source: GTP/trunk/Lib/Vis/Preprocessing/src/BvHierarchy.h @ 1707

Revision 1707, 24.1 KB checked in by mattausch, 18 years ago (diff)

worked on full render cost evaluation
warning: some change sin render cost evaluation for pvs which could have bugs

RevLine 
[1237]1#ifndef _BvHierarchy_H__
2#define _BvHierarchy_H__
3
4#include <stack>
5
6#include "Mesh.h"
7#include "Containers.h"
8#include "Statistics.h"
9#include "VssRay.h"
10#include "RayInfo.h"
11#include "gzstream.h"
[1239]12#include "SubdivisionCandidate.h"
[1237]13#include "AxisAlignedBox3.h"
[1315]14#include "IntersectableWrapper.h"
[1667]15#include "HierarchyManager.h"
[1237]16
17
18namespace GtpVisibilityPreprocessor {
19
20
21class ViewCellLeaf;
22class Plane3;
23class AxisAlignedBox3;
24class Ray;
25class ViewCellsStatistics;
26class ViewCellsManager;
27class MergeCandidate;
28class Beam;
29class ViewCellsTree;
30class Environment;
31class BvhInterior;
32class BvhLeaf;
33class BvhNode;
34class BvhIntersectable;
35class BvhTree;
36class VspTree;
37class ViewCellsContainer;
[1370]38class HierarchyManager;
[1237]39
[1297]40
[1237]41/** View space partition statistics.
42*/
43class BvhStatistics: public StatisticsBase
44{
45public:
[1370]46       
47        /// Constructor
[1237]48        BvhStatistics()
49        {
50                Reset();
51        }
52
53        int Nodes() const {return nodes;}
54        int Interior() const { return nodes / 2; }
55        int Leaves() const { return (nodes / 2) + 1; }
56       
57        double AvgDepth() const
58        { return accumDepth / (double)Leaves(); }
59
[1370]60        double AvgObjectRefs() const
61        { return objectRefs / (double)Leaves(); }
62
63        double AvgRayRefs() const
64        { return rayRefs / (double)Leaves(); }
65
66
[1237]67        void Reset()
68        {
69                nodes = 0;
70                splits = 0;
71                maxDepth = 0;
[1705]72
[1237]73                minDepth = 99999;
74                accumDepth = 0;
75        maxDepthNodes = 0;
76                minProbabilityNodes = 0;
77                maxCostNodes = 0;
[1370]78                ///////////////////
79                minObjectsNodes = 0;
[1237]80                maxObjectRefs = 0;
[1370]81                minObjectRefs = 999999999;
[1237]82                objectRefs = 0;
[1408]83                emptyNodes = 0;
[1370]84
85                ///////////////////
86                minRaysNodes = 0;
87                maxRayRefs = 0;
88                minRayRefs = 999999999;
89                rayRefs = 0;
90                maxRayContriNodes = 0;
[1449]91                mGlobalCostMisses = 0;
[1237]92        }
93
[1370]94
95public:
96
97        // total number of nodes
98        int nodes;
99        // number of splits
100        int splits;
101        // maximal reached depth
102        int maxDepth;
103        // minimal depth
104        int minDepth;
105        // max depth nodes
106        int maxDepthNodes;
107        // accumulated depth (used to compute average)
108        int accumDepth;
109        // minimum area nodes
110        int minProbabilityNodes;
111        /// nodes termination because of max cost ratio;
112        int maxCostNodes;
[1449]113        // global cost ratio violations
114        int mGlobalCostMisses;
[1370]115
[1449]116        //////////////////
[1370]117        // nodes with minimum objects
118        int minObjectsNodes;
119        // max number of rays per node
120        int maxObjectRefs;
121        // min number of rays per node
122        int minObjectRefs;
123        /// object references
124        int objectRefs;
[1408]125        // leaves with no objects
126        int emptyNodes;
[1370]127
128        //////////////////////////
129        // nodes with minimum rays
130        int minRaysNodes;
131        // max number of rays per node
132        int maxRayRefs;
133        // min number of rays per node
134        int minRayRefs;
135        /// object references
136        int rayRefs;
137        /// nodes with max ray contribution
138        int maxRayContriNodes;
139
[1237]140        void Print(ostream &app) const;
141
142        friend ostream &operator<<(ostream &s, const BvhStatistics &stat)
143        {
144                stat.Print(s);
145                return s;
146        }
147};
148
149
150/**
151    VspNode abstract class serving for interior and leaf node implementation
152*/
153class BvhNode
154{
155public:
156       
157        // types of vsp nodes
158        enum {Interior, Leaf};
159
[1297]160        BvhNode();
[1237]161        BvhNode(const AxisAlignedBox3 &bbox);
162        BvhNode(const AxisAlignedBox3 &bbox, BvhInterior *parent);
163
164        virtual ~BvhNode(){};
165
166        /** Determines whether this node is a leaf or not
167                @return true if leaf
168        */
169        virtual bool IsLeaf() const = 0;
170
171        /** Determines whether this node is a root
172                @return true if root
173        */
174        virtual bool IsRoot() const;
175
176        /** Returns parent node.
