source: GTP/trunk/Lib/Vis/Preprocessing/src/BvHierarchy.h @ 1379

Revision 1379, 20.9 KB checked in by mattausch, 18 years ago (diff)

fixed sah for objeect partition
loader for single triangles also for x3d

Line 
1#ifndef _BvHierarchy_H__
2#define _BvHierarchy_H__
3
4#include <stack>
5
6#include "Mesh.h"
7#include "Containers.h"
8#include "Statistics.h"
9#include "VssRay.h"
10#include "RayInfo.h"
11#include "gzstream.h"
12#include "SubdivisionCandidate.h"
13#include "AxisAlignedBox3.h"
14#include "IntersectableWrapper.h"
15
16
17namespace GtpVisibilityPreprocessor {
18
19
20class ViewCellLeaf;
21class Plane3;
22class AxisAlignedBox3;
23class Ray;
24class ViewCellsStatistics;
25class ViewCellsManager;
26class MergeCandidate;
27class Beam;
28class ViewCellsTree;
29class Environment;
30class BvhInterior;
31class BvhLeaf;
32class BvhNode;
33class BvhIntersectable;
34class BvhTree;
35class VspTree;
36class ViewCellsContainer;
37class HierarchyManager;
38
39
40/** View space partition statistics.
41*/
42class BvhStatistics: public StatisticsBase
43{
44public:
45       
46        /// Constructor
47        BvhStatistics()
48        {
49                Reset();
50        }
51
52        int Nodes() const {return nodes;}
53        int Interior() const { return nodes / 2; }
54        int Leaves() const { return (nodes / 2) + 1; }
55       
56        double AvgDepth() const
57        { return accumDepth / (double)Leaves(); }
58
59        double AvgObjectRefs() const
60        { return objectRefs / (double)Leaves(); }
61
62        double AvgRayRefs() const
63        { return rayRefs / (double)Leaves(); }
64
65
66        void Reset()
67        {
68                nodes = 0;
69                splits = 0;
70                maxDepth = 0;
71                minDepth = 99999;
72                accumDepth = 0;
73        maxDepthNodes = 0;
74                minProbabilityNodes = 0;
75                maxCostNodes = 0;
76                       
77                ///////////////////
78                minObjectsNodes = 0;
79                maxObjectRefs = 0;
80                minObjectRefs = 999999999;
81                objectRefs = 0;
82
83                ///////////////////
84                minRaysNodes = 0;
85                maxRayRefs = 0;
86                minRayRefs = 999999999;
87                rayRefs = 0;
88                maxRayContriNodes = 0;
89        }
90
91
92public:
93
94        // total number of nodes
95        int nodes;
96        // number of splits
97        int splits;
98        // maximal reached depth
99        int maxDepth;
100        // minimal depth
101        int minDepth;
102        // max depth nodes
103        int maxDepthNodes;
104        // accumulated depth (used to compute average)
105        int accumDepth;
106        // minimum area nodes
107        int minProbabilityNodes;
108        /// nodes termination because of max cost ratio;
109        int maxCostNodes;
110
111        ///////////////////////////
112        // nodes with minimum objects
113        int minObjectsNodes;
114        // max number of rays per node
115        int maxObjectRefs;
116        // min number of rays per node
117        int minObjectRefs;
118        /// object references
119        int objectRefs;
120
121
122        //////////////////////////
123        // nodes with minimum rays
124        int minRaysNodes;
125        // max number of rays per node
126        int maxRayRefs;
127        // min number of rays per node
128        int minRayRefs;
129        /// object references
130        int rayRefs;
131        /// nodes with max ray contribution
132        int maxRayContriNodes;
133
134        void Print(ostream &app) const;
135
136        friend ostream &operator<<(ostream &s, const BvhStatistics &stat)
137        {
138                stat.Print(s);
139                return s;
140        }
141};
142
143
144/**
145    VspNode abstract class serving for interior and leaf node implementation
146*/
147class BvhNode
148{
149public:
150       
151        // types of vsp nodes
152        enum {Interior, Leaf};
153
154        BvhNode();
155        BvhNode(const AxisAlignedBox3 &bbox);
156        BvhNode(const AxisAlignedBox3 &bbox, BvhInterior *parent);
157
158        virtual ~BvhNode(){};
159
160        /** Determines whether this node is a leaf or not
161                @return true if leaf
162        */
163        virtual bool IsLeaf() const = 0;
164
165        /** Determines whether this node is a root
166                @return true if root
167        */
168        virtual bool IsRoot() const;
169
170        /** Returns parent node.
