#include #include #include #include "ViewCell.h" #include "Plane3.h" #include "HierarchyManager.h" #include "Mesh.h" #include "common.h" #include "Environment.h" #include "Polygon3.h" #include "Ray.h" #include "AxisAlignedBox3.h" #include "Exporter.h" #include "Plane3.h" #include "ViewCellsManager.h" #include "Beam.h" #include "KdTree.h" #include "IntersectableWrapper.h" #include "VspTree.h" #include "OspTree.h" #include "BvHierarchy.h" namespace GtpVisibilityPreprocessor { #define USE_FIXEDPOINT_T 0 /*******************************************************************/ /* class HierarchyManager implementation */ /*******************************************************************/ HierarchyManager::HierarchyManager(const int objectSpaceSubdivisionType): mObjectSpaceSubdivisionType(objectSpaceSubdivisionType), mOspTree(NULL), mBvHierarchy(NULL) { switch(mObjectSpaceSubdivisionType) { case KD_BASED_OBJ_SUBDIV: mOspTree = new OspTree(); mOspTree->mVspTree = mVspTree; mOspTree->mHierarchyManager = this; break; case BV_BASED_OBJ_SUBDIV: mBvHierarchy = new BvHierarchy(); mBvHierarchy->mHierarchyManager = this; break; default: break; } // hierarchy manager links view space partition and object space partition mVspTree = new VspTree(); mVspTree->mHierarchyManager = this; ParseEnvironment(); } HierarchyManager::HierarchyManager(KdTree *kdTree): mObjectSpaceSubdivisionType(KD_BASED_OBJ_SUBDIV), mBvHierarchy(NULL) { mOspTree = new OspTree(*kdTree); mOspTree->mVspTree = mVspTree; mVspTree = new VspTree(); mVspTree->mHierarchyManager = this; ParseEnvironment(); } void HierarchyManager::ParseEnvironment() { char subdivisionStatsLog[100]; Environment::GetSingleton()->GetStringValue("Hierarchy.subdivisionStats", subdivisionStatsLog); mSubdivisionStats.open(subdivisionStatsLog); Environment::GetSingleton()->GetFloatValue( "Hierarchy.Termination.minGlobalCostRatio", mTermMinGlobalCostRatio); Environment::GetSingleton()->GetIntValue( "Hierarchy.Termination.globalCostMissTolerance", mTermGlobalCostMissTolerance); Environment::GetSingleton()->GetBoolValue( "Hierarchy.Construction.startWithObjectSpace", mStartWithObjectSpace); Environment::GetSingleton()->GetIntValue( "Hierarchy.Termination.maxLeaves", mTermMaxLeaves); Environment::GetSingleton()->GetIntValue( "Hierarchy.Construction.type", mConstructionType); Environment::GetSingleton()->GetIntValue( "Hierarchy.Construction.minDepthForOsp", mMinDepthForObjectSpaceSubdivion); Environment::GetSingleton()->GetIntValue( "Hierarchy.Construction.minDepthForVsp", mMinDepthForViewSpaceSubdivion); Environment::GetSingleton()->GetBoolValue( "Hierarchy.Construction.repairQueue", mRepairQueue); Environment::GetSingleton()->GetBoolValue( "Hierarchy.Construction.useMultiLevel", mUseMultiLevelConstruction); mUseMultiLevelConstruction; Debug << "******** Hierachy Manager Parameters ***********" << endl; Debug << "max leaves: " << mTermMaxLeaves << endl; Debug << "min global cost ratio: " << mTermMinGlobalCostRatio << endl; Debug << "global cost miss tolerance: " << mTermGlobalCostMissTolerance << endl; Debug << "construction type: " << mConstructionType << endl; Debug << "min depth for object space subdivision: " << mMinDepthForObjectSpaceSubdivion << endl; Debug << "repair queue: " << mRepairQueue << endl; Debug << endl; } HierarchyManager::~HierarchyManager() { DEL_PTR(mOspTree); DEL_PTR(mVspTree); DEL_PTR(mBvHierarchy); } int HierarchyManager::GetObjectSpaceSubdivisionType() const { return mObjectSpaceSubdivisionType; } int HierarchyManager::GetViewSpaceSubdivisionType() const { return mViewSpaceSubdivisionType; } void