177        */
178        BvhInterior *GetParent();
179
180        /** Sets parent node.
181        */
182        void SetParent(BvhInterior *parent);
183
[1666]184        /** collects all objects under this node.
185        */
[1614]186        virtual void CollectObjects(ObjectContainer &objects) = 0;
[1666]187
[1237]188        /** The bounding box specifies the node extent.
189        */
[1357]190        inline
[1237]191        AxisAlignedBox3 GetBoundingBox() const
192        { return mBoundingBox; }
193
[1666]194        /** Sets bouding box of this node.
195        */
[1357]196        inline
[1237]197        void SetBoundingBox(const AxisAlignedBox3 &boundingBox)
198        { mBoundingBox = boundingBox; }
199
[1679]200        /** Cost of mergin this node.
201        */
202        float GetMergeCost() {return (float)-mTimeStamp; }
[1237]203
[1679]204        int mTimeStamp;
[1666]205
[1679]206        int mPvsEntriesIncr;
207        float mMemoryIncr;
208        float mRenderCostDecr;
209
[1291]210        /////////////////////////////////////
[1237]211        //-- mailing options
[1291]212       
213        static void NewMail(const int reserve = 1) {
214                sMailId += sReservedMailboxes;
215                sReservedMailboxes = reserve;
216        }
217       
[1237]218        void Mail() { mMailbox = sMailId; }
219        bool Mailed() const { return mMailbox == sMailId; }
220
[1291]221        void Mail(const int mailbox) { mMailbox = sMailId + mailbox; }
222        bool Mailed(const int mailbox) const { return mMailbox == sMailId + mailbox; }
223
224        int IncMail() { return ++ mMailbox - sMailId; }
225
[1237]226        static int sMailId;
227        int mMailbox;
[1291]228        static int sReservedMailboxes;
[1237]229
230        ///////////////////////////////////
231
232protected:
233       
234        /// the bounding box of the node
235        AxisAlignedBox3 mBoundingBox;
236        /// parent of this node
237        BvhInterior *mParent;
238};
239
240
241/** BSP interior node implementation
242*/
243class BvhInterior: public BvhNode
244{
245public:
246        /** Standard contructor taking a bounding box as argument.
247        */
248        BvhInterior(const AxisAlignedBox3 &bbox);
249        BvhInterior(const AxisAlignedBox3 &bbox, BvhInterior *parent);
250
251        ~BvhInterior();
252        /** @return false since it is an interior node
253        */
254        bool IsLeaf() const;
[1294]255       
[1237]256        BvhNode *GetBack() { return mBack; }
257        BvhNode *GetFront() { return mFront; }
258
259        /** Replace front or back child with new child.
260        */
261        void ReplaceChildLink(BvhNode *oldChild, BvhNode *newChild);
262
263        /** Replace front and back child.
264        */
265        void SetupChildLinks(BvhNode *front, BvhNode *back);
266
267        friend ostream &operator<<(ostream &s, const BvhInterior &A)
268        {
269                return s << A.mBoundingBox;
270        }
[1679]271
272        virtual void CollectObjects(ObjectContainer &objects);
[1684]273
[1237]274protected:
275
276        /// back node
277        BvhNode *mBack;
278        /// front node
279        BvhNode *mFront;
280};
281
282
283/** BSP leaf node implementation.