171        */
172        BvhInterior *GetParent();
173
174        /** Sets parent node.
175        */
176        void SetParent(BvhInterior *parent);
177
178        /** The bounding box specifies the node extent.
179        */
180        inline
181        AxisAlignedBox3 GetBoundingBox() const
182        { return mBoundingBox; }
183
184
185        inline
186        void SetBoundingBox(const AxisAlignedBox3 &boundingBox)
187        { mBoundingBox = boundingBox; }
188
189
190        /////////////////////////////////////
191        //-- mailing options
192       
193        static void NewMail(const int reserve = 1) {
194                sMailId += sReservedMailboxes;
195                sReservedMailboxes = reserve;
196        }
197       
198        void Mail() { mMailbox = sMailId; }
199        bool Mailed() const { return mMailbox == sMailId; }
200
201        void Mail(const int mailbox) { mMailbox = sMailId + mailbox; }
202        bool Mailed(const int mailbox) const { return mMailbox == sMailId + mailbox; }
203
204        int IncMail() { return ++ mMailbox - sMailId; }
205
206        static int sMailId;
207        int mMailbox;
208        static int sReservedMailboxes;
209
210        ///////////////////////////////////
211
212protected:
213       
214        /// the bounding box of the node
215        AxisAlignedBox3 mBoundingBox;
216        /// parent of this node
217        BvhInterior *mParent;
218};
219
220
221/** BSP interior node implementation
222*/
223class BvhInterior: public BvhNode
224{
225public:
226        /** Standard contructor taking a bounding box as argument.
227        */
228        BvhInterior(const AxisAlignedBox3 &bbox);
229        BvhInterior(const AxisAlignedBox3 &bbox, BvhInterior *parent);
230
231        ~BvhInterior();
232        /** @return false since it is an interior node
233        */
234        bool IsLeaf() const;
235       
236        BvhNode *GetBack() { return mBack; }
237        BvhNode *GetFront() { return mFront; }
238
239        /** Replace front or back child with new child.
240        */
241        void ReplaceChildLink(BvhNode *oldChild, BvhNode *newChild);
242
243        /** Replace front and back child.
244        */
245        void SetupChildLinks(BvhNode *front, BvhNode *back);
246
247        friend ostream &operator<<(ostream &s, const BvhInterior &A)
248        {
249                return s << A.mBoundingBox;
250        }
251
252protected:
253
254        /// back node
255        BvhNode *mBack;
256        /// front node
257        BvhNode *mFront;
258};
259
260
261/** BSP leaf node implementation.
262*/
263class BvhLeaf: public BvhNode
264{
265public:
266        /** Standard contructor taking a bounding box as argument.
267        */
268        BvhLeaf(const AxisAlignedBox3 &bbox);
269        BvhLeaf(const AxisAlignedBox3 &bbox, BvhInterior *parent);
270        BvhLeaf(const AxisAlignedBox3 &bbox, BvhInterior *parent, const int numObjects);
271
272        ~BvhLeaf();
273
274        /** @return true since it is an interior node
275        */
276        bool IsLeaf() const;
277       
278        SubdivisionCandidate *GetSubdivisionCandidate()// const
279        {
280                return mSubdivisionCandidate;
281        }
282
283        void SetSubdivisionCandidate(SubdivisionCandidate *candidate)
284        {
285                mSubdivisionCandidate = candidate;
286        }
287
288public:
289
290        /// Rays piercing this leaf.
291        VssRayContainer mVssRays;
292        /// objects
293        ObjectContainer mObjects;
294        /// universal counter
295        int mCounter;
296
297protected:
298
299        /// pointer to a split plane candidate splitting this leaf
300        SubdivisionCandidate *mSubdivisionCandidate;
301};
302
303
304typedef map<BvhNode *, BvhIntersectable *> BvhIntersectableMap;
305
306
307/** View Space Partitioning tree.
308*/
309class BvHierarchy
310{
311        friend class ViewCellsParseHandlers;
312        friend class HierarchyManager;
313
314protected:
315        struct SortableEntry;
316        typedef vector<SortableEntry> SortableEntryContainer;
317
318public:
319       
320        /** Additional data which is passed down the BSP tree during traversal.