HierarchyManager::SetViewCellsManager(ViewCellsManager *vcm) { mVspTree->SetViewCellsManager(vcm); if (mOspTree) { mOspTree->SetViewCellsManager(vcm); } else if (mBvHierarchy) { mBvHierarchy->SetViewCellsManager(vcm); } } void HierarchyManager::SetViewCellsTree(ViewCellsTree *vcTree) { mVspTree->SetViewCellsTree(vcTree); } VspTree *HierarchyManager::GetVspTree() { return mVspTree; } /* AxisAlignedBox3 HierarchyManager::GetViewSpaceBox() const { return mVspTree->mBoundingBox; }*/ AxisAlignedBox3 HierarchyManager::GetObjectSpaceBox() const { switch (mObjectSpaceSubdivisionType) { case KD_BASED_OBJ_SUBDIV: return mOspTree->mBoundingBox; case BV_BASED_OBJ_SUBDIV: return mBvHierarchy->mBoundingBox; default: // hack: empty box return AxisAlignedBox3(); } } SubdivisionCandidate *HierarchyManager::NextSubdivisionCandidate() { SubdivisionCandidate *splitCandidate = mTQueue.Top(); mTQueue.Pop(); return splitCandidate; } void HierarchyManager::EvalSubdivisionStats(const SubdivisionCandidate &tData) { const float costDecr = tData.GetRenderCostDecrease(); AddSubdivisionStats(mHierarchyStats.Leaves(), costDecr, mTotalCost, mTotalPvsEntries ); } void HierarchyManager::AddSubdivisionStats(const int splits, const float renderCostDecr, const float totalRenderCost, const int pvsEntries) { mSubdivisionStats << "#Splits\n" << splits << endl << "#RenderCostDecrease\n" << renderCostDecr << endl << "#TotalPvsEntries\n" << pvsEntries << endl << "#TotalRenderCost\n" << totalRenderCost << endl; } bool HierarchyManager::GlobalTerminationCriteriaMet(SubdivisionCandidate *candidate) const { const bool terminationCriteriaMet = (0 || (mHierarchyStats.Leaves() >= mTermMaxLeaves) || (mHierarchyStats.mGlobalCostMisses >= mTermGlobalCostMissTolerance) || (candidate->GlobalTerminationCriteriaMet()) ); if (0 && terminationCriteriaMet) { Debug << "hierarchy global termination criteria met:" << endl; Debug << "leaves: " << mHierarchyStats.Leaves() << " " << mTermMaxLeaves << endl; Debug << "cost misses: " << mHierarchyStats.mGlobalCostMisses << " " << mTermGlobalCostMissTolerance << endl; } return terminationCriteriaMet; } void HierarchyManager::Construct(const VssRayContainer &sampleRays, const ObjectContainer &objects, AxisAlignedBox3 *forcedViewSpace) { if (mUseMultiLevelConstruction) { ConstructMultiLevel(sampleRays, objects, forcedViewSpace); } else { ConstructInterleaved(sampleRays, objects, forcedViewSpace); } } void HierarchyManager::ConstructInterleaved(const VssRayContainer &sampleRays, const ObjectContainer &objects, AxisAlignedBox3 *forcedViewSpace) { mHierarchyStats.Reset(); mHierarchyStats.Start(); mHierarchyStats.nodes = 2; // two nodes for view space and object space mTotalCost = (float)objects.size(); Debug << "setting total cost to " << mTotalCost << endl; const long startTime = GetTime(); cout << "Constructing view space / object space tree ... \n"; // compute view space bounding box mVspTree->ComputeBoundingBox(sampleRays, forcedViewSpace); // use objects for evaluating vsp tree construction in the first levels // of the subdivision mSavedObjectSpaceSubdivisionType = mObjectSpaceSubdivisionType; mObjectSpaceSubdivisionType = NO_OBJ_SUBDIV; mSavedViewSpaceSubdivisionType = mViewSpaceSubdivisionType; mViewSpaceSubdivisionType = NO_VIEWSPACE_SUBDIV; // start with view space subdivison: prepare vsp tree for traversal if (StartViewSpaceSubdivision()) { mViewSpaceSubdivisionType = mSavedViewSpaceSubdivisionType; PrepareViewSpaceSubdivision(sampleRays, objects); } // start object space subdivision immediately? if (StartObjectSpaceSubdivision()) { mObjectSpaceSubdivisionType = mSavedObjectSpaceSubdivisionType; PrepareObjectSpaceSubdivision(sampleRays, objects); } // process object space candidates RunConstruction(mRepairQueue, sampleRays, objects, forcedViewSpace); cout << "\nfinished in " << TimeDiff(startTime, GetTime()) * 1e-3 << " secs" << endl; /*#if _DEBUG cout << "view space: " << GetViewSpaceBox() << endl; cout << "object space: " << GetObjectSpaceBox() << endl; #endif*/ mObjectSpaceSubdivisionType = mSavedObjectSpaceSubdivisionType; mViewSpaceSubdivisionType = mSavedViewSpaceSubdivisionType; mHierarchyStats.Stop(); mVspTree->mVspStats.Stop(); FinishObjectSpaceSubdivision(objects); } void HierarchyManager::PrepareViewSpaceSubdivision(const VssRayContainer &sampleRays, const ObjectContainer &objects) { cout << "\nstarting view space hierarchy construction ... " << endl; // hack: reset global cost misses mHierarchyStats.mGlobalCostMisses = 0; RayInfoContainer *viewSpaceRays = new RayInfoContainer(); SubdivisionCandidate *vsc = mVspTree->PrepareConstruction(sampleRays, *viewSpaceRays); mTotalCost = mVspTree->mTotalCost; Debug << "\nreseting cost, new total cost: " << mTotalCost << endl; mTQueue.Push(vsc); } void HierarchyManager::PrepareObjectSpaceSubdivision(const VssRayContainer &sampleRays, const ObjectContainer &objects) { mHierarchyStats.mGlobalCostMisses = 0; // hack: reset global cost misses if (mObjectSpaceSubdivisionType == KD_BASED_OBJ_SUBDIV) { PrepareOspTree(sampleRays, objects); } else if (mObjectSpaceSubdivisionType == BV_BASED_OBJ_SUBDIV) { PrepareBvHierarchy(sampleRays, objects); } } void HierarchyManager::PrepareBvHierarchy(const VssRayContainer &sampleRays, const ObjectContainer &objects) { const long startTime = GetTime(); cout << "preparing bv hierarchy construction ... " << endl; // compute first candidate SubdivisionCandidate *sc = mBvHierarchy->PrepareConstruction(sampleRays, objects); mTotalCost = mBvHierarchy->mTotalCost; Debug << "\nreseting cost, new total cost: " << mTotalCost << endl; mTQueue.Push(sc); cout << "finished bv hierarchy preparation in " << TimeDiff(startTime, GetTime()) * 1e-3 << " secs" << endl; } void HierarchyManager::PrepareOspTree(const VssRayContainer &sampleRays, const ObjectContainer &objects) { cout << "starting osp tree construction ... " << endl; RayInfoContainer *objectSpaceRays = new RayInfoContainer(); // start with one big kd cell - all objects can be seen from everywhere // note: only true for view space = object space // compute first candidate SubdivisionCandidate *osc = mOspTree->PrepareConstruction(sampleRays, objects, *objectSpaceRays); mTotalCost = mOspTree->mTotalCost; Debug << "\nreseting cost, new total cost: " << mTotalCost << endl; mTQueue.Push(osc); } bool HierarchyManager::ApplySubdivisionCandidate(SubdivisionCandidate *sc) { const bool globalTerminationCriteriaMet = GlobalTerminationCriteriaMet(sc); const bool vspSplit = (sc->Type() == SubdivisionCandidate::VIEW_SPACE); if (!globalTerminationCriteriaMet) { // cost ratio of cost decrease / totalCost const float costRatio = mCurrentCandidate->GetRenderCostDecrease() / mTotalCost; //Debug << "ratio: " << costRatio << " min ratio: " << mTermMinGlobalCostRatio << endl; if (costRatio < mTermMinGlobalCostRatio) { ++ mHierarchyStats.mGlobalCostMisses; } mTotalCost -= mCurrentCandidate->GetRenderCostDecrease(); } if (vspSplit) { VspNode *n = mVspTree->Subdivide(mTQueue, sc, globalTerminationCriteriaMet); if (n->IsLeaf()) // local or global termination criteria failed return false; } else { if (mObjectSpaceSubdivisionType == KD_BASED_OBJ_SUBDIV) { KdNode *n = mOspTree->Subdivide(mTQueue, sc, globalTerminationCriteriaMet); // local or global termination