284*/
285class BvhLeaf: public BvhNode
286{
287public:
288        /** Standard contructor taking a bounding box as argument.
289        */
290        BvhLeaf(const AxisAlignedBox3 &bbox);
291        BvhLeaf(const AxisAlignedBox3 &bbox, BvhInterior *parent);
292        BvhLeaf(const AxisAlignedBox3 &bbox, BvhInterior *parent, const int numObjects);
293
294        ~BvhLeaf();
295
296        /** @return true since it is an interior node
297        */
298        bool IsLeaf() const;
299       
[1297]300        SubdivisionCandidate *GetSubdivisionCandidate()// const
[1237]301        {
302                return mSubdivisionCandidate;
303        }
304
[1297]305        void SetSubdivisionCandidate(SubdivisionCandidate *candidate)
306        {
307                mSubdivisionCandidate = candidate;
308        }
[1684]309       
310        virtual void CollectObjects(ObjectContainer &objects);
311
[1707]312        /** Returns level of the hierarchy that is "active" right now.
[1706]313        */
314        BvhNode *GetActiveNode()
315        {
316                return mActiveNode;
317        }
318
[1707]319        /** Returns level of the hierarchy that is "active" right now.
320        */
321        void SetActiveNode(BvhNode *node)
322        {
323                mActiveNode = node;
324        }
325
[1237]326public:
327
328        /// Rays piercing this leaf.
329        VssRayContainer mVssRays;
330        /// objects
331        ObjectContainer mObjects;
[1259]332        /// universal counter
333        int mCounter;
[1287]334
[1237]335protected:
336
337        /// pointer to a split plane candidate splitting this leaf
338        SubdivisionCandidate *mSubdivisionCandidate;
[1706]339
[1707]340        /// the active node which will be accounted for in the pvs
[1706]341        BvhNode *mActiveNode;
[1237]342};
343
344
[1707]345typedef map<BvhLeaf *, BvhIntersectable *> BvhIntersectableMap;
[1237]346
347
348/** View Space Partitioning tree.
349*/
350class BvHierarchy
351{
352        friend class ViewCellsParseHandlers;
353        friend class HierarchyManager;
354
[1379]355protected:
[1345]356        struct SortableEntry;
357        typedef vector<SortableEntry> SortableEntryContainer;
358
[1379]359public:
360       
[1237]361        /** Additional data which is passed down the BSP tree during traversal.
362        */
363        class BvhTraversalData
364        { 
365        public:
[1294]366               
[1237]367                BvhTraversalData():
368                mNode(NULL),
369                mDepth(0),
[1287]370                mProbability(0.0),
[1237]371                mMaxCostMisses(0),
[1370]372                mAxis(0),
373                mNumRays(0)
[1357]374                {
375                        mSortedObjects[0] = mSortedObjects[1] = mSortedObjects[2] = NULL;
376                }
[1237]377               
378                BvhTraversalData(BvhLeaf *node,
379                                                 const int depth,
[1370]380                                                 const float v,
381                                                 const int numRays):
[1237]382                mNode(node),
383                mDepth(depth),
[1370]384                //mBoundingBox(box),
[1287]385                mProbability(v),
[1237]386                mMaxCostMisses(0),
[1370]387                mAxis(0),
388                mNumRays(numRays)
[1357]389                {
390                        mSortedObjects[0] = mSortedObjects[1] = mSortedObjects[2] = NULL;
391                }
[1237]392
[1357]393                /** Deletes contents and sets them to NULL.
394                */
[1237]395                void Clear()
396                {
[1294]397                        DEL_PTR(mNode);
[1370]398                        DEL_PTR(mSortedObjects[0]);
[1357]399                        DEL_PTR(mSortedObjects[1]);
[1370]400                        DEL_PTR(mSortedObjects[2]);
[1237]401                }
402
[1294]403                /// the current node
404                BvhLeaf *mNode;
405                /// current depth
406                int mDepth;
407                /// the probability that this node is seen
408                float mProbability;
409                /// the bounding box of the node
[1370]410                //AxisAlignedBox3 mBoundingBox;
[1294]411                /// how often this branch has missed the max-cost ratio
412                int mMaxCostMisses;
413                /// current axis
414                int mAxis;
[1370]415                /// number of rays
416                int mNumRays;
[1357]417                /// the sorted objects for the three dimensions
418                ObjectContainer *mSortedObjects[3];             
[1237]419    };
420
[1357]421
422        /** Candidate for a object space split.
