1 | #ifndef __HALTON_H
|
---|
2 | #define __HALTON_H
|
---|
3 |
|
---|
4 | #include <iostream>
|
---|
5 | using namespace std;
|
---|
6 |
|
---|
7 | namespace GtpVisibilityPreprocessor {
|
---|
8 |
|
---|
9 | class Halton2 {
|
---|
10 | static float _invBases[2];
|
---|
11 | float _prev[2];
|
---|
12 |
|
---|
13 | float halton(float baseRec, float prev) const {
|
---|
14 | float r = 1 - prev - 1e-10f;
|
---|
15 | if (baseRec < r)
|
---|
16 | return prev + baseRec;
|
---|
17 | float h = baseRec;
|
---|
18 | float hh;
|
---|
19 | do {
|
---|
20 | hh = h;
|
---|
21 | h *= baseRec;
|
---|
22 | } while (h >= r);
|
---|
23 | return prev + hh + h - 1;
|
---|
24 | }
|
---|
25 |
|
---|
26 | public:
|
---|
27 |
|
---|
28 | void Reset() {
|
---|
29 | _prev[0] =_prev[1] = 0;
|
---|
30 | }
|
---|
31 |
|
---|
32 | Halton2() {
|
---|
33 | _invBases[0] = 1.0f/2;
|
---|
34 | _invBases[1] = 1.0f/3;
|
---|
35 | Reset();
|
---|
36 | }
|
---|
37 |
|
---|
38 | void
|
---|
39 | GetNext(float &a, float &b) {
|
---|
40 | a = halton(_invBases[0], _prev[0]);
|
---|
41 | b = halton(_invBases[1], _prev[1]);
|
---|
42 | _prev[0] = a;
|
---|
43 | _prev[1] = b;
|
---|
44 | }
|
---|
45 | };
|
---|
46 |
|
---|
47 |
|
---|
48 | /**
|
---|
49 | * Assert whether the argument is a prime number.
|
---|
50 | * @param number the number to be checked
|
---|
51 | */
|
---|
52 | inline bool IsPrime(const int number) {
|
---|
53 | bool isIt = true;
|
---|
54 | for(int i = 2; i < number; i++) {
|
---|
55 | if(number % i == 0) {
|
---|
56 | isIt = false;
|
---|
57 | break;
|
---|
58 | }
|
---|
59 | }
|
---|
60 | if(number == 2) {
|
---|
61 | isIt = false;
|
---|
62 | }
|
---|
63 | return isIt;
|
---|
64 | }
|
---|
65 |
|
---|
66 | /**
|
---|
67 | * Find the nth prime number.
|
---|
68 | * @param index the ordinal position in the sequence
|
---|
69 | */
|
---|
70 | inline int FindPrime(const int index) {
|
---|
71 | if(index < 1) {
|
---|
72 | cerr<<"FindPrime: The argument must be non-negative."<<endl;
|
---|
73 | return -1;
|
---|
74 | }
|
---|
75 | int prime = 1;
|
---|
76 | int found = 1;
|
---|
77 | while(found != index) {
|
---|
78 | prime += 2;
|
---|
79 | if(IsPrime(prime) == true) {
|
---|
80 | found++;
|
---|
81 | }
|
---|
82 | }
|
---|
83 | return prime;
|
---|
84 | }
|
---|
85 |
|
---|
86 | struct HaltonSequence {
|
---|
87 | public:
|
---|
88 | int index;
|
---|
89 |
|
---|
90 | HaltonSequence():index(1) {}
|
---|
91 |
|
---|
92 | void Reset() {
|
---|
93 | index = 1;
|
---|
94 | }
|
---|
95 |
|
---|
96 | void GenerateNext() {
|
---|
97 | index++;
|
---|
98 | }
|
---|
99 |
|
---|
100 | /**
|
---|
101 | * Returns the nth number in the sequence, taken from a specified dimension.
|
---|
102 | * @param index the ordinal position in the sequence
|
---|
103 | * @param dimension the dimension
|
---|
104 | */
|
---|
105 |
|
---|
106 | double GetNumber(const int dimension) {
|
---|
107 | int base = FindPrime(dimension);
|
---|
108 | if(base == 1) {
|
---|
109 | base++; //The first dimension uses base 2.
|
---|
110 | }
|
---|
111 | double remainder;
|
---|
112 | double output = 0.0;
|
---|
113 | double fraction = 1.0 / (double)base;
|
---|
114 | int N1 = 0;
|
---|
115 | int copyOfIndex = index;
|
---|
116 | if((base >= 2) && (index >= 1)) {
|
---|
117 | // changed by matt
|
---|
118 | //if(base >= 2 & index >= 1) {
|
---|
119 | while(copyOfIndex > 0) {
|
---|
120 | N1 = (copyOfIndex / base);
|
---|
121 | remainder = copyOfIndex % base;
|
---|
122 | output += fraction * remainder;
|
---|
123 | copyOfIndex = (int)(copyOfIndex / base);
|
---|
124 | fraction /= (double)base;
|
---|
125 | }
|
---|
126 | return output;
|
---|
127 | }
|
---|
128 | else {
|
---|
129 | cerr<<"Error generating Halton sequence."<<endl;
|
---|
130 | exit(1);
|
---|
131 | }
|
---|
132 | }
|
---|
133 | };
|
---|
134 |
|
---|
135 | extern Halton2 halton2;
|
---|
136 | }
|
---|
137 |
|
---|
138 | #endif
|
---|