321        */
322        class BvhTraversalData
323        { 
324        public:
325               
326                BvhTraversalData():
327                mNode(NULL),
328                mDepth(0),
329                mProbability(0.0),
330                mMaxCostMisses(0),
331                mAxis(0),
332                mNumRays(0)
333                {
334                        mSortedObjects[0] = mSortedObjects[1] = mSortedObjects[2] = NULL;
335                }
336               
337                BvhTraversalData(BvhLeaf *node,
338                                                 const int depth,
339                                                 const float v,
340                                                 const int numRays):
341                mNode(node),
342                mDepth(depth),
343                //mBoundingBox(box),
344                mProbability(v),
345                mMaxCostMisses(0),
346                mAxis(0),
347                mNumRays(numRays)
348                {
349                        mSortedObjects[0] = mSortedObjects[1] = mSortedObjects[2] = NULL;
350                }
351
352                /** Deletes contents and sets them to NULL.
353                */
354                void Clear()
355                {
356                        DEL_PTR(mNode);
357                        DEL_PTR(mSortedObjects[0]);
358                        DEL_PTR(mSortedObjects[1]);
359                        DEL_PTR(mSortedObjects[2]);
360                }
361
362                /// the current node
363                BvhLeaf *mNode;
364                /// current depth
365                int mDepth;
366                /// the probability that this node is seen
367                float mProbability;
368                /// the bounding box of the node
369                //AxisAlignedBox3 mBoundingBox;
370                /// how often this branch has missed the max-cost ratio
371                int mMaxCostMisses;
372                /// current axis
373                int mAxis;
374                /// number of rays
375                int mNumRays;
376                /// the sorted objects for the three dimensions
377                ObjectContainer *mSortedObjects[3];             
378    };
379
380
381        /** Candidate for a object space split.
382        */
383        class BvhSubdivisionCandidate: public SubdivisionCandidate
384        { 
385        public:
386
387        BvhSubdivisionCandidate(const BvhTraversalData &tData): mParentData(tData)
388                {};
389
390                ~BvhSubdivisionCandidate()
391                {
392                        mParentData.Clear();
393                }
394
395                int Type() const { return OBJECT_SPACE; }
396       
397                void EvalPriority()
398                {
399                        sBvHierarchy->EvalSubdivisionCandidate(*this); 
400                }
401
402                bool GlobalTerminationCriteriaMet() const
403                {
404                        return sBvHierarchy->GlobalTerminationCriteriaMet(mParentData);
405                }
406
407                BvhSubdivisionCandidate(
408                        const ObjectContainer &frontObjects,
409                        const ObjectContainer &backObjects,
410                        const BvhTraversalData &tData):
411                mFrontObjects(frontObjects), mBackObjects(backObjects), mParentData(tData)
412                {}
413
414                /// pointer to parent tree.
415                static BvHierarchy *sBvHierarchy;
416                /// parent data
417                BvhTraversalData mParentData;
418                /// the objects on the front of the potential split
419                ObjectContainer mFrontObjects;
420                /// the objects on the back of the potential split
421                ObjectContainer mBackObjects;
422        };
423
424        /** Struct for traversing line segment.
425        */
426        struct LineTraversalData
427        {
428                BvhNode *mNode;
429                Vector3 mExitPoint;
430               
431                float mMaxT;
432   
433                LineTraversalData () {}
434                LineTraversalData (BvhNode *n, const Vector3 &p, const float maxt):
435                mNode(n), mExitPoint(p), mMaxT(maxt) {}
436        };
437
438
439        /** Default constructor creating an empty tree.
440        */
441        BvHierarchy();
442
443        /** Default destructor.
444        */
445        ~BvHierarchy();
446
447        /** Returns tree statistics.
448        */
449        const BvhStatistics &GetStatistics() const;
450 
451        /** Returns bounding box of the specified node.
452        */
453        AxisAlignedBox3 GetBoundingBox(BvhNode *node) const;
454
455        /** Reads parameters from environment singleton.
456        */
457        void ReadEnvironment();
458
459        /** Evaluates candidate for splitting.
460        */
461        void EvalSubdivisionCandidate(BvhSubdivisionCandidate &splitData);
462
463        /** Returns list of leaves with pvs smaller than
464                a certain threshold.