[1237]423        */
424        class BvhSubdivisionCandidate: public SubdivisionCandidate
425        { 
426        public:
427
[1294]428        BvhSubdivisionCandidate(const BvhTraversalData &tData): mParentData(tData)
[1237]429                {};
430
[1305]431                ~BvhSubdivisionCandidate()
432                {
433                        mParentData.Clear();
434                }
[1294]435
[1237]436                int Type() const { return OBJECT_SPACE; }
437       
[1667]438                void EvalCandidate(bool computeSplitplane = true)
[1237]439                {
[1705]440            mDirty = false;
[1667]441                        sBvHierarchy->EvalSubdivisionCandidate(*this, computeSplitplane);
[1237]442                }
443
[1633]444                bool Apply(SplitQueue &splitQueue, bool terminationCriteriaMet)
[1632]445                {
[1667]446                        BvhNode *n = sBvHierarchy->Subdivide(splitQueue, this, terminationCriteriaMet);
447
[1632]448                        // local or global termination criteria failed
449                        return !n->IsLeaf();           
[1633]450                }
[1632]451
[1633]452                void CollectDirtyCandidates(SubdivisionCandidateContainer &dirtyList,
453                                                                        const bool onlyUnmailed)
454                {
455                        sBvHierarchy->CollectDirtyCandidates(this, dirtyList, onlyUnmailed);
456                }
457
[1237]458                bool GlobalTerminationCriteriaMet() const
459                {
460                        return sBvHierarchy->GlobalTerminationCriteriaMet(mParentData);
461                }
462
[1667]463                BvhSubdivisionCandidate(const ObjectContainer &frontObjects,
464                                                                const ObjectContainer &backObjects,
465                                                                const BvhTraversalData &tData):
[1237]466                mFrontObjects(frontObjects), mBackObjects(backObjects), mParentData(tData)
467                {}
[1294]468
[1667]469                float GetPriority() const
470                {
[1705]471                        return mPriority;
[1667]472                }
473
[1305]474                /// pointer to parent tree.
[1294]475                static BvHierarchy *sBvHierarchy;
[1680]476
[1294]477                /// parent data
478                BvhTraversalData mParentData;
[1305]479                /// the objects on the front of the potential split
[1294]480                ObjectContainer mFrontObjects;
[1305]481                /// the objects on the back of the potential split
[1294]482                ObjectContainer mBackObjects;
[1237]483        };
484
485        /** Struct for traversing line segment.
486        */
487        struct LineTraversalData
488        {
489                BvhNode *mNode;
490                Vector3 mExitPoint;
491               
492                float mMaxT;
493   
494                LineTraversalData () {}
495                LineTraversalData (BvhNode *n, const Vector3 &p, const float maxt):
496                mNode(n), mExitPoint(p), mMaxT(maxt) {}
497        };
498
499
500        /** Default constructor creating an empty tree.
501        */
502        BvHierarchy();
503
504        /** Default destructor.
505        */
506        ~BvHierarchy();
507
508        /** Returns tree statistics.
509        */
510        const BvhStatistics &GetStatistics() const;
511 
512        /** Returns bounding box of the specified node.
513        */
514        AxisAlignedBox3 GetBoundingBox(BvhNode *node) const;
515
516        /** Reads parameters from environment singleton.
517        */
518        void ReadEnvironment();
519
520        /** Evaluates candidate for splitting.
521        */
[1680]522        void EvalSubdivisionCandidate(BvhSubdivisionCandidate &splitData,
523                                                                  bool computeSplitPlane = true);
[1237]524
[1707]525        /** Returns vector of leaves.
[1237]526        */
[1707]527        void CollectLeaves(BvhNode *root, vector<BvhLeaf *> &leaves) const;
[1237]528
529        /** Returns bounding box of the whole tree (= bbox of root node)
530        */
531        AxisAlignedBox3 GetBoundingBox()const;
532
533        /** Returns root of the view space partitioning tree.