criteria failed if (n->IsLeaf()) return false; } else if (mObjectSpaceSubdivisionType == BV_BASED_OBJ_SUBDIV) { BvhNode *n = mBvHierarchy->Subdivide(mTQueue, sc, globalTerminationCriteriaMet); // local or global termination criteria failed if (n->IsLeaf()) return false; } } return true; } int HierarchyManager::GetObjectSpaceSubdivisionDepth() const { int maxDepth = 0; if (mObjectSpaceSubdivisionType == KD_BASED_OBJ_SUBDIV) { maxDepth = mOspTree->mOspStats.maxDepth; } else if (mObjectSpaceSubdivisionType == BV_BASED_OBJ_SUBDIV) { maxDepth = mBvHierarchy->mBvhStats.maxDepth; } return maxDepth; } bool HierarchyManager::StartObjectSpaceSubdivision() const { // view space construction already started if (ObjectSpaceSubdivisionConstructed()) return false; // start immediately with object space subdivision? if (mStartWithObjectSpace) return true; // is the queue empty again? if (ViewSpaceSubdivisionConstructed() && mTQueue.Empty()) return true; // has the depth for subdivision been reached? return ((mConstructionType == INTERLEAVED) && (mMinDepthForObjectSpaceSubdivion <= mVspTree->mVspStats.maxDepth)); } bool HierarchyManager::StartViewSpaceSubdivision() const { // view space construction already started if (ViewSpaceSubdivisionConstructed()) return false; // start immediately with view space subdivision? if (!mStartWithObjectSpace) return true; // is the queue empty again? if (ObjectSpaceSubdivisionConstructed() && mTQueue.Empty()) return true; // has the depth for subdivision been reached? return ((mConstructionType == INTERLEAVED) && (mMinDepthForViewSpaceSubdivion <= GetObjectSpaceSubdivisionDepth())); } void HierarchyManager::RunConstruction(const bool repairQueue, const VssRayContainer &sampleRays, const ObjectContainer &objects, AxisAlignedBox3 *forcedViewSpace) { int i = 0; while (!FinishedConstruction()) { mCurrentCandidate = NextSubdivisionCandidate(); /////////////////// //-- subdivide leaf node if (ApplySubdivisionCandidate(mCurrentCandidate)) { cout << mCurrentCandidate->Type() << " "; // update stats mHierarchyStats.nodes += 2; mHierarchyStats.pvsEntries += mCurrentCandidate->GetPvsEntriesIncr(); mHierarchyStats.memory += 0; // TODO // subdivision successful EvalSubdivisionStats(*mCurrentCandidate); // reevaluate candidates affected by the split for view space splits, // this would be object space splits and other way round if (repairQueue) { RepairQueue(); } } // we use objects for evaluating vsp tree construction until // a certain depth once a certain depth existiert ... if (StartObjectSpaceSubdivision()) { mObjectSpaceSubdivisionType = mSavedObjectSpaceSubdivisionType; cout << "\nstarting object space subdivision at depth " << mVspTree->mVspStats.maxDepth << " (" << mMinDepthForObjectSpaceSubdivion << ") " << endl; PrepareObjectSpaceSubdivision(sampleRays, objects); cout << "reseting queue ... "; ResetQueue(); cout << "finished" << endl; } if (StartViewSpaceSubdivision()) { mViewSpaceSubdivisionType = mSavedViewSpaceSubdivisionType; cout << "\nstarting view space subdivision at depth " << GetObjectSpaceSubdivisionDepth() << " (" << mMinDepthForViewSpaceSubdivion << ") " << endl; PrepareViewSpaceSubdivision(sampleRays, objects); cout << "reseting queue ... "; ResetQueue(); cout << "finished" << endl; } DEL_PTR(mCurrentCandidate); } } void HierarchyManager::RunConstruction(const bool repairQueue) { int i = 0; while (!FinishedConstruction()) { mCurrentCandidate = NextSubdivisionCandidate(); /////////////////// //-- subdivide leaf node if (ApplySubdivisionCandidate(mCurrentCandidate)) { cout << mCurrentCandidate->Type() << " "; if (0) cout << "subdividing