#include "Environment.h" #include "GvsPreprocessor.h" #include "GlRenderer.h" #include "VssRay.h" #include "ViewCellsManager.h" #include "Triangle3.h" #include "IntersectableWrapper.h" #include "Plane3.h" #include "RayCaster.h" namespace GtpVisibilityPreprocessor { GvsPreprocessor::GvsPreprocessor(): Preprocessor(), mSamplingType(0) { Environment::GetSingleton()->GetIntValue("GvsPreprocessor.totalSamples", mTotalSamples); Environment::GetSingleton()->GetIntValue("GvsPreprocessor.initialSamples", mInitialSamples); Environment::GetSingleton()->GetIntValue("GvsPreprocessor.samplesPerPass", mSamplesPerPass); Environment::GetSingleton()->GetFloatValue("GvsPreprocessor.epsilon", mEps); Environment::GetSingleton()->GetFloatValue("GvsPreprocessor.threshold", mThreshold); Debug << "Gvs preprocessor options" << endl; Debug << "number of total samples: " << mTotalSamples << endl; Debug << "number of initial samples: " << mInitialSamples << endl; Debug << "number of samples per pass: " << mSamplesPerPass << endl; Debug << "threshold: " << mThreshold << endl; Debug << "eps: " << mEps << endl; mStats.open("gvspreprocessor.log"); } bool GvsPreprocessor::CheckDiscontinuity(const VssRay ¤tRay, const Triangle3 &hitTriangle, const VssRay &oldRay) { const float dist = Magnitude(oldRay.GetDir()); const float newDist = Magnitude(currentRay.GetDir()); #if 0 if ((dist - newDist) > mThresHold) #else // rather take relative distance if ((dist / newDist) > mThreshold) #endif { VssRay *newRay = ReverseSampling(currentRay, hitTriangle, oldRay); if (!HandleRay(newRay)) delete newRay; return true; } return false; } bool GvsPreprocessor::HandleRay(VssRay *vssRay) { if (mViewCellsManager->ComputeSampleContribution(*vssRay, true, false)) { //cout << "h"; mRayQueue.push(vssRay); return true; } return false; } /** Creates 3 new vertices for triangle vertex with specified index. */ static void CreateNewVertices(VertexContainer &vertices, const Triangle3 &hitTriangle, const VssRay &ray, const int index, const float eps) { const int indexU = (index + 1) % 3; const int indexL = (index == 0) ? 2 : index - 1; const Vector3 a = hitTriangle.mVertices[index] - ray.GetDir(); const Vector3 b = hitTriangle.mVertices[indexU] - hitTriangle.mVertices[index]; const Vector3 c = hitTriangle.mVertices[index] - hitTriangle.mVertices[indexL]; const float len = Magnitude(a); const Vector3 dir1 = CrossProd(a, b); //N((pi-xp)×(pi+1- pi)); const Vector3 dir2 = CrossProd(a, c); // N((pi-xp)×(pi- pi-1)) const Vector3 dir3 = DotProd(dir1, dir2) > 0 ? // N((pi-xp)×di,i-1+di,i+1×(pi-xp)) Normalize(dir2 + dir1) : Normalize(CrossProd(a, dir2) + CrossProd(dir1, a)); // compute the new three hit points // pi, i + 1: pi+ e·|pi-xp|·di, j const Vector3 pt1 = hitTriangle.mVertices[index] + eps * len * dir1; // pi, i - 1: pi+ e·|pi-xp|·di, j const Vector3 pt2 = hitTriangle.mVertices[index] + eps * len * dir2; // pi, i: pi+ e·|pi-xp|·di, j const Vector3 pt3 = hitTriangle.mVertices[index] + eps * len * dir3; vertices.push_back(pt1); vertices.push_back(pt2); vertices.push_back(pt3); } void GvsPreprocessor::EnlargeTriangle(VertexContainer &vertices, const Triangle3 &hitTriangle, const VssRay &ray) { CreateNewVertices(vertices, hitTriangle, ray, 0, mEps); CreateNewVertices(vertices, hitTriangle, ray, 1, mEps); CreateNewVertices(vertices, hitTriangle, ray, 2, mEps); } static Vector3 CalcPredictedHitPoint(const VssRay &newRay, const Triangle3 &hitTriangle, const VssRay &oldRay) { Plane3 plane(hitTriangle.GetNormal(), hitTriangle.mVertices[0]); const Vector3 hitPt = plane.FindIntersection(newRay.mTermination, newRay.mOrigin); return hitPt; } static bool EqualVisibility(const VssRay &a, const VssRay &b) { return a.mTerminationObject == b.mTerminationObject; } int GvsPreprocessor::SubdivideEdge(const Triangle3 &hitTriangle, const Vector3 &p1, const Vector3 &p2, const VssRay &x, const VssRay &y, const VssRay &oldRay) { // the predicted hitpoint expects to hit the same mesh again const Vector3 predictedHitX = CalcPredictedHitPoint(x, hitTriangle, oldRay); const Vector3 predictedHitY = CalcPredictedHitPoint(y, hitTriangle, oldRay); CheckDiscontinuity(x, hitTriangle, oldRay); CheckDiscontinuity(y, hitTriangle, oldRay); if (EqualVisibility(x, y)) { return 2; } else { const Vector3 p = (p1 + p2) * 0.5f; SimpleRay sray(oldRay.mOrigin, p - oldRay.mOrigin); VssRay *newRay = mRayCaster->CastSingleRay(sray.mOrigin, sray.mDirection, 1, mViewSpaceBox); bool addedToQueue = HandleRay(newRay); const int s1 = SubdivideEdge(hitTriangle, p1, p, x, *newRay, oldRay); const int s2 = SubdivideEdge(hitTriangle, p, p2, *newRay, y, oldRay); return s1 + s2; if (!addedToQueue) delete newRay; } } int GvsPreprocessor::AdaptiveBorderSampling(const VssRay ¤tRay) { cout << "a"; Intersectable *tObj = currentRay.mTerminationObject; Triangle3 hitTriangle; // other types not implemented yet if (tObj->Type() == Intersectable::TRIANGLE_INTERSECTABLE) { hitTriangle = dynamic_cast(tObj)->GetItem(); } VertexContainer enlargedTriangle; /// create 3 new hit points for each vertex EnlargeTriangle(enlargedTriangle, hitTriangle, currentRay); /// create rays from sample points and handle them SimpleRayContainer simpleRays; simpleRays.reserve(9); VertexContainer::const_iterator vit, vit_end = enlargedTriangle.end(); for (vit = enlargedTriangle.begin(); vit != vit_end; ++ vit) { const Vector3 rayDir = (*vit) - currentRay.GetOrigin(); simpleRays.push_back(SimpleRay(*vit, rayDir)); } // establish visibility VssRayContainer vssRays; CastRays(simpleRays, vssRays, false); // add to ray queue EnqueueRays(vssRays); /* // recursivly subdivide each edge for (int i = 0; i < 9; ++ i) { SubdivideEdge( hitTriangle, enlargedTriangle[i], enlargedTriangle[(i + 1) % 9], *vssRays[i], *vssRays[(i + 1) % 9], currentRay); } */ return (int)vssRays.size(); } static Vector3 GetPassingPoint(const VssRay ¤tRay, const Triangle3 &hitTriangle, const VssRay &oldRay) { // intersect triangle plane with plane spanned by current samples Plane3 plane(currentRay.GetOrigin(), currentRay.GetTermination(), oldRay.GetTermination()); Plane3 triPlane(hitTriangle.GetNormal(), hitTriangle.mVertices[0]); SimpleRay intersectLine = GetPlaneIntersection(plane, triPlane); // Evaluate new hitpoint just outside the triangle const float factor = 0.95f; float t = triPlane.FindT(intersectLine); const Vector3 newPoint = intersectLine.mOrigin + t * factor * intersectLine.mDirection; return newPoint; } VssRay *GvsPreprocessor::ReverseSampling(const VssRay ¤tRay, const Triangle3 &hitTriangle, const VssRay &oldRay) { cout << "r" << endl; //-- The plane p = (xp, hit(x), hit(xold)) is intersected //-- with the newly found triangle (xold is the previous ray from //-- which x was generated). On the intersecting line, we select a point //-- pnew which lies just outside of the new triangle so the ray //-- just passes by inside the gap const Vector3 newPoint = GetPassingPoint(currentRay, hitTriangle, oldRay); const Vector3 predicted = CalcPredictedHitPoint(currentRay, hitTriangle, oldRay); //-- Construct the mutated ray with xnew,dir = predicted(x)- pnew //-- as direction vector const Vector3 newDir = predicted - newPoint ; // take xnew,p = intersect(viewcell, line(pnew, predicted(x)) as origin ? // difficult to say!! const Vector3 newOrigin = newDir * -5000.0f; return new VssRay(currentRay); } int GvsPreprocessor::CastInitialSamples(const int numSamples, const int sampleType) { const long startTime = GetTime(); // generate simple rays SimpleRayContainer simpleRays; GenerateRays(numSamples, sampleType, simpleRays); // generate vss rays VssRayContainer samples; CastRays(simpleRays, samples, true); // add to ray queue EnqueueRays(samples); Debug << "generated " << numSamples << " samples in " << TimeDiff(startTime, GetTime()) * 1e-3 << " secs" << endl; return (int)samples.size(); } void GvsPreprocessor::EnqueueRays(VssRayContainer &samples) { // add samples to ray queue VssRayContainer::const_iterator vit, vit_end = samples.end(); for (vit = samples.begin(); vit != vit_end; ++ vit) { HandleRay(*vit); } } int GvsPreprocessor::Pass() { int castSamples = 0; const int mSampleType = 0; while (castSamples < mSamplesPerPass) { // Ray queue empty => // cast a number of uniform samples to fill ray Queue CastInitialSamples(mInitialSamples, mSampleType); const int gvsSamples = ProcessQueue(); #if 0 castSamples += gvsSamples; #else castSamples += mInitialSamples; #endif //cout << "\ncast " << castSamples << " of " << mSamplesPerPass << endl; } return castSamples; } int GvsPreprocessor::ProcessQueue() { int castSamples = 0; while (!mRayQueue.empty()) { // handle next ray VssRay *ray = mRayQueue.top(); mRayQueue.pop(); castSamples += AdaptiveBorderSampling(*ray); delete ray; } return castSamples; } bool GvsPreprocessor::ComputeVisibility() { Randomize(0); const long startTime = GetTime(); mViewSpaceBox = mKdTree->GetBox(); cout << "Gvs Preprocessor started\n" << flush; if (!mLoadViewCells) { /// construct the view cells from the scratch ConstructViewCells(mViewSpaceBox); cout << "view cells loaded" << endl; } int castSamples = 0; while (castSamples < mTotalSamples) { const int passSamples = Pass(); castSamples += passSamples; //////// //-- stats cout << "+"; cout << "\nsamples cast " << passSamples << " (=" << castSamples << " of " << mTotalSamples << ")" << endl; //mVssRays.PrintStatistics(mStats); mStats << "#Time\n" << TimeDiff(startTime, GetTime())*1e-3 << endl << "#TotalSamples\n" << castSamples << endl; mViewCellsManager->PrintPvsStatistics(mStats); // ComputeRenderError(); } return true; } }