534        */
535        BvhNode *GetRoot() const;
536
537        /** finds neighbouring leaves of this tree node.
538        */
539        int FindNeighbors(BvhLeaf *n,
540                                          vector<BvhLeaf *> &neighbors,
541                                          const bool onlyUnmailed) const;
542
543        /** Returns random leaf of BSP tree.
544                @param halfspace defines the halfspace from which the leaf is taken.
545        */
546        BvhLeaf *GetRandomLeaf(const Plane3 &halfspace);
547
548        /** Returns random leaf of BSP tree.
549                @param onlyUnmailed if only unmailed leaves should be returned.
550        */
551        BvhLeaf *GetRandomLeaf(const bool onlyUnmailed = false);
552
553        /** Casts line segment into the tree.
554                @param origin the origin of the line segment
555                @param termination the end point of the line segment
556                @returns view cells intersecting the line segment.
557        */
558    int CastLineSegment(const Vector3 &origin,
559                                                const Vector3 &termination,
560                                                ViewCellContainer &viewcells);
561               
562        /** Sets pointer to view cells manager.
563        */
564        void SetViewCellsManager(ViewCellsManager *vcm);
565
566        /** Writes tree to output stream
567        */
568        bool Export(OUT_STREAM &stream);
569
[1707]570        /** Returns or creates a new intersectable for use in a bv based pvs.
571                The hierarchy is responsible for destruction of the intersectable.
[1237]572        */
[1707]573        BvhIntersectable *GetOrCreateBvhIntersectable(BvhLeaf *node);
[1237]574
[1640]575        /** Collects rays associated with the objects.
[1237]576        */
577        void CollectRays(const ObjectContainer &objects, VssRayContainer &rays) const;
578
579        /** Intersects box with the tree and returns the number of intersected boxes.
580                @returns number of view cells found
581        */
[1640]582        int ComputeBoxIntersections(const AxisAlignedBox3 &box,
583                                                                ViewCellContainer &viewCells) const;
[1237]584
585        /** Returns leaf the point pt lies in, starting from root.
586        */
587        BvhLeaf *GetLeaf(Intersectable *obj, BvhNode *root = NULL) const;
588
[1370]589        /** Sets a pointer to the view cells tree.
590        */
[1237]591        ViewCellsTree *GetViewCellsTree() const { return mViewCellsTree; }
[1707]592       
[1370]593        /** See Get
594        */
[1237]595        void SetViewCellsTree(ViewCellsTree *vt) { mViewCellsTree = vt; }
596
[1640]597        /** Returns estimated memory usage of tree.
598        */
599        float GetMemUsage() const;
[1237]600
[1707]601        /** Sets this node to be an active node.
602        */
603        void SetActive(BvhNode *node) const;
[1680]604
[1707]605
[1684]606        ///////////////////////////
607        // hacks in order to provide interleaved heurisitcs
608
[1686]609        BvhNode *SubdivideAndCopy(SplitQueue &tQueue, SubdivisionCandidate *splitCandidate);
[1684]610
611        /////////////////////////////////
612
[1703]613        static float EvalAbsCost(const ObjectContainer &objects);
[1698]614
[1707]615
[1237]616protected:
617
618        /** Returns true if tree can be terminated.
619        */
[1251]620        bool LocalTerminationCriteriaMet(const BvhTraversalData &data) const;
[1237]621
622        /** Returns true if global tree can be terminated.
623        */
[1251]624        bool GlobalTerminationCriteriaMet(const BvhTraversalData &data) const;
[1237]625
[1287]626        /** For sorting the objects during the heuristics
627        */
[1237]628        struct SortableEntry
629        {
[1287]630                Intersectable *mObject;
[1237]631                float mPos;
632
633                SortableEntry() {}
634
[1287]635                SortableEntry(Intersectable *obj, const float pos):
636                mObject(obj), mPos(pos)
[1237]637                {}
638
639                bool operator<(const SortableEntry &b) const
640                {
641                        return mPos < b.mPos;
642                }
643        };
[1345]644
[1287]645        /** Evaluate balanced object partition.