465                @param onlyUnmailed if only the unmailed leaves should be considered
466                @param maxPvs the maximal pvs of a leaf to be added (-1 means unlimited)
467        */
468        void CollectLeaves(vector<BvhLeaf *> &leaves) const;
469
470        /** Returns bounding box of the whole tree (= bbox of root node)
471        */
472        AxisAlignedBox3 GetBoundingBox()const;
473
474        /** Returns root of the view space partitioning tree.
475        */
476        BvhNode *GetRoot() const;
477
478        /** A ray is cast possible intersecting the tree.
479                @param the ray that is cast.
480                @returns the number of intersections with objects stored in the tree.
481        */
482        //int CastRay(Ray &ray);
483
484        /** finds neighbouring leaves of this tree node.
485        */
486        int FindNeighbors(BvhLeaf *n,
487                                          vector<BvhLeaf *> &neighbors,
488                                          const bool onlyUnmailed) const;
489
490        /** Returns random leaf of BSP tree.
491                @param halfspace defines the halfspace from which the leaf is taken.
492        */
493        BvhLeaf *GetRandomLeaf(const Plane3 &halfspace);
494
495        /** Returns random leaf of BSP tree.
496                @param onlyUnmailed if only unmailed leaves should be returned.
497        */
498        BvhLeaf *GetRandomLeaf(const bool onlyUnmailed = false);
499
500        /** Casts line segment into the tree.
501                @param origin the origin of the line segment
502                @param termination the end point of the line segment
503                @returns view cells intersecting the line segment.
504        */
505    int CastLineSegment(const Vector3 &origin,
506                                                const Vector3 &termination,
507                                                ViewCellContainer &viewcells);
508               
509        /** Sets pointer to view cells manager.
510        */
511        void SetViewCellsManager(ViewCellsManager *vcm);
512
513        /** Writes tree to output stream
514        */
515        bool Export(OUT_STREAM &stream);
516
517        /** Returns or creates a new intersectable for use in a kd based pvs.
518                The OspTree is responsible for destruction of the intersectable.
519        */
520        BvhIntersectable *GetOrCreateBvhIntersectable(BvhNode *node);
521
522        /** Collects rays.
523        */
524        void CollectRays(const ObjectContainer &objects, VssRayContainer &rays) const;
525
526        /** Intersects box with the tree and returns the number of intersected boxes.
527                @returns number of view cells found
528        */
529        int ComputeBoxIntersections(
530                const AxisAlignedBox3 &box,
531                ViewCellContainer &viewCells) const;
532
533        /** Returns leaf the point pt lies in, starting from root.
534        */
535        BvhLeaf *GetLeaf(Intersectable *obj, BvhNode *root = NULL) const;
536
537        /** Sets a pointer to the view cells tree.
538        */
539        ViewCellsTree *GetViewCellsTree() const { return mViewCellsTree; }
540        /** See Get
541        */
542        void SetViewCellsTree(ViewCellsTree *vt) { mViewCellsTree = vt; }
543
544
545protected:
546
547        /** Returns true if tree can be terminated.
548        */
549        bool LocalTerminationCriteriaMet(const BvhTraversalData &data) const;
550
551        /** Returns true if global tree can be terminated.
552        */
553        bool GlobalTerminationCriteriaMet(const BvhTraversalData &data) const;
554
555        /** For sorting the objects during the heuristics
556        */
557        struct SortableEntry
558        {
559                Intersectable *mObject;
560                float mPos;
561
562                SortableEntry() {}
563
564                SortableEntry(Intersectable *obj, const float pos):
565                mObject(obj), mPos(pos)
566                {}
567
568                bool operator<(const SortableEntry &b) const
569                {
570                        return mPos < b.mPos;
571                }
572        };
573
574        /** Evaluate balanced object partition.
575        */
576        float EvalLocalObjectPartition(
577                const BvhTraversalData &tData,
578                const int axis,
579                ObjectContainer &objectsFront,
580                ObjectContainer &objectsBack);
581
582        float EvalSah(
583                const BvhTraversalData &tData,
584                const int axis,
585                ObjectContainer &objectsFront,
586                ObjectContainer &objectsBack);
587
588        /** Computes priority of the traversal data and stores it in tData.
589        */
590        void EvalPriority(BvhTraversalData &tData) const;
591
592        /** Evaluates render cost of the bv induced by these objects
593        */
594        float EvalRenderCost(const ObjectContainer &objects) const;
595
596        /** Evaluates tree stats in the BSP tree leafs.
