source: GTP/trunk/Lib/Vis/Preprocessing/src/HierarchyManager.h @ 1640

Revision 1640, 14.7 KB checked in by mattausch, 18 years ago (diff)

worked on vsp osp methodsd

Line 
1#ifndef _HierarchyManager_H__
2#define _HierarchyManager_H__
3
4#include <stack>
5
6#include "Mesh.h"
7#include "Containers.h"
8#include "Statistics.h"
9#include "VssRay.h"
10#include "RayInfo.h"
11#include "gzstream.h"
12#include "SubdivisionCandidate.h"
13
14
15
16namespace GtpVisibilityPreprocessor {
17
18class ViewCellLeaf;
19class OspTree;
20class VspTree;
21class Plane3;
22class AxisAlignedBox3;
23class Ray;
24class ViewCellsStatistics;
25class ViewCellsManager;
26class MergeCandidate;
27class Beam;
28class ViewCellsTree;
29class Environment;
30class VspInterior;
31class VspLeaf;
32class VspNode;
33class KdNode;
34class KdInterior;
35class KdLeaf;
36class OspTree;
37class KdIntersectable;
38class KdTree;
39class VspTree;
40class KdTreeStatistics;
41class BvHierarchy;
42class Exporter;
43
44
45
46/** View space / object space hierarchy statistics.
47*/
48class HierarchyStatistics: public StatisticsBase
49{
50public:
51        /// total number of entries in the pvs
52        int mPvsEntries;
53        /// storage cost in MB
54        float mMemory;
55        /// total number of nodes
56        int mNodes;
57        /// maximal reached depth
58        int mMaxDepth;
59        /// accumulated depth
60        int mAccumDepth;
61        /// time spent for queue repair
62        float mRepairTime;
63
64        // global cost ratio violations
65        int mGlobalCostMisses;
66        /// total cost of subdivision
67        float mTotalCost;
68        /// render cost decrease of subdivision
69        float mRenderCostDecrease;
70
71        // Constructor
72        HierarchyStatistics()
73        {
74                Reset();
75        }
76
77        int Nodes() const {return mNodes;}
78        int Interior() const { return mNodes / 2 - 1; }
79        int Leaves() const { return (mNodes / 2) + 1; }
80       
81        // TODO: computation wrong
82        double AvgDepth() const { return mAccumDepth / (double)Leaves();}
83
84        void Reset()
85        {
86                mGlobalCostMisses = 0;
87                mTotalCost = 0;
88                mRenderCostDecrease = 0;
89
90                mNodes = 0;
91                mMaxDepth = 0;
92                mAccumDepth = 0;
93                mRepairTime = 0;
94                mMemory = 0;
95                mPvsEntries = 0;
96        }
97
98        void Print(ostream &app) const;
99
100        friend ostream &operator<<(ostream &s, const HierarchyStatistics &stat)
101        {
102                stat.Print(s);
103                return s;
104        }
105};
106
107
108/** This class implements a structure holding two different hierarchies,
109        one for object space partitioning and one for view space partitioning.
110
111        The object space and the view space are subdivided using a cost heuristics.
112        If an object space split or a view space split is chosen is also evaluated
113        based on the heuristics.
114       
115        The view space heuristics is evaluated by weighting and adding the pvss of the back and
116        front node of each specific split. unlike for the standalone method vspbsp tree,
117        the pvs of an object would not be the pvs of single object but that of all objects
118        which are contained in the same leaf of the object subdivision. This could be done
119        by storing the pointer to the object space partition parent, which would allow access to all children.
120        Another possibility is to include traced kd-cells in the ray casing process.
121
122        Accordingly, the object space heuristics is evaluated by storing a pvs of view cells with each object.
123        the contribution to an object to the pvs is the number of view cells it can be seen from.
124
125        @note
126        There is a potential efficiency problem involved in a sense that once a certain type
127        of split is chosen for view space / object space, the candidates for the next split of
128        object space / view space must be reevaluated.
129*/
130class HierarchyManager
131{
132        friend VspTree;
133        friend OspTree;
134        friend BvHierarchy;
135        friend ViewCellsParseHandlers;
136
137public:
138        /** Constructor with the view space partition tree and
139                the object space hierarchy type as argument.
140        */
141        HierarchyManager(const int objectSpaceHierarchyType);
142        /** Hack: OspTree will copy the content from this kd tree.
143                Only view space hierarchy will be constructed.
144        */
145        HierarchyManager(KdTree *kdTree);
146
147        /** Deletes space partition and view space partition.