[1237]646        */
[1640]647        float EvalLocalObjectPartition(const BvhTraversalData &tData,
648                                                                   const int axis,
649                                                                   ObjectContainer &objectsFront,
650                                                                   ObjectContainer &objectsBack);
[1237]651
[1640]652        /** Evaluate surface area heuristic for the node.
653        */
654        float EvalSah(const BvhTraversalData &tData,
655                                  const int axis,
656                                  ObjectContainer &objectsFront,
657                                  ObjectContainer &objectsBack);
[1323]658
[1237]659        /** Computes priority of the traversal data and stores it in tData.
660        */
661        void EvalPriority(BvhTraversalData &tData) const;
662
[1379]663        /** Evaluates render cost of the bv induced by these objects
[1237]664        */
[1379]665        float EvalRenderCost(const ObjectContainer &objects) const;
[1237]666
667        /** Evaluates tree stats in the BSP tree leafs.
668        */
669        void EvaluateLeafStats(const BvhTraversalData &data);
670
671        /** Subdivides node using a best split priority queue.
672            @param tQueue the best split priority queue
673                @param splitCandidate the candidate for the next split
674                @param globalCriteriaMet if the global termination criteria were already met
675                @returns new root of the subtree
676        */
[1640]677        BvhNode *Subdivide(SplitQueue &tQueue,
678                                           SubdivisionCandidate *splitCandidate,
679                                           const bool globalCriteriaMet);
[1237]680       
681        /** Subdivides leaf.
[1345]682                @param sc the subdivisionCandidate holding all necessary data for subdivision           
[1237]683               
[1345]684                @param frontData returns the traversal data for the front node
685                @param backData returns the traversal data for the back node
[1237]686
[1345]687                @returns the new interior node = the of the subdivision
[1237]688        */
[1640]689        BvhInterior *SubdivideNode(const BvhSubdivisionCandidate &sc,
690                                                           BvhTraversalData &frontData,
691                                                           BvhTraversalData &backData);
[1237]692
693        /** Splits the objects for the next subdivision.
694                @returns cost for this split
695        */
[1640]696        float SelectObjectPartition(const BvhTraversalData &tData,
697                                                                ObjectContainer &frontObjects,
[1676]698                                                                ObjectContainer &backObjects,
699                                                                bool useVisibilityBasedHeuristics);
[1237]700       
701        /** Writes the node to disk
702                @note: should be implemented as visitor.
703        */
704        void ExportNode(BvhNode *node, OUT_STREAM &stream);
705
[1640]706        /** Exports objects associated with this leaf.
707        */
[1286]708        void ExportObjects(BvhLeaf *leaf, OUT_STREAM &stream);
709
[1548]710        /** Associates the objects with their bvh leaves.
[1294]711        */
[1486]712        static void AssociateObjectsWithLeaf(BvhLeaf *leaf);
713
714
[1237]715        /////////////////////////////
716        // Helper functions for local cost heuristics
717       
[1357]718        /** Prepare split candidates for cost heuristics using axis aligned splits.
[1237]719                @param node the current node
720                @param axis the current split axis
721        */
[1640]722        void PrepareLocalSubdivisionCandidates(const BvhTraversalData &tData,
723                                                                                   const int axis);
[1237]724
[1640]725        static void CreateLocalSubdivisionCandidates(const ObjectContainer &objects,
726                                                                                                 SortableEntryContainer **subdivisionCandidates,
727                                                                                                 const bool sort,
728                                                                                                 const int axis);
[1357]729
730        /** Computes object partition with the best cost according to the heurisics.
731                @param tData the traversal data
732                @param axis the split axis
733                @param objectsFront the objects in the front child bv
734                @param objectsBack the objects in the back child bv
735                @param backObjectsStart the iterator marking the position where the back objects begin
736
737                @returns relative cost (relative to parent cost)
[1237]738        */
[1640]739        float EvalLocalCostHeuristics(const BvhTraversalData &tData,
740                                                                  const int axis,
741                                                                  ObjectContainer &objectsFront,
742                                                                  ObjectContainer &objectsBack);
[1237]743
[1287]744        /** Evaluates the contribution to the front and back volume
745                when this object is changing sides in the bvs.
