source: GTP/trunk/Lib/Vis/Preprocessing/src/BvHierarchy.h @ 1614

Revision 1614, 22.4 KB checked in by mattausch, 18 years ago (diff)
Line 
1#ifndef _BvHierarchy_H__
2#define _BvHierarchy_H__
3
4#include <stack>
5
6#include "Mesh.h"
7#include "Containers.h"
8#include "Statistics.h"
9#include "VssRay.h"
10#include "RayInfo.h"
11#include "gzstream.h"
12#include "SubdivisionCandidate.h"
13#include "AxisAlignedBox3.h"
14#include "IntersectableWrapper.h"
15
16
17
18namespace GtpVisibilityPreprocessor {
19
20
21class ViewCellLeaf;
22class Plane3;
23class AxisAlignedBox3;
24class Ray;
25class ViewCellsStatistics;
26class ViewCellsManager;
27class MergeCandidate;
28class Beam;
29class ViewCellsTree;
30class Environment;
31class BvhInterior;
32class BvhLeaf;
33class BvhNode;
34class BvhIntersectable;
35class BvhTree;
36class VspTree;
37class ViewCellsContainer;
38class HierarchyManager;
39
40
41/** View space partition statistics.
42*/
43class BvhStatistics: public StatisticsBase
44{
45public:
46       
47        /// Constructor
48        BvhStatistics()
49        {
50                Reset();
51        }
52
53        int Nodes() const {return nodes;}
54        int Interior() const { return nodes / 2; }
55        int Leaves() const { return (nodes / 2) + 1; }
56       
57        double AvgDepth() const
58        { return accumDepth / (double)Leaves(); }
59
60        double AvgObjectRefs() const
61        { return objectRefs / (double)Leaves(); }
62
63        double AvgRayRefs() const
64        { return rayRefs / (double)Leaves(); }
65
66
67        void Reset()
68        {
69                nodes = 0;
70                splits = 0;
71                maxDepth = 0;
72                minDepth = 99999;
73                accumDepth = 0;
74        maxDepthNodes = 0;
75                minProbabilityNodes = 0;
76                maxCostNodes = 0;
77                       
78                ///////////////////
79                minObjectsNodes = 0;
80                maxObjectRefs = 0;
81                minObjectRefs = 999999999;
82                objectRefs = 0;
83                emptyNodes = 0;
84
85                ///////////////////
86                minRaysNodes = 0;
87                maxRayRefs = 0;
88                minRayRefs = 999999999;
89                rayRefs = 0;
90                maxRayContriNodes = 0;
91                mGlobalCostMisses = 0;
92        }
93
94
95public:
96
97        // total number of nodes
98        int nodes;
99        // number of splits
100        int splits;
101        // maximal reached depth
102        int maxDepth;
103        // minimal depth
104        int minDepth;
105        // max depth nodes
106        int maxDepthNodes;
107        // accumulated depth (used to compute average)
108        int accumDepth;
109        // minimum area nodes
110        int minProbabilityNodes;
111        /// nodes termination because of max cost ratio;
112        int maxCostNodes;
113        // global cost ratio violations
114        int mGlobalCostMisses;
115
116        //////////////////
117        // nodes with minimum objects
118        int minObjectsNodes;
119        // max number of rays per node
120        int maxObjectRefs;
121        // min number of rays per node
122        int minObjectRefs;
123        /// object references
124        int objectRefs;
125        // leaves with no objects
126        int emptyNodes;
127
128        //////////////////////////
129        // nodes with minimum rays
130        int minRaysNodes;
131        // max number of rays per node
132        int maxRayRefs;
133        // min number of rays per node
134        int minRayRefs;
135        /// object references
136        int rayRefs;
137        /// nodes with max ray contribution
138        int maxRayContriNodes;
139
140        void Print(ostream &app) const;
141
142        friend ostream &operator<<(ostream &s, const BvhStatistics &stat)
143        {
144                stat.Print(s);
145                return s;
146        }
147};
148
149
150/**
151    VspNode abstract class serving for interior and leaf node implementation
152*/
153class BvhNode
154{
155public:
156       
157        // types of vsp nodes
158        enum {Interior, Leaf};
159
160        BvhNode();
161        BvhNode(const AxisAlignedBox3 &bbox);
162        BvhNode(const AxisAlignedBox3 &bbox, BvhInterior *parent);
163
164        virtual ~BvhNode(){};
165
166        /** Determines whether this node is a leaf or not
167                @return true if leaf
168        */
169        virtual bool IsLeaf() const = 0;
170
171        /** Determines whether this node is a root
172                @return true if root
173        */
174        virtual bool IsRoot() const;
175
176        /** Returns parent node.
