(const VssRayContainer &rays) const { int nRays = 0; VssRayContainer::const_iterator rit, rit_end = rays.end(); VssRay::NewMail(); for (rit = rays.begin(); rit != rays.end(); ++ rit) { VssRay *ray = (*rit); if (ray->mTerminationObject) { ray->mTerminationObject->mVssRays.push_back(ray); if (!ray->Mailed()) { ray->Mail(); ++ nRays; } } if (1 && ray->mOriginObject) { ray->mOriginObject->mVssRays.push_back(ray); if (!ray->Mailed()) { ray->Mail(); ++ nRays; } } } return nRays; } void BvHierarchy::PrintSubdivisionStats(const SubdivisionCandidate &sc) { const float costDecr = sc.GetRenderCostDecrease(); mSubdivisionStats << "#Leaves\n" << mBvhStats.Leaves() << "#RenderCostDecrease\n" << costDecr << endl << "#TotalRenderCost\n" << mTotalCost << endl; //<< "#AvgRenderCost\n" << avgRenderCost << endl; } void BvHierarchy::CollectRays(const ObjectContainer &objects, VssRayContainer &rays) const { VssRay::NewMail(); ObjectContainer::const_iterator oit, oit_end = objects.end(); // evaluate reverse pvs and view cell volume on left and right cell // note: should I take all leaf objects or rather the objects hit by rays? for (oit = objects.begin(); oit != oit_end; ++ oit) { Intersectable *obj = *oit; VssRayContainer::const_iterator rit, rit_end = obj->mVssRays.end(); for (rit = obj->mVssRays.begin(); rit < rit_end; ++ rit) { VssRay *ray = (*rit); if (!ray->Mailed()) { ray->Mail(); rays.push_back(ray); } } } } float BvHierarchy::EvalRenderCost(const ObjectContainer &objects) const { if (mHierarchyManager->GetViewSpaceSubdivisionType() == HierarchyManager::NO_VIEWSPACE_SUBDIV) { if (objects.empty()) return 0.0f; ///////////////////////////// //-- surface area heuristics const AxisAlignedBox3 box = ComputeBoundingBox(objects); const float area = box.SurfaceArea(); return (float)objects.size() * area; } else { ///////////////////////////// //-- render cost heuristics const float viewSpaceVol = mHierarchyManager->GetViewSpaceBox().GetVolume(); // probability that view point lies in a view cell which sees this node const float p = EvalViewCellsVolume(objects) / viewSpaceVol; return (float)objects.size() * p; } } AxisAlignedBox3 BvHierarchy::ComputeBoundingBox(const ObjectContainer &objects, const AxisAlignedBox3 *parentBox) const { if (parentBox && objects.empty()) return *parentBox; AxisAlignedBox3 box; box.Initialize(); ObjectContainer::const_iterator oit, oit_end = objects.end(); for (oit = objects.begin(); oit != oit_end; ++ oit) { Intersectable *obj = *oit; // grow bounding box to include all objects box.Include(obj->GetBox()); } return box; } void BvHierarchy::CollectLeaves(vector &leaves) const { stack nodeStack; nodeStack.push(mRoot); while (!nodeStack.empty()) { BvhNode *node = nodeStack.top(); nodeStack.pop(); if (node->IsLeaf()) { BvhLeaf *leaf = (BvhLeaf *)node; leaves.push_back(leaf); } else { BvhInterior *interior = (BvhInterior *)node; nodeStack.push(interior->GetBack()); nodeStack.push(interior->GetFront()); } } } AxisAlignedBox3 BvHierarchy::GetBoundingBox(BvhNode *node) const { return node->GetBoundingBox(); } void BvHierarchy::CollectViewCells(const ObjectContainer &objects, ViewCellContainer &viewCells, const bool setCounter) const { // no view cells yet if (mHierarchyManager->GetViewSpaceSubdivisionType() == HierarchyManager::NO_VIEWSPACE_SUBDIV) return; ViewCell::NewMail(); ObjectContainer::const_iterator oit, oit_end = objects.end(); // loop through all object and collect view cell pvs of this node for (oit = objects.begin(); oit != oit_end; ++ oit) { CollectViewCells(*oit, viewCells, true, setCounter); } } void BvHierarchy::CollectViewCells(Intersectable *obj, ViewCellContainer &viewCells, const bool useMailBoxing, const bool setCounter) const { VssRayContainer::const_iterator rit, rit_end = obj->mVssRays.end(); for (rit = obj->mVssRays.begin(); rit < rit_end; ++ rit) { VssRay *ray = (*rit); ViewCellContainer tmpViewCells; mHierarchyManager->mVspTree->GetViewCells(*ray, tmpViewCells); ViewCellContainer::const_iterator vit, vit_end = tmpViewCells.end(); for (vit = tmpViewCells.begin(); vit != vit_end; ++ vit) { VspViewCell *vc = dynamic_cast(*vit); // store view cells if (!useMailBoxing || !vc->Mailed()) { if (useMailBoxing) { vc->Mail(); if (setCounter) { vc->mCounter = 0; } } viewCells.push_back(vc); } if (setCounter) { ++ vc->mCounter; } } } } void BvHierarchy::CollectDirtyCandidates(BvhSubdivisionCandidate *sc, vector &dirtyList) { BvhTraversalData &tData = sc->mParentData; BvhLeaf *node = tData.mNode; ViewCellContainer viewCells; CollectViewCells(node->mObjects, viewCells); // split candidates handling // these view cells are thrown into dirty list ViewCellContainer::const_iterator vit, vit_end = viewCells.end(); Debug << "collecting " << (int)viewCells.size() << " dirty candidates" << endl; for (vit = viewCells.begin(); vit != vit_end; ++ vit) { VspViewCell *vc = dynamic_cast(*vit); VspLeaf *leaf = vc->mLeaf; SubdivisionCandidate *candidate = leaf->GetSubdivisionCandidate(); if (candidate) // is this leaf still a split candidate? { dirtyList.push_back(candidate); } } } BvhNode *BvHierarchy::GetRoot() const { return mRoot; } bool BvHierarchy::IsObjectInLeaf(BvhLeaf *leaf, Intersectable *object) const { ObjectContainer::const_iterator oit = lower_bound(leaf->mObjects.begin(), leaf->mObjects.end(), object, ilt); // objects sorted by id if ((oit != leaf->mObjects.end()) && ((*oit)->GetId() == object->GetId())) { return true; } else { return false; } } BvhLeaf *BvHierarchy::GetLeaf(Intersectable *object, BvhNode *node) const { // rather use the simple version if (!object) return NULL; return object->mBvhLeaf; /////////////////////////////////////// // start from root of tree if (node == NULL) node = mRoot; vector leaves; stack nodeStack; nodeStack.push(node); BvhLeaf *leaf = NULL; while (!nodeStack.empty()) { BvhNode *node = nodeStack.top(); nodeStack.pop(); if (node->IsLeaf()) { leaf = dynamic_cast(node); if (IsObjectInLeaf(leaf, object)) { return leaf; } } else { // find point BvhInterior *interior = dynamic_cast(node); if (interior->GetBack()->GetBoundingBox().Includes(object->GetBox())) { nodeStack.push(interior->GetBack()); } // search both sides as we are using bounding volumes if (interior->GetFront()->GetBoundingBox().Includes(object->GetBox())) { nodeStack.push(interior->GetFront()); } } } return leaf; } BvhIntersectable *BvHierarchy::GetOrCreateBvhIntersectable(BvhNode *node) { // search nodes std::map:: const_iterator it = mBvhIntersectables.find(node); if (it != mBvhIntersectables.end()) { return (*it).second; } // not in map => create new entry BvhIntersectable *bvhObj = new BvhIntersectable(node); mBvhIntersectables[node] = bvhObj; return bvhObj; } bool BvHierarchy::Export(OUT_STREAM &stream) { ExportNode(mRoot, stream); return true; } void BvHierarchy::ExportObjects(BvhLeaf *leaf, OUT_STREAM &stream) { ObjectContainer::const_iterator oit, oit_end = leaf->mObjects.end(); for (oit = leaf->mObjects.begin(); oit != oit_end; ++ oit) { stream << (*oit)->GetId() << " "; } } void BvHierarchy::ExportNode(BvhNode *node, OUT_STREAM &stream) { if (node->IsLeaf()) { BvhLeaf *leaf = dynamic_cast(node); const AxisAlignedBox3 box = leaf->GetBoundingBox(); stream << "" << endl; } else { BvhInterior *interior = dynamic_cast(node); const AxisAlignedBox3 box = interior->GetBoundingBox(); stream << "" << endl; ExportNode(interior->GetBack(), stream); ExportNode(interior->GetFront(), stream); stream << "" << endl; } } float BvHierarchy::EvalViewCellsVolume(const ObjectContainer &objects) const { float vol = 0; ViewCellContainer viewCells; CollectViewCells(objects, viewCells); ViewCellContainer::const_iterator vit, vit_end = viewCells.end(); for (vit = viewCells.begin(); vit != vit_end; ++ vit) { vol += (*vit)->GetVolume(); } return vol; } void BvHierarchy::CreateRoot(const ObjectContainer &objects) { //-- create new root AxisAlignedBox3 box = ComputeBoundingBox(objects); BvhLeaf *bvhleaf = new BvhLeaf(box, NULL, (int)objects.size()); bvhleaf->mObjects = objects; mRoot = bvhleaf; // associate root with current objects AssociateObjectsWithLeaf(bvhleaf); } SubdivisionCandidate *BvHierarchy::PrepareConstruction(const VssRayContainer &sampleRays, const ObjectContainer &objects) { /////////////////////////////////////////////////////////////// // note matt: we assume that we have objects sorted by their id mBvhStats.Reset(); mBvhStats.Start(); mBvhStats.nodes = 1; // store pointer to this tree BvhSubdivisionCandidate::sBvHierarchy = this; mBvhStats.nodes = 1; mGlobalCostMisses = 0; // compute bounding box from objects // note: we assume that root was already created mBoundingBox = mRoot->GetBoundingBox(); BvhLeaf *bvhleaf = dynamic_cast(mRoot); // multiply termination criterium for comparison, // so it can be set between zero and one and // no division is necessary during traversal #if PROBABILIY_IS_BV_VOLUME mTermMinProbability *= mBoundingBox.GetVolume(); // probability that bounding volume is seen const float prop = GetBoundingBox().GetVolume(); #else mTermMinProbability *= mVspTree->GetBoundingBox().GetVolume(); // probability that volume is "seen" from the view cells const float prop = EvalViewCellsVolume(objects); #endif // only rays intersecting objects in node are interesting const int nRays = AssociateObjectsWithRays(sampleRays); //Debug << "using " << nRays << " of " << (int)sampleRays.size() << " rays" << endl; // create bvh traversal data BvhTraversalData oData(bvhleaf, 0, prop, nRays); // create sorted object lists for the first data if (mUseGlobalSorting) { CreateInitialSortedObjectList(oData); } //////////////////////////////////////////////////// //-- add first candidate for object space partition BvhSubdivisionCandidate *oSubdivisionCandidate = new BvhSubdivisionCandidate(oData); EvalSubdivisionCandidate(*oSubdivisionCandidate); bvhleaf->SetSubdivisionCandidate(oSubdivisionCandidate); const float viewSpaceVol = mHierarchyManager->GetViewSpaceBox().GetVolume(); mTotalCost = (float)objects.size() * prop / viewSpaceVol; PrintSubdivisionStats(*oSubdivisionCandidate); return oSubdivisionCandidate; } void BvHierarchy::CreateInitialSortedObjectList(BvhTraversalData &tData) { SortableEntryContainer *sortedObjects = new SortableEntryContainer(); // we sort the objects as a preprocess so they don't have // to be sorted for each split for (int i = 0; i < 3; ++ i) { CreateLocalSubdivisionCandidates(tData.mNode->mObjects, &sortedObjects, true, i); tData.mSortedObjects[i] = new ObjectContainer(); tData.mSortedObjects[i]->reserve((int)sortedObjects->size()); SortableEntryContainer::const_iterator