[1237]746
[1287]747                @param object the object
748                @param volLeft updates the left pvs
749                @param volPvs updates the right pvs
[1237]750        */
[1640]751        void EvalHeuristicsContribution(Intersectable *obj,
752                                                                        float &volLeft,
753                                                                        float &volRight);
[1237]754
755        /** Prepares objects for the cost heuristics.
756                @returns sum of volume of associated view cells
757        */
[1287]758        float PrepareHeuristics(const BvhTraversalData &tData, const int axis);
[1237]759       
[1705]760        /** Evaluates cost for a leaf given the surface area heuristics.
761        */
762        float EvalSahCost(BvhLeaf *leaf);
[1633]763
[1237]764        ////////////////////////////////////////////////
765
766
767        /** Prepares construction for vsp and osp trees.
768        */
[1640]769        AxisAlignedBox3 EvalBoundingBox(const ObjectContainer &objects,
770                                                                        const AxisAlignedBox3 *parentBox = NULL) const;
[1237]771
[1370]772        /** Collects list of invalid candidates. Candidates
773                are invalidated by a view space subdivision step
774                that affects this candidate.
775        */
[1640]776        void CollectDirtyCandidates(BvhSubdivisionCandidate *sc,
777                                                                vector<SubdivisionCandidate *> &dirtyList,
778                                                                const bool onlyUnmailed);
[1237]779
[1287]780        /** Collect view cells which see this bvh leaf.
[1237]781        */
[1640]782        void CollectViewCells(const ObjectContainer &objects,
783                                                  ViewCellContainer &viewCells,
784                                                  const bool setCounter = false) const;
[1237]785
[1576]786        /** Counts the view cells of this object. note: only
787                counts unmailed objects.
788        */
789        int CountViewCells(Intersectable *obj) const;
790
791        /** Counts the view cells seen by this bvh leaf
792        */
793        int CountViewCells(const ObjectContainer &objects) const;
794
[1287]795        /** Collects view cells which see an object.
796        */
[1640]797        void CollectViewCells(Intersectable *object,
798                                                  ViewCellContainer &viewCells,
799                                                  const bool useMailBoxing,
800                                                  const bool setCounter = false) const;
[1287]801
[1576]802        /** Evaluates increase in pvs size.
803        */
804        int EvalPvsEntriesIncr(BvhSubdivisionCandidate &splitCandidate) const;
805
[1237]806        /** Rays will be clipped to the bounding box.
807        */
[1640]808        void PreprocessRays(BvhLeaf *root,
809                                                const VssRayContainer &sampleRays,
810                                                RayInfoContainer &rays);
[1237]811
[1287]812        /** Print the subdivision stats in the subdivison log.
813        */
814        void PrintSubdivisionStats(const SubdivisionCandidate &tData);
[1237]815
[1370]816        /** Prints out the stats for this subdivision.
817        */
[1640]818        void AddSubdivisionStats(const int viewCells,
819                                                         const float renderCostDecr,
820                                                         const float totalRenderCost);
[1237]821
[1370]822        /** Stores rays with objects that see the rays.
823        */
824        int AssociateObjectsWithRays(const VssRayContainer &rays) const;
[1237]825
[1370]826        /** Tests if object is in this leaf.
827                @note: assumes that objects are sorted by their id.
828        */
[1237]829        bool IsObjectInLeaf(BvhLeaf *, Intersectable *object) const;
830
[1370]831        /** Prepares the construction of the bv hierarchy and returns
832                the first subdivision candidate.
833        */
[1640]834        SubdivisionCandidate *PrepareConstruction(const VssRayContainer &sampleRays,
835                                                                                          const ObjectContainer &objects);
[1237]836
[1548]837        /** Resets bv hierarchy. E.g. deletes root and resets stats.
838        */
[1640]839        SubdivisionCandidate *Reset(const VssRayContainer &rays,
840                                                                const ObjectContainer &objects);
[1548]841
[1370]842        /** Evaluates volume of view cells that see the objects.
843        */
[1287]844        float EvalViewCellsVolume(const ObjectContainer &objects) const;
[1237]845
[1580]846        /** Assigns or newly creates initial list of sorted objects.