177        */
178        BvhInterior *GetParent();
179
180        /** Sets parent node.
181        */
182        void SetParent(BvhInterior *parent);
183
184        // collects all objects under this node
185        virtual void CollectObjects(ObjectContainer &objects) = 0;
186        /** The bounding box specifies the node extent.
187        */
188        inline
189        AxisAlignedBox3 GetBoundingBox() const
190        { return mBoundingBox; }
191
192
193        inline
194        void SetBoundingBox(const AxisAlignedBox3 &boundingBox)
195        { mBoundingBox = boundingBox; }
196
197
198        /////////////////////////////////////
199        //-- mailing options
200       
201        static void NewMail(const int reserve = 1) {
202                sMailId += sReservedMailboxes;
203                sReservedMailboxes = reserve;
204        }
205       
206        void Mail() { mMailbox = sMailId; }
207        bool Mailed() const { return mMailbox == sMailId; }
208
209        void Mail(const int mailbox) { mMailbox = sMailId + mailbox; }
210        bool Mailed(const int mailbox) const { return mMailbox == sMailId + mailbox; }
211
212        int IncMail() { return ++ mMailbox - sMailId; }
213
214        static int sMailId;
215        int mMailbox;
216        static int sReservedMailboxes;
217
218        ///////////////////////////////////
219
220protected:
221       
222        /// the bounding box of the node
223        AxisAlignedBox3 mBoundingBox;
224        /// parent of this node
225        BvhInterior *mParent;
226};
227
228
229/** BSP interior node implementation
230*/
231class BvhInterior: public BvhNode
232{
233public:
234        /** Standard contructor taking a bounding box as argument.
235        */
236        BvhInterior(const AxisAlignedBox3 &bbox);
237        BvhInterior(const AxisAlignedBox3 &bbox, BvhInterior *parent);
238
239        ~BvhInterior();
240        /** @return false since it is an interior node
241        */
242        bool IsLeaf() const;
243       
244        BvhNode *GetBack() { return mBack; }
245        BvhNode *GetFront() { return mFront; }
246
247        /** Replace front or back child with new child.
248        */
249        void ReplaceChildLink(BvhNode *oldChild, BvhNode *newChild);
250
251        /** Replace front and back child.
252        */
253        void SetupChildLinks(BvhNode *front, BvhNode *back);
254
255        friend ostream &operator<<(ostream &s, const BvhInterior &A)
256        {
257                return s << A.mBoundingBox;
258        }
259virtual void CollectObjects(ObjectContainer &objects);
260protected:
261
262        /// back node
263        BvhNode *mBack;
264        /// front node
265        BvhNode *mFront;
266};
267
268
269/** BSP leaf node implementation.
270*/
271class BvhLeaf: public BvhNode
272{
273public:
274        /** Standard contructor taking a bounding box as argument.
275        */
276        BvhLeaf(const AxisAlignedBox3 &bbox);
277        BvhLeaf(const AxisAlignedBox3 &bbox, BvhInterior *parent);
278        BvhLeaf(const AxisAlignedBox3 &bbox, BvhInterior *parent, const int numObjects);
279
280        ~BvhLeaf();
281
282        /** @return true since it is an interior node
283        */
284        bool IsLeaf() const;
285       
286        SubdivisionCandidate *GetSubdivisionCandidate()// const
287        {
288                return mSubdivisionCandidate;
289        }
290
291        void SetSubdivisionCandidate(SubdivisionCandidate *candidate)
292        {
293                mSubdivisionCandidate = candidate;
294        }
295virtual void CollectObjects(ObjectContainer &objects);
296public:
297
298        /// Rays piercing this leaf.