148        */
149        ~HierarchyManager();
150
151        /** Constructs the view space and object space subdivision from a given set of rays
152                and a set of objects.
153                @param sampleRays the set of sample rays the construction is based on
154                @param objects the set of objects
155        */
156        void Construct(
157                const VssRayContainer &sampleRays,
158                const ObjectContainer &objects,
159                AxisAlignedBox3 *forcedViewSpace);
160
161        enum
162        {
163                NO_OBJ_SUBDIV,
164                KD_BASED_OBJ_SUBDIV,
165                BV_BASED_OBJ_SUBDIV
166        };
167
168        enum
169        {
170                NO_VIEWSPACE_SUBDIV,
171                KD_BASED_VIEWSPACE_SUBDIV
172        };
173
174        /** The type of object space subdivison
175        */
176        int GetObjectSpaceSubdivisionType() const;     
177        /** The type of view space space subdivison
178        */
179        int GetViewSpaceSubdivisionType() const;
180        /** Sets a pointer to the view cells manager.
181        */             
182        void SetViewCellsManager(ViewCellsManager *vcm);
183        /** Sets a pointer to the view cells tree.
184        */
185        void SetViewCellsTree(ViewCellsTree *vcTree);
186        /** Exports the object hierarchy to disc.
187        */
188        void ExportObjectSpaceHierarchy(OUT_STREAM &stream);
189        /** Adds a sample to the pvs of the specified view cell.
190        */
191        bool AddSampleToPvs(
192                Intersectable *obj,
193                const Vector3 &hitPoint,
194                ViewCell *vc,
195                const float pdf,
196                float &contribution) const;
197
198        /** Print out statistics.
199        */
200        void PrintHierarchyStatistics(ostream &stream) const;
201
202        /** Returns the view space partition tree.
203        */
204        VspTree *GetVspTree();
205
206        /** Returns view space bounding box.
207        */
208        //AxisAlignedBox3 GetViewSpaceBox() const;
209
210        /** Returns object space bounding box.
211        */
212        AxisAlignedBox3 GetObjectSpaceBox() const;
213
214        /** Exports object space hierarchy for visualization.
215        */
216        void ExportObjectSpaceHierarchy(Exporter *exporter,
217                                                                        const ObjectContainer &objects,
218                                                                        const AxisAlignedBox3 *bbox,
219                                                                        const bool exportBounds = true) const;
220
221        /** Returns intersectable pierced by this ray.
222        */
223        Intersectable *GetIntersectable(const VssRay &ray, const bool isTermination) const;
224
225        /** Export object space partition bounding boxes.
226        */
227        void ExportBoundingBoxes(OUT_STREAM &stream, const ObjectContainer &objects);
228
229        friend ostream &operator<<(ostream &s, const HierarchyManager &hm)
230        {
231                hm.PrintHierarchyStatistics(s);
232                return s;
233        }
234
235protected:
236
237        /** Returns true if the global termination criteria were met.
238        */
239        bool GlobalTerminationCriteriaMet(SubdivisionCandidate *candidate) const;
240
241        /** Prepare construction of the hierarchies, set parameters, compute
242                first split candidates.
243        */
244        SubdivisionCandidate *PrepareObjectSpaceSubdivision(const VssRayContainer &sampleRays,
245                                                                                                                const ObjectContainer &objects);
246
247
248        /** Create bounding box and root.
249        */
250        void InitialiseObjectSpaceSubdivision(const ObjectContainer &objects);
251
252        /** Returns memory usage of object space hierarchy.
253        */
254        float GetObjectSpaceMemUsage() const;
255
256        //////////////////////////////
257        // the main loop
258        //////////////////////
259
260        /** This is for interleaved construction / sequential construction.
261        */
262        void RunConstruction(const bool repairQueue,
263                                                 const VssRayContainer &sampleRays,
264                                                 const ObjectContainer &objects,
265                                                 AxisAlignedBox3 *forcedViewSpace);
266       
267        /** This is for interleaved construction using some objects
268                and some view space splits.
269        */
270        int RunConstruction(SplitQueue &splitQueue,
271                                                SubdivisionCandidateContainer &chosenCandidates,
272                                                const float minRenderCostDecr,
273                                                const int minSteps);
274
275        /** Default subdivision method.
276        */
277        void RunConstruction(const bool repairQueue);
278               
279        ////////////////////////////////////////////////
280
281        /** Evaluates the subdivision candidate and executes the split.