oit, oit_end = sortedObjects->end(); for (oit = sortedObjects->begin(); oit != oit_end; ++ oit) { tData.mSortedObjects[i]->push_back((*oit).mObject); } } delete sortedObjects; } void BvHierarchy::AssignSortedObjects(const BvhSubdivisionCandidate &sc, BvhTraversalData &frontData, BvhTraversalData &backData) { Intersectable::NewMail(); // we sorted the objects as a preprocess so they don't have // to be sorted for each split ObjectContainer::const_iterator fit, fit_end = sc.mFrontObjects.end(); for (fit = sc.mFrontObjects.begin(); fit != fit_end; ++ fit) { (*fit)->Mail(); } for (int i = 0; i < 3; ++ i) { frontData.mSortedObjects[i] = new ObjectContainer(); backData.mSortedObjects[i] = new ObjectContainer(); frontData.mSortedObjects[i]->reserve((int)sc.mFrontObjects.size()); backData.mSortedObjects[i]->reserve((int)sc.mFrontObjects.size()); ObjectContainer::const_iterator oit, oit_end = sc.mParentData.mSortedObjects[i]->end(); for (oit = sc.mParentData.mSortedObjects[i]->begin(); oit != oit_end; ++ oit) { if ((*oit)->Mailed()) { frontData.mSortedObjects[i]->push_back(*oit); } else { backData.mSortedObjects[i]->push_back(*oit); } } } } void BvhStatistics::Print(ostream &app) const { app << "=========== BvHierarchy statistics ===============\n"; app << setprecision(4); app << "#N_CTIME ( Construction time [s] )\n" << Time() << " \n"; app << "#N_NODES ( Number of nodes )\n" << nodes << "\n"; app << "#N_INTERIORS ( Number of interior nodes )\n" << Interior() << "\n"; app << "#N_LEAVES ( Number of leaves )\n" << Leaves() << "\n"; app << "#AXIS_ALIGNED_SPLITS (number of axis aligned splits)\n" << splits << endl; app << "#N_MAXCOSTNODES ( Percentage of leaves with terminated because of max cost ratio )\n" << maxCostNodes * 100 / (double)Leaves() << endl; app << "#N_PMINPROBABILITYLEAVES ( Percentage of leaves with mininum probability )\n" << minProbabilityNodes * 100 / (double)Leaves() << endl; ////////////////////////////////////////////////// app << "#N_PMAXDEPTHLEAVES ( Percentage of leaves at maximum depth )\n" << maxDepthNodes * 100 / (double)Leaves() << endl; app << "#N_PMAXDEPTH ( Maximal reached depth )\n" << maxDepth << endl; app << "#N_PMINDEPTH ( Minimal reached depth )\n" << minDepth << endl; app << "#AVGDEPTH ( average depth )\n" << AvgDepth() << endl; //////////////////////////////////////////////////////// app << "#N_PMINOBJECTSLEAVES ( Percentage of leaves with mininum objects )\n" << minObjectsNodes * 100 / (double)Leaves() << endl; app << "#N_MAXOBJECTREFS ( Max number of object refs / leaf )\n" << maxObjectRefs << "\n"; app << "#N_MINOBJECTREFS ( Min number of object refs / leaf )\n" << minObjectRefs << "\n"; app << "#N_PAVGOBJECTSLEAVES ( average object refs / leaf)\n" << AvgObjectRefs() << endl; //////////////////////////////////////////////////////// app << "#N_PMINRAYSLEAVES ( Percentage of leaves with mininum rays )\n" << minRaysNodes * 100 / (double)Leaves() << endl; app << "#N_MAXRAYREFS ( Max number of ray refs / leaf )\n" << maxRayRefs << "\n"; app << "#N_MINRAYREFS ( Min number of ray refs / leaf )\n" << minRayRefs << "\n"; app << "#N_PAVGRAYLEAVES ( average ray refs / leaf )\n" << AvgRayRefs() << endl; app << "#N_PAVGRAYCONTRIBLEAVES ( Average ray contribution)\n" << rayRefs / (double)objectRefs << endl; app << "#N_PMAXRAYCONTRIBLEAVES ( Percentage of leaves with maximal ray contribution )\n"<< maxRayContriNodes * 100 / (double)Leaves() << endl; app << "========== END OF BvHierarchy statistics ==========\n"; } }