299        VssRayContainer mVssRays;
300        /// objects
301        ObjectContainer mObjects;
302        /// universal counter
303        int mCounter;
304
305protected:
306
307        /// pointer to a split plane candidate splitting this leaf
308        SubdivisionCandidate *mSubdivisionCandidate;
309};
310
311
312typedef map<BvhNode *, BvhIntersectable *> BvhIntersectableMap;
313
314
315/** View Space Partitioning tree.
316*/
317class BvHierarchy
318{
319        friend class ViewCellsParseHandlers;
320        friend class HierarchyManager;
321
322protected:
323        struct SortableEntry;
324        typedef vector<SortableEntry> SortableEntryContainer;
325
326public:
327       
328        /** Additional data which is passed down the BSP tree during traversal.
329        */
330        class BvhTraversalData
331        { 
332        public:
333               
334                BvhTraversalData():
335                mNode(NULL),
336                mDepth(0),
337                mProbability(0.0),
338                mMaxCostMisses(0),
339                mAxis(0),
340                mNumRays(0)
341                {
342                        mSortedObjects[0] = mSortedObjects[1] = mSortedObjects[2] = NULL;
343                }
344               
345                BvhTraversalData(BvhLeaf *node,
346                                                 const int depth,
347                                                 const float v,
348                                                 const int numRays):
349                mNode(node),
350                mDepth(depth),
351                //mBoundingBox(box),
352                mProbability(v),
353                mMaxCostMisses(0),
354                mAxis(0),
355                mNumRays(numRays)
356                {
357                        mSortedObjects[0] = mSortedObjects[1] = mSortedObjects[2] = NULL;
358                }
359
360                /** Deletes contents and sets them to NULL.
361                */
362                void Clear()
363                {
364                        DEL_PTR(mNode);
365                        DEL_PTR(mSortedObjects[0]);
366                        DEL_PTR(mSortedObjects[1]);
367                        DEL_PTR(mSortedObjects[2]);
368                }
369
370                /// the current node
371                BvhLeaf *mNode;
372                /// current depth
373                int mDepth;
374                /// the probability that this node is seen
375                float mProbability;
376                /// the bounding box of the node
377                //AxisAlignedBox3 mBoundingBox;
378                /// how often this branch has missed the max-cost ratio
379                int mMaxCostMisses;
380                /// current axis
381                int mAxis;
382                /// number of rays
383                int mNumRays;
384                /// the sorted objects for the three dimensions
385                ObjectContainer *mSortedObjects[3];             
386    };
387
388
389        /** Candidate for a object space split.
390        */
391        class BvhSubdivisionCandidate: public SubdivisionCandidate
392        { 
393        public:
394
395        BvhSubdivisionCandidate(const BvhTraversalData &tData): mParentData(tData)
396                {};
397
398                ~BvhSubdivisionCandidate()
399                {
400                        mParentData.Clear();
401                }
402
403                int Type() const { return OBJECT_SPACE; }
404       
405                void EvalPriority()
406                {
407                        sBvHierarchy->EvalSubdivisionCandidate(*this); 
408                }
409
410                bool GlobalTerminationCriteriaMet() const
411                {
412                        return sBvHierarchy->GlobalTerminationCriteriaMet(mParentData);
413                }
414
415                BvhSubdivisionCandidate(
416                        const ObjectContainer &frontObjects,
417                        const ObjectContainer &backObjects,
418                        const BvhTraversalData &tData):
419                mFrontObjects(frontObjects), mBackObjects(backObjects), mParentData(tData)
420                {}
421
422                /// pointer to parent tree.
423                static BvHierarchy *sBvHierarchy;
424                /// parent data
425                BvhTraversalData mParentData;
426                /// the objects on the front of the potential split
427                ObjectContainer mFrontObjects;
428                /// the objects on the back of the potential split
429                ObjectContainer mBackObjects;
430        };
431
432        /** Struct for traversing line segment.