597        */
598        void EvaluateLeafStats(const BvhTraversalData &data);
599
600        /** Subdivides node using a best split priority queue.
601            @param tQueue the best split priority queue
602                @param splitCandidate the candidate for the next split
603                @param globalCriteriaMet if the global termination criteria were already met
604                @returns new root of the subtree
605        */
606        BvhNode *Subdivide(
607                SplitQueue &tQueue,
608                SubdivisionCandidate *splitCandidate,
609                const bool globalCriteriaMet);
610       
611        /** Subdivides leaf.
612                @param sc the subdivisionCandidate holding all necessary data for subdivision           
613               
614                @param frontData returns the traversal data for the front node
615                @param backData returns the traversal data for the back node
616
617                @returns the new interior node = the of the subdivision
618        */
619        BvhInterior *SubdivideNode(
620                const BvhSubdivisionCandidate &sc,
621                BvhTraversalData &frontData,
622                BvhTraversalData &backData);
623
624        /** Splits the objects for the next subdivision.
625                @returns cost for this split
626        */
627        float SelectObjectPartition(
628                const BvhTraversalData &tData,
629                ObjectContainer &frontObjects,
630                ObjectContainer &backObjects);
631       
632        /** Writes the node to disk
633                @note: should be implemented as visitor.
634        */
635        void ExportNode(BvhNode *node, OUT_STREAM &stream);
636
637        void ExportObjects(BvhLeaf *leaf, OUT_STREAM &stream);
638
639        /** Returns estimated memory usage of tree.
640        */
641        float GetMemUsage() const;
642
643        /** Creates new root of hierarchy.
644        */
645        void CreateRoot(const ObjectContainer &objects);
646
647        /////////////////////////////
648        // Helper functions for local cost heuristics
649
650       
651        /** Prepare split candidates for cost heuristics using axis aligned splits.
652                @param node the current node
653                @param axis the current split axis
654        */
655        void PrepareLocalSubdivisionCandidates(
656                const BvhTraversalData &tData,
657                const int axis);
658
659        static void CreateLocalSubdivisionCandidates(
660                const ObjectContainer &objects,
661                SortableEntryContainer **subdivisionCandidates,
662                const bool sort,
663                const int axis);
664
665        /** Computes object partition with the best cost according to the heurisics.
666                @param tData the traversal data
667                @param axis the split axis
668                @param objectsFront the objects in the front child bv
669                @param objectsBack the objects in the back child bv
670                @param backObjectsStart the iterator marking the position where the back objects begin
671
672                @returns relative cost (relative to parent cost)
673        */
674        float EvalLocalCostHeuristics(
675                const BvhTraversalData &tData,
676                const int axis,
677                ObjectContainer &objectsFront,
678                ObjectContainer &objectsBack);
679
680        /** Evaluates the contribution to the front and back volume
681                when this object is changing sides in the bvs.
682
683                @param object the object
684                @param volLeft updates the left pvs
685                @param volPvs updates the right pvs
686        */
687        void EvalHeuristicsContribution(
688                Intersectable *obj,
689                float &volLeft,
690                float &volRight);
691
692        /** Prepares objects for the cost heuristics.
693                @returns sum of volume of associated view cells
694        */
695        float PrepareHeuristics(const BvhTraversalData &tData, const int axis);
696       
697        ////////////////////////////////////////////////
698
699
700        /** Prepares construction for vsp and osp trees.
701        */
702        AxisAlignedBox3 ComputeBoundingBox(
703                const ObjectContainer &objects,
704                const AxisAlignedBox3 *parentBox = NULL) const;
705
706        /** Collects list of invalid candidates. Candidates
707                are invalidated by a view space subdivision step
708                that affects this candidate.
709        */
710        void CollectDirtyCandidates(
711                BvhSubdivisionCandidate *sc,
712                vector<SubdivisionCandidate *> &dirtyList);
713
714        /** Collect view cells which see this bvh leaf.
715        */
716        void CollectViewCells(
717                const ObjectContainer &objects,
718                ViewCellContainer &viewCells,
719                const bool setCounter = false) const;
720
721        /** Collects view cells which see an object.
722        */
723        void CollectViewCells(
724                Intersectable *object,
725                ViewCellContainer &viewCells,
726                const bool useMailBoxing,
727                const bool setCounter = false) const;
728
729        /** Rays will be clipped to the bounding box.