candidate " << ++ i << " of type " << mCurrentCandidate->Type() << endl; mHierarchyStats.nodes += 2; // subdivision successful EvalSubdivisionStats(*mCurrentCandidate); // reevaluate candidates affected by the split for view space splits, // this would be object space splits and other way round if (repairQueue) RepairQueue(); } DEL_PTR(mCurrentCandidate); } } void HierarchyManager::ResetObjectSpaceSubdivision(const VssRayContainer &sampleRays, const ObjectContainer &objects) { #if 0 DEL_PTR(mBvHierarchy); mBvHierarchy = new BvHierarchy(); mBvHierarchy->mHierarchyManager = this; PrepareObjectSpaceSubdivision(sampleRays, objects); return; #endif if (!ObjectSpaceSubdivisionConstructed()) { return PrepareObjectSpaceSubdivision(sampleRays, objects); } switch (mObjectSpaceSubdivisionType) { case BV_BASED_OBJ_SUBDIV: cout << "\nreseting bv hierarchy" << endl; Debug << "old bv hierarchy:\n " << mBvHierarchy->mBvhStats << endl; mHierarchyStats.nodes -= mBvHierarchy->mBvhStats.nodes; mTQueue.Push(mBvHierarchy->Reset(sampleRays, objects)); mTotalCost = mBvHierarchy->mTotalCost; break; case KD_BASED_OBJ_SUBDIV: // TODO break; default: break; } } void HierarchyManager::ResetViewSpaceSubdivision(const VssRayContainer &sampleRays, const ObjectContainer &objects) { DEL_PTR(mBvHierarchy); mBvHierarchy = new BvHierarchy(); mBvHierarchy->mHierarchyManager = this; PrepareViewSpaceSubdivision(sampleRays, objects); return; } void HierarchyManager::ConstructMultiLevel(const VssRayContainer &sampleRays, const ObjectContainer &objects, AxisAlignedBox3 *forcedViewSpace) { mHierarchyStats.Reset(); mHierarchyStats.Start(); mHierarchyStats.nodes = 2; mTotalCost = (float)objects.size(); Debug << "setting total cost to " << mTotalCost << endl; const long startTime = GetTime(); cout << "Constructing view space / object space tree ... \n"; // compute view space bounding box mVspTree->ComputeBoundingBox(sampleRays, forcedViewSpace); // use sah for evaluating object space construction for the first run mSavedViewSpaceSubdivisionType = mViewSpaceSubdivisionType; mViewSpaceSubdivisionType = NO_VIEWSPACE_SUBDIV; const int limit = 4; int i = 0; // render cost optimization // start with object space partiton // then optimizate view space partition for the current osp // and vice versa until iteration depth is reached. while (1) { // first run object space subdivision ResetObjectSpaceSubdivision(sampleRays, objects); // process object space candidates RunConstruction(false); if ((++ i) >= limit) break; ///////////////// // do view space subdivison with respect to the object space partition ResetViewSpaceSubdivision(sampleRays, objects); // process view space candidates RunConstruction(false); mViewSpaceSubdivisionType = mSavedViewSpaceSubdivisionType; if ((++ i) >= limit) break; cout << "iteration " << i << " of " << limit << " finished" << endl; } cout << "\nfinished in " << TimeDiff(startTime, GetTime()) * 1e-3 << " secs" << endl; /*#if _DEBUG cout << "view space: " << GetViewSpaceBox() << endl; cout << "object space: " << GetObjectSpaceBox() << endl; #endif*/ mHierarchyStats.Stop(); mVspTree->mVspStats.Stop(); FinishObjectSpaceSubdivision(objects); } bool HierarchyManager::FinishedConstruction() const { return mTQueue.Empty(); } bool HierarchyManager::ObjectSpaceSubdivisionConstructed() const { switch (mObjectSpaceSubdivisionType) { case KD_BASED_OBJ_SUBDIV: return mOspTree && mOspTree->GetRoot(); case BV_BASED_OBJ_SUBDIV: return mBvHierarchy && mBvHierarchy->GetRoot(); default: return false; } } bool HierarchyManager::ViewSpaceSubdivisionConstructed() const { return mVspTree && mVspTree->GetRoot(); } void