433        */
434        struct LineTraversalData
435        {
436                BvhNode *mNode;
437                Vector3 mExitPoint;
438               
439                float mMaxT;
440   
441                LineTraversalData () {}
442                LineTraversalData (BvhNode *n, const Vector3 &p, const float maxt):
443                mNode(n), mExitPoint(p), mMaxT(maxt) {}
444        };
445
446
447        /** Default constructor creating an empty tree.
448        */
449        BvHierarchy();
450
451        /** Default destructor.
452        */
453        ~BvHierarchy();
454
455        /** Returns tree statistics.
456        */
457        const BvhStatistics &GetStatistics() const;
458 
459        /** Returns bounding box of the specified node.
460        */
461        AxisAlignedBox3 GetBoundingBox(BvhNode *node) const;
462
463        /** Reads parameters from environment singleton.
464        */
465        void ReadEnvironment();
466
467        /** Evaluates candidate for splitting.
468        */
469        void EvalSubdivisionCandidate(BvhSubdivisionCandidate &splitData);
470
471        /** Returns list of leaves with pvs smaller than
472                a certain threshold.
473                @param onlyUnmailed if only the unmailed leaves should be considered
474                @param maxPvs the maximal pvs of a leaf to be added (-1 means unlimited)
475        */
476        void CollectLeaves(vector<BvhLeaf *> &leaves) const;
477
478        /** Returns bounding box of the whole tree (= bbox of root node)
479        */
480        AxisAlignedBox3 GetBoundingBox()const;
481
482        /** Returns root of the view space partitioning tree.
483        */
484        BvhNode *GetRoot() const;
485
486        /** A ray is cast possible intersecting the tree.
487                @param the ray that is cast.
488                @returns the number of intersections with objects stored in the tree.
489        */
490        //int CastRay(Ray &ray);
491
492        /** finds neighbouring leaves of this tree node.
493        */
494        int FindNeighbors(BvhLeaf *n,
495                                          vector<BvhLeaf *> &neighbors,
496                                          const bool onlyUnmailed) const;
497
498        /** Returns random leaf of BSP tree.
499                @param halfspace defines the halfspace from which the leaf is taken.
500        */
501        BvhLeaf *GetRandomLeaf(const Plane3 &halfspace);
502
503        /** Returns random leaf of BSP tree.
504                @param onlyUnmailed if only unmailed leaves should be returned.
505        */
506        BvhLeaf *GetRandomLeaf(const bool onlyUnmailed = false);
507
508        /** Casts line segment into the tree.
509                @param origin the origin of the line segment
510                @param termination the end point of the line segment
511                @returns view cells intersecting the line segment.
512        */
513    int CastLineSegment(const Vector3 &origin,
514                                                const Vector3 &termination,
515                                                ViewCellContainer &viewcells);
516               
517        /** Sets pointer to view cells manager.
518        */
519        void SetViewCellsManager(ViewCellsManager *vcm);
520
521        /** Writes tree to output stream
522        */
523        bool Export(OUT_STREAM &stream);
524
525        /** Returns or creates a new intersectable for use in a kd based pvs.
526                The OspTree is responsible for destruction of the intersectable.
527        */
528        BvhIntersectable *GetOrCreateBvhIntersectable(BvhNode *node);
529
530        /** Collects rays.
531        */
532        void CollectRays(const ObjectContainer &objects, VssRayContainer &rays) const;
533
534        /** Intersects box with the tree and returns the number of intersected boxes.
535                @returns number of view cells found
536        */
537        int ComputeBoxIntersections(
538                const AxisAlignedBox3 &box,
539                ViewCellContainer &viewCells) const;
540
541        /** Returns leaf the point pt lies in, starting from root.
542        */
543        BvhLeaf *GetLeaf(Intersectable *obj, BvhNode *root = NULL) const;
544
545        /** Sets a pointer to the view cells tree.