730        */
731        void PreprocessRays(
732                BvhLeaf *root,
733                const VssRayContainer &sampleRays,
734                RayInfoContainer &rays);
735
736        /** Print the subdivision stats in the subdivison log.
737        */
738        void PrintSubdivisionStats(const SubdivisionCandidate &tData);
739
740        /** Prints out the stats for this subdivision.
741        */
742        void AddSubdivisionStats(
743                const int viewCells,
744                const float renderCostDecr,
745                const float totalRenderCost);
746
747        /** Stores rays with objects that see the rays.
748        */
749        int AssociateObjectsWithRays(const VssRayContainer &rays) const;
750
751        /** Tests if object is in this leaf.
752                @note: assumes that objects are sorted by their id.
753        */
754        bool IsObjectInLeaf(BvhLeaf *, Intersectable *object) const;
755
756        /** Prepares the construction of the bv hierarchy and returns
757                the first subdivision candidate.
758        */
759        SubdivisionCandidate *PrepareConstruction(
760                const VssRayContainer &sampleRays,
761                const ObjectContainer &objects);
762
763        /** Evaluates volume of view cells that see the objects.
764        */
765        float EvalViewCellsVolume(const ObjectContainer &objects) const;
766
767        /** Creates initial list of sorted objects.
768        */
769        void CreateInitialSortedObjectList(BvhTraversalData &tData);
770
771        /** Assigns sorted objects to front and back data.
772        */
773        void AssignSortedObjects(
774                const BvhSubdivisionCandidate &sc,
775                BvhTraversalData &frontData,
776                BvhTraversalData &backData);
777
778
779protected:
780       
781        /// pre-sorted subdivision candidtes for all three directions.
782        vector<SortableEntry> *mGlobalSubdivisionCandidates[3];
783        /// pointer to the hierarchy of view cells
784        ViewCellsTree *mViewCellsTree;
785        /// The view cells manager
786        ViewCellsManager *mViewCellsManager;
787        /// candidates for placing split planes during cost heuristics
788        vector<SortableEntry> *mSubdivisionCandidates;
789        /// Pointer to the root of the tree
790        BvhNode *mRoot;
791        /// Statistics for the object space partition
792        BvhStatistics mBvhStats;       
793        /// box around the whole view domain
794        AxisAlignedBox3 mBoundingBox;
795        /// the hierarchy manager
796        HierarchyManager *mHierarchyManager;
797
798
799        ////////////////////////////////
800        //-- local termination criteria
801
802        /// maximal possible depth
803        int mTermMaxDepth;
804        /// mininum probability
805        float mTermMinProbability;
806        /// minimal number of objects
807        int mTermMinObjects;
808        /// maximal acceptable cost ratio
809        float mTermMaxCostRatio;
810        /// tolerance value indicating how often the max cost ratio can be failed
811        int mTermMissTolerance;
812        /// minimum number of rays
813        int mTermMinRays;
814
815
816        ////////////////////////////////////
817        //-- global termination criteria
818
819        float mTermMinGlobalCostRatio;
820        int mTermGlobalCostMissTolerance;
821        int mGlobalCostMisses;
822
823        /// maximal number of view cells
824        int mTermMaxLeaves;
825        /// maximal tree memory
826        float mMaxMemory;
827        /// the tree is out of memory
828        bool mOutOfMemory;
829
830
831        ////////////////////////////////////////
832        //-- split heuristics based parameters
833       
834        bool mUseCostHeuristics;
835        /// balancing factor for PVS criterium
836        float mCtDivCi;
837        /// if only driving axis should be used for split
838        bool mOnlyDrivingAxis;
839        /// current time stamp (used for keeping split history)
840        int mTimeStamp;
841        // if rays should be stored in leaves
842        bool mStoreRays;
843        // subdivision stats output file
844        ofstream  mSubdivisionStats;
845        /// keeps track of cost during subdivision
846        float mTotalCost;
847        /// keeps track of overall pvs size during subdivision
848        int mTotalPvsSize;
849        /// number of currenly generated view cells
850        int mCreatedLeaves;
851        /// represents min and max band for sweep
852        float mSplitBorder;
853        /// weight between render cost decrease and node render cost
854        float mRenderCostDecreaseWeight;
855        /// stores the kd node intersectables used for pvs
856        BvhIntersectableMap mBvhIntersectables;
857
858        bool mUseGlobalSorting;
859};
860
861}
862
863#endif
Note: See TracBrowser for help on using the repository browser.