HierarchyManager::CollectObjectSpaceDirtyList(SubdivisionCandidateContainer &dirtyList) { switch (mObjectSpaceSubdivisionType) { case KD_BASED_OBJ_SUBDIV: { OspTree::OspSubdivisionCandidate *sc = dynamic_cast(mCurrentCandidate); mOspTree->CollectDirtyCandidates(sc, dirtyList); break; } case BV_BASED_OBJ_SUBDIV: { BvHierarchy::BvhSubdivisionCandidate *sc = dynamic_cast(mCurrentCandidate); mBvHierarchy->CollectDirtyCandidates(sc, dirtyList); break; } default: break; } } void HierarchyManager::CollectViewSpaceDirtyList(SubdivisionCandidateContainer &dirtyList) { VspTree::VspSubdivisionCandidate *sc = dynamic_cast(mCurrentCandidate); mVspTree->CollectDirtyCandidates(sc, dirtyList); } void HierarchyManager::CollectDirtyCandidates(SubdivisionCandidateContainer &dirtyList) { // we have either a object space or view space split if (mCurrentCandidate->Type() == SubdivisionCandidate::VIEW_SPACE) { CollectViewSpaceDirtyList(dirtyList); } else // object space split { CollectObjectSpaceDirtyList(dirtyList); } } void HierarchyManager::RepairQueue() { // for each update of the view space partition: // the candidates from object space partition which // have been afected by the view space split (the kd split candidates // which saw the view cell which was split) must be reevaluated // (maybe not locally, just reinsert them into the queue) // // vice versa for the view cells // for each update of the object space partition // reevaluate split candidate for view cells which saw the split kd cell // // the priority queue update can be solved by implementing a binary heap // (explicit data structure, binary tree) // *) inserting and removal is efficient // *) search is not efficient => store queue position with each // split candidate // collect list of "dirty" candidates long startTime = GetTime(); vector dirtyList; CollectDirtyCandidates(dirtyList); if (0) cout << "repairing " << (int)dirtyList.size() << " candidates ... "; ///////////////////////////////// //-- reevaluate the dirty list SubdivisionCandidateContainer::const_iterator sit, sit_end = dirtyList.end(); for (sit = dirtyList.begin(); sit != sit_end; ++ sit) { SubdivisionCandidate* sc = *sit; const float rcd = sc->GetRenderCostDecrease(); mTQueue.Erase(sc); // erase from queue sc->EvalPriority(); // reevaluate /* Debug << "candidate " << sc << " reevaluated\n" << "render cost decrease diff " << rcd - sc->GetRenderCostDecrease() << " old: " << rcd << " new " << sc->GetRenderCostDecrease() << endl;*/ if (0) { const float rcDiff = rcd - sc->GetRenderCostDecrease(); mTotalCost += rcDiff; } mTQueue.Push(sc); // reinsert } long endTime = GetTime(); Real timeDiff = TimeDiff(startTime, endTime); mHierarchyStats.repairTime += timeDiff; if (0) cout << "finished in " << timeDiff * 1e-3f << " secs" << endl; } void HierarchyManager::ResetQueue() { SubdivisionCandidateContainer mCandidateBuffer; // remove from queue while (!mTQueue.Empty()) { SubdivisionCandidate *candidate = NextSubdivisionCandidate(); candidate->EvalPriority(); // reevaluate cout << "."; mCandidateBuffer.push_back(candidate); } // put back into queue SubdivisionCandidateContainer::const_iterator sit, sit_end = mCandidateBuffer.end(); for (sit = mCandidateBuffer.begin(); sit != sit_end; ++ sit) {cout << ":"; mTQueue.Push(*sit); } } void HierarchyManager::ExportObjectSpaceHierarchy(OUT_STREAM &stream) { // the type of the view cells hierarchy switch (mObjectSpaceSubdivisionType) { case KD_BASED_OBJ_SUBDIV: stream << "" << endl; mOspTree->Export(stream); stream << endl << "" << endl; break; case BV_BASED_OBJ_SUBDIV: stream << "" << endl; mBvHierarchy->Export(stream); stream << endl << "" << endl; break; } } bool HierarchyManager::AddSampleToPvs(Intersectable *obj, const Vector3 &hitPoint, ViewCell *vc, const float pdf, float &contribution) const { if (!obj) return false; switch (mObjectSpaceSubdivisionType) { case NO_OBJ_SUBDIV: { // potentially visible objects return vc->AddPvsSample(obj, pdf, contribution); } case KD_BASED_OBJ_SUBDIV: { // potentially visible kd cells KdLeaf *leaf = mOspTree->GetLeaf(hitPoint/*ray->mOriginNode*/); return mOspTree->AddLeafToPvs(leaf, vc, pdf, contribution); } case BV_BASED_OBJ_SUBDIV: { BvhLeaf *leaf = mBvHierarchy->GetLeaf(obj); BvhIntersectable *bvhObj = mBvHierarchy->GetOrCreateBvhIntersectable(leaf); return vc->AddPvsSample(bvhObj, pdf, contribution); } default: return false; } } void HierarchyManager::PrintHierarchyStatistics(ostream &stream) const { stream << mHierarchyStats << endl; stream << "\nview space:" << endl << endl; stream << mVspTree->GetStatistics() << endl; stream << "\nobject space:" << endl << endl; switch (mObjectSpaceSubdivisionType) { case KD_BASED_OBJ_SUBDIV: { stream << mOspTree->GetStatistics() << endl; break; } case BV_BASED_OBJ_SUBDIV: { stream << mBvHierarchy->GetStatistics() << endl; break; } default: break; } } void HierarchyManager::ExportObjectSpaceHierarchy(Exporter *exporter, const ObjectContainer &objects, const AxisAlignedBox3 *bbox, const bool exportBounds) const { switch (mObjectSpaceSubdivisionType) { case KD_BASED_OBJ_SUBDIV: { ExportOspTree(exporter, objects); break; } case BV_BASED_OBJ_SUBDIV: { exporter->ExportBvHierarchy(*mBvHierarchy, 0, bbox, exportBounds); break; } default: break; } } void HierarchyManager::ExportOspTree(Exporter *exporter, const ObjectContainer &objects) const { if (0) exporter->ExportGeometry(objects); exporter->SetWireframe(); exporter->ExportOspTree(*mOspTree, 0); } Intersectable *HierarchyManager::GetIntersectable(const VssRay &ray, const bool isTermination) const { Intersectable *obj; Vector3 pt; KdNode *node; ray.GetSampleData(isTermination, pt, &obj, &node); if (!obj) return NULL; switch (mObjectSpaceSubdivisionType) { case HierarchyManager::KD_BASED_OBJ_SUBDIV: { KdLeaf *leaf = mOspTree->GetLeaf(pt, node); return mOspTree->GetOrCreateKdIntersectable(leaf); } case HierarchyManager::BV_BASED_OBJ_SUBDIV: { BvhLeaf *leaf = mBvHierarchy->GetLeaf(obj); return mBvHierarchy->GetOrCreateBvhIntersectable(leaf); } default: return obj; } } void HierarchyStatistics::Print(ostream &app) const { app << "=========== Hierarchy statistics ===============\n"; app << setprecision(4); app << "#N_CTIME ( Construction time [s] )\n" << Time() << " \n"; app << "#N_RTIME ( Repair time [s] )\n" << repairTime * 1e-3f << " \n"; app << "#N_NODES ( Number of nodes )\n" << nodes << "\n"; app << "#N_INTERIORS ( Number of interior nodes )\n" << Interior() << "\n"; app << "#N_LEAVES ( Number of leaves )\n" << Leaves() << "\n"; app << "#N_PMAXDEPTH ( Maximal reached depth )\n" << maxDepth << endl; app << "#N_GLOBALCOSTMISSES ( Global cost misses )\n" << mGlobalCostMisses << endl; app << "========== END OF Hierarchy statistics ==========\n"; } static void RemoveRayRefs(const ObjectContainer &objects) { ObjectContainer::const_iterator oit, oit_end = objects.end(); for (oit = objects.begin(); oit != oit_end; ++ oit) { (*oit)->mVssRays.clear(); } } void HierarchyManager::FinishObjectSpaceSubdivision(const ObjectContainer &objects) const { switch (mObjectSpaceSubdivisionType) { case KD_BASED_OBJ_SUBDIV: { mOspTree->mOspStats.Stop(); break; } case BV_BASED_OBJ_SUBDIV: { mBvHierarchy->mBvhStats.Stop(); RemoveRayRefs(objects); break; } default: break; } } }