546        */
547        ViewCellsTree *GetViewCellsTree() const { return mViewCellsTree; }
548        /** See Get
549        */
550        void SetViewCellsTree(ViewCellsTree *vt) { mViewCellsTree = vt; }
551
552
553protected:
554
555        /** Returns true if tree can be terminated.
556        */
557        bool LocalTerminationCriteriaMet(const BvhTraversalData &data) const;
558
559        /** Returns true if global tree can be terminated.
560        */
561        bool GlobalTerminationCriteriaMet(const BvhTraversalData &data) const;
562
563        /** For sorting the objects during the heuristics
564        */
565        struct SortableEntry
566        {
567                Intersectable *mObject;
568                float mPos;
569
570                SortableEntry() {}
571
572                SortableEntry(Intersectable *obj, const float pos):
573                mObject(obj), mPos(pos)
574                {}
575
576                bool operator<(const SortableEntry &b) const
577                {
578                        return mPos < b.mPos;
579                }
580        };
581
582        /** Evaluate balanced object partition.
583        */
584        float EvalLocalObjectPartition(
585                const BvhTraversalData &tData,
586                const int axis,
587                ObjectContainer &objectsFront,
588                ObjectContainer &objectsBack);
589
590        float EvalSah(
591                const BvhTraversalData &tData,
592                const int axis,
593                ObjectContainer &objectsFront,
594                ObjectContainer &objectsBack);
595
596        /** Computes priority of the traversal data and stores it in tData.
597        */
598        void EvalPriority(BvhTraversalData &tData) const;
599
600        /** Evaluates render cost of the bv induced by these objects
601        */
602        float EvalRenderCost(const ObjectContainer &objects) const;
603
604        /** Evaluates tree stats in the BSP tree leafs.
605        */
606        void EvaluateLeafStats(const BvhTraversalData &data);
607
608        /** Subdivides node using a best split priority queue.
609            @param tQueue the best split priority queue
610                @param splitCandidate the candidate for the next split
611                @param globalCriteriaMet if the global termination criteria were already met
612                @returns new root of the subtree
613        */
614        BvhNode *Subdivide(
615                SplitQueue &tQueue,
616                SubdivisionCandidate *splitCandidate,
617                const bool globalCriteriaMet);
618       
619        /** Subdivides leaf.
620                @param sc the subdivisionCandidate holding all necessary data for subdivision           
621               
622                @param frontData returns the traversal data for the front node
623                @param backData returns the traversal data for the back node
624
625                @returns the new interior node = the of the subdivision
626        */
627        BvhInterior *SubdivideNode(
628                const BvhSubdivisionCandidate &sc,
629                BvhTraversalData &frontData,
630                BvhTraversalData &backData);
631
632        /** Splits the objects for the next subdivision.
633                @returns cost for this split
634        */
635        float SelectObjectPartition(
636                const BvhTraversalData &tData,
637                ObjectContainer &frontObjects,
638                ObjectContainer &backObjects);
639       
640        /** Writes the node to disk
641                @note: should be implemented as visitor.
642        */
643        void ExportNode(BvhNode *node, OUT_STREAM &stream);
644
645        void ExportObjects(BvhLeaf *leaf, OUT_STREAM &stream);
646
647        /** Returns estimated memory usage of tree.
648        */
649        float GetMemUsage() const;
650
651        /** Associates the objects with their bvh leaves.
652        */
653        static void AssociateObjectsWithLeaf(BvhLeaf *leaf);
654
655
656        /////////////////////////////
657        // Helper functions for local cost heuristics
658       
659        /** Prepare split candidates for cost heuristics using axis aligned splits.
660                @param node the current node
661                @param axis the current split axis
662        */
663        void PrepareLocalSubdivisionCandidates(
664                const BvhTraversalData &tData,
665                const int axis);
666
667        static void CreateLocalSubdivisionCandidates(
668                const ObjectContainer &objects,
669                SortableEntryContainer **subdivisionCandidates,
670                const bool sort,
671                const int axis);
672
673        /** Computes object partition with the best cost according to the heurisics.