[1370]847        */
[1580]848        void AssignInitialSortedObjectList(BvhTraversalData &tData);
[1259]849
[1370]850        /** Assigns sorted objects to front and back data.
851        */
[1640]852        void AssignSortedObjects(const BvhSubdivisionCandidate &sc,
853                                                         BvhTraversalData &frontData,
854                                                         BvhTraversalData &backData);
[1548]855       
[1640]856        /** Creates new root of hierarchy and computes bounding box.
857                Has to be called before the preparation of the subdivision.
[1548]858        */
[1640]859        void Initialise(const ObjectContainer &objects);
860
861
[1237]862protected:
863       
[1345]864        /// pre-sorted subdivision candidtes for all three directions.
865        vector<SortableEntry> *mGlobalSubdivisionCandidates[3];
[1237]866        /// pointer to the hierarchy of view cells
867        ViewCellsTree *mViewCellsTree;
868        /// The view cells manager
869        ViewCellsManager *mViewCellsManager;
870        /// candidates for placing split planes during cost heuristics
871        vector<SortableEntry> *mSubdivisionCandidates;
872        /// Pointer to the root of the tree
873        BvhNode *mRoot;
874        /// Statistics for the object space partition
[1370]875        BvhStatistics mBvhStats;       
[1237]876        /// box around the whole view domain
877        AxisAlignedBox3 mBoundingBox;
[1370]878        /// the hierarchy manager
879        HierarchyManager *mHierarchyManager;
[1237]880
881
[1449]882        ////////////////////
[1357]883        //-- local termination criteria
[1237]884
885        /// maximal possible depth
886        int mTermMaxDepth;
887        /// mininum probability
[1287]888        float mTermMinProbability;
[1237]889        /// minimal number of objects
890        int mTermMinObjects;
891        /// maximal acceptable cost ratio
892        float mTermMaxCostRatio;
893        /// tolerance value indicating how often the max cost ratio can be failed
894        int mTermMissTolerance;
[1370]895        /// minimum number of rays
896        int mTermMinRays;
[1237]897
898
[1449]899        ////////////////////
[1357]900        //-- global termination criteria
[1237]901
[1580]902        /// the minimal accepted global cost ratio
[1237]903        float mTermMinGlobalCostRatio;
[1580]904        //// number of accepted misses of the global cost ratio
[1237]905        int mTermGlobalCostMissTolerance;
906        /// maximal number of view cells
907        int mTermMaxLeaves;
908        /// maximal tree memory
909        float mMaxMemory;
910        /// the tree is out of memory
911        bool mOutOfMemory;
912
913
[1357]914        ////////////////////////////////////////
[1237]915        //-- split heuristics based parameters
916       
[1643]917        /// if a heuristics should be used for finding a split plane
918    bool mUseCostHeuristics;
919        /// if sah heuristcs should be used for finding a split plane
920        bool mUseSah;
921    /// balancing factor for PVS criterium
[1237]922        float mCtDivCi;
923        /// if only driving axis should be used for split
924        bool mOnlyDrivingAxis;
925        /// current time stamp (used for keeping split history)
926        int mTimeStamp;
927        // if rays should be stored in leaves
928        bool mStoreRays;
[1357]929        // subdivision stats output file
[1237]930        ofstream  mSubdivisionStats;
931        /// keeps track of cost during subdivision
932        float mTotalCost;
[1662]933        int mPvsEntries;
[1237]934        /// keeps track of overall pvs size during subdivision
935        int mTotalPvsSize;
936        /// number of currenly generated view cells
937        int mCreatedLeaves;
938        /// represents min and max band for sweep
939        float mSplitBorder;
940        /// weight between render cost decrease and node render cost
941        float mRenderCostDecreaseWeight;
942        /// stores the kd node intersectables used for pvs
943        BvhIntersectableMap mBvhIntersectables;
[1580]944        /// if the objects should be sorted in one global step
945        bool mUseGlobalSorting;
[1237]946
[1662]947        bool mUseBboxAreaForSah;
948
[1580]949        SortableEntryContainer *mSortedObjects[3];
[1676]950
951        int mMinRaysForVisibility;
[1237]952};
953
954}
955
956#endif
Note: See TracBrowser for help on using the repository browser.