674                @param tData the traversal data
675                @param axis the split axis
676                @param objectsFront the objects in the front child bv
677                @param objectsBack the objects in the back child bv
678                @param backObjectsStart the iterator marking the position where the back objects begin
679
680                @returns relative cost (relative to parent cost)
681        */
682        float EvalLocalCostHeuristics(
683                const BvhTraversalData &tData,
684                const int axis,
685                ObjectContainer &objectsFront,
686                ObjectContainer &objectsBack);
687
688        /** Evaluates the contribution to the front and back volume
689                when this object is changing sides in the bvs.
690
691                @param object the object
692                @param volLeft updates the left pvs
693                @param volPvs updates the right pvs
694        */
695        void EvalHeuristicsContribution(
696                Intersectable *obj,
697                float &volLeft,
698                float &volRight);
699
700        /** Prepares objects for the cost heuristics.
701                @returns sum of volume of associated view cells
702        */
703        float PrepareHeuristics(const BvhTraversalData &tData, const int axis);
704       
705        ////////////////////////////////////////////////
706
707
708        /** Prepares construction for vsp and osp trees.
709        */
710        AxisAlignedBox3 EvalBoundingBox(
711                const ObjectContainer &objects,
712                const AxisAlignedBox3 *parentBox = NULL) const;
713
714        /** Collects list of invalid candidates. Candidates
715                are invalidated by a view space subdivision step
716                that affects this candidate.
717        */
718        void CollectDirtyCandidates(
719                BvhSubdivisionCandidate *sc,
720                vector<SubdivisionCandidate *> &dirtyList);
721
722        /** Collect view cells which see this bvh leaf.
723        */
724        void CollectViewCells(
725                const ObjectContainer &objects,
726                ViewCellContainer &viewCells,
727                const bool setCounter = false) const;
728
729        /** Counts the view cells of this object. note: only
730                counts unmailed objects.
731        */
732        int CountViewCells(Intersectable *obj) const;
733
734        /** Counts the view cells seen by this bvh leaf
735        */
736        int CountViewCells(const ObjectContainer &objects) const;
737
738        /** Collects view cells which see an object.
739        */
740        void CollectViewCells(
741                Intersectable *object,
742                ViewCellContainer &viewCells,
743                const bool useMailBoxing,
744                const bool setCounter = false) const;
745
746        /** Evaluates increase in pvs size.
747        */
748        int EvalPvsEntriesIncr(BvhSubdivisionCandidate &splitCandidate) const;
749
750        /** Rays will be clipped to the bounding box.
751        */
752        void PreprocessRays(
753                BvhLeaf *root,
754                const VssRayContainer &sampleRays,
755                RayInfoContainer &rays);
756
757        /** Print the subdivision stats in the subdivison log.
758        */
759        void PrintSubdivisionStats(const SubdivisionCandidate &tData);
760
761        /** Prints out the stats for this subdivision.
762        */
763        void AddSubdivisionStats(
764                const int viewCells,
765                const float renderCostDecr,
766                const float totalRenderCost);
767
768        /** Stores rays with objects that see the rays.
769        */
770        int AssociateObjectsWithRays(const VssRayContainer &rays) const;
771
772        /** Tests if object is in this leaf.
773                @note: assumes that objects are sorted by their id.
774        */
775        bool IsObjectInLeaf(BvhLeaf *, Intersectable *object) const;
776
777        /** Prepares the construction of the bv hierarchy and returns
778                the first subdivision candidate.
779        */
780        SubdivisionCandidate *PrepareConstruction(
781                const VssRayContainer &sampleRays,
782                const ObjectContainer &objects);
783
784        /** Resets bv hierarchy. E.g. deletes root and resets stats.
785        */
786        SubdivisionCandidate *Reset(
787                const VssRayContainer &rays,
788                const ObjectContainer &objects);
789
790        /** Evaluates volume of view cells that see the objects.
791        */
792        float EvalViewCellsVolume(const ObjectContainer &objects) const;
793
794        /** Assigns or newly creates initial list of sorted objects.
795        */
796        void AssignInitialSortedObjectList(BvhTraversalData &tData);
797
798        /** Assigns sorted objects to front and back data.
799        */
800        void AssignSortedObjects(
801                const BvhSubdivisionCandidate &sc,
802                BvhTraversalData &frontData,
803                BvhTraversalData &backData);
804       
805        /** Creates new root of hierarchy.
806        */
807        void CreateRoot(const ObjectContainer &objects);
808/*void
809RenderBvhNode(BvhNode *node)
810{
811  if (node->IsLeaf()) {
812        BvhLeaf *leaf = (BvhLeaf *) node;
813        for (int i=0; i < mObjects.size(); i++)
814                cout << "leaf obj " << i << endl;
815          //RenderIntersectable(mObjects[i]);
816  } else {
817        BvhInterior *in = (BvhInterior *)node;
818        RenderBvhNode(in->GetBack());
819        RenderBvhNode(in->GetFront());
820  }
821 
822}*/
823protected:
824       
825        /// pre-sorted subdivision candidtes for all three directions.
826        vector<SortableEntry> *mGlobalSubdivisionCandidates[3];
827        /// pointer to the hierarchy of view cells
828        ViewCellsTree *mViewCellsTree;
829        /// The view cells manager
830        ViewCellsManager *mViewCellsManager;
831        /// candidates for placing split planes during cost heuristics
832        vector<SortableEntry> *mSubdivisionCandidates;
833        /// Pointer to the root of the tree
834        BvhNode *mRoot;
835        /// Statistics for the object space partition
836        BvhStatistics mBvhStats;       
837        /// box around the whole view domain
838        AxisAlignedBox3 mBoundingBox;
839        /// the hierarchy manager
840        HierarchyManager *mHierarchyManager;
841
842
843        ////////////////////
844        //-- local termination criteria
845
846        /// maximal possible depth
847        int mTermMaxDepth;
848        /// mininum probability
849        float mTermMinProbability;
850        /// minimal number of objects
851        int mTermMinObjects;
852        /// maximal acceptable cost ratio
853        float mTermMaxCostRatio;
854        /// tolerance value indicating how often the max cost ratio can be failed
855        int mTermMissTolerance;
856        /// minimum number of rays
857        int mTermMinRays;
858
859
860        ////////////////////
861        //-- global termination criteria
862
863        /// the minimal accepted global cost ratio
864        float mTermMinGlobalCostRatio;
865        //// number of accepted misses of the global cost ratio
866        int mTermGlobalCostMissTolerance;
867        /// maximal number of view cells
868        int mTermMaxLeaves;
869        /// maximal tree memory
870        float mMaxMemory;
871        /// the tree is out of memory
872        bool mOutOfMemory;
873
874
875        ////////////////////////////////////////
876        //-- split heuristics based parameters
877       
878        bool mUseCostHeuristics;
879        /// balancing factor for PVS criterium
880        float mCtDivCi;
881        /// if only driving axis should be used for split
882        bool mOnlyDrivingAxis;
883        /// current time stamp (used for keeping split history)
884        int mTimeStamp;
885        // if rays should be stored in leaves
886        bool mStoreRays;
887        // subdivision stats output file
888        ofstream  mSubdivisionStats;
889        /// keeps track of cost during subdivision
890        float mTotalCost;
891        /// keeps track of overall pvs size during subdivision
892        int mTotalPvsSize;
893        /// number of currenly generated view cells
894        int mCreatedLeaves;
895        /// represents min and max band for sweep
896        float mSplitBorder;
897        /// weight between render cost decrease and node render cost
898        float mRenderCostDecreaseWeight;
899        /// stores the kd node intersectables used for pvs
900        BvhIntersectableMap mBvhIntersectables;
901        /// if the objects should be sorted in one global step
902        bool mUseGlobalSorting;
903
904        SortableEntryContainer *mSortedObjects[3];
905};
906
907}
908
909#endif
Note: See TracBrowser for help on using the repository browser.