282        */
283        bool ApplySubdivisionCandidate(SubdivisionCandidate *sc,
284                                                                   SplitQueue &splitQueue,
285                                                                   const bool repairQueue);
286
287        /** Tests if hierarchy construction is finished.
288        */
289        bool FinishedConstruction() const;
290
291        /** Returns next subdivision candidate from the split queue.
292        */
293        SubdivisionCandidate *NextSubdivisionCandidate(SplitQueue &splitQueue);
294
295        /** Repairs the dirty entries of the subdivision candidate queue. The
296                list of entries is given in the dirty list.
297        */
298        void RepairQueue(const SubdivisionCandidateContainer &dirtyList,
299                                         SplitQueue &splitQueue,
300                                         const bool recomputeSplitPlaneOnRepair);
301
302        /** Collect subdivision candidates which were affected by the splits from the
303                chosenCandidates list.
304        */
305        void CollectDirtyCandidates(const SubdivisionCandidateContainer &chosenCandidates,
306                                                                SubdivisionCandidateContainer &dirtyList);
307
308        /** Evaluate subdivision stats for log.
309        */
310        void EvalSubdivisionStats();
311
312        void AddSubdivisionStats(const int splits,
313                                                         const float renderCostDecr,
314                                                         const float totalRenderCost,
315                                                         const int totalPvsEntries,
316                                                         const float memory,
317                                                         const float renderCostPerStorage);
318
319        bool AddSampleToPvs(Intersectable *obj,
320                                                const float pdf,
321                                                float &contribution) const;
322
323        /** Collect affected view space candidates.
324        */
325        void CollectViewSpaceDirtyList(SubdivisionCandidate *sc,
326                                                                   SubdivisionCandidateContainer &dirtyList);
327
328        /** Collect affected object space candidates.
329        */
330        void CollectObjectSpaceDirtyList(SubdivisionCandidate *sc,
331                                                                         SubdivisionCandidateContainer &dirtyList);
332               
333        /** Export object space partition tree.
334        */
335        void ExportOspTree(Exporter *exporter,
336                                           const ObjectContainer &objects) const;
337
338        /** Parse the environment variables.
339        */
340        void ParseEnvironment();
341
342        bool StartObjectSpaceSubdivision() const;
343        bool StartViewSpaceSubdivision() const;
344
345        ////////////////////////////
346        // Helper function for preparation of subdivision
347        ///////
348
349        /** Prepare bv hierarchy for subdivision
350        */
351        SubdivisionCandidate *PrepareBvHierarchy(const VssRayContainer &sampleRays,
352                                                                           const ObjectContainer &objects);
353
354        /** Prepare object space kd tree for subdivision.
355        */
356        SubdivisionCandidate *PrepareOspTree(const VssRayContainer &sampleRays,
357                                                                   const ObjectContainer &objects);
358
359        /** Prepare view space subdivision and add candidate to queue.
360        */
361        SubdivisionCandidate *PrepareViewSpaceSubdivision(const VssRayContainer &sampleRays,
362                                                                                                          const ObjectContainer &objects);
363
364        /** Was object space subdivision already constructed?
365        */
366        bool ObjectSpaceSubdivisionConstructed() const;
367       
368        /** Was view space subdivision already constructed?
369        */
370        bool ViewSpaceSubdivisionConstructed() const;
371
372        /** Reset the split queue, i.e., reevaluate the split candidates.
373        */
374    void ResetQueue(SplitQueue &splitQueue, const bool recomputeSplitPlane);
375
376        /** After the suddivision has ended, do some final tasks.
377        */
378        void FinishObjectSpaceSubdivision(const ObjectContainer &objects) const;
379
380        /** Returns depth of object space subdivision.
381        */
382        int GetObjectSpaceSubdivisionDepth() const;
383
384        /** Returns number of leaves in object space subdivision.
385        */
386        int GetObjectSpaceSubdivisionLeaves() const;
387
388        /** Construct object space partition interleaved with view space partition.
389                Each time the best object or view space candidate is selected
390                for the next split.
391        */
392        void ConstructInterleaved(const VssRayContainer &sampleRays,
393                                                          const ObjectContainer &objects,
394                                                          AxisAlignedBox3 *forcedViewSpace);
395
396        /** Construct object space partition interleaved with view space partition.
397                The method chooses a number candidates of each type for subdivision.
398                The number is determined by the "gradient", i.e., the render cost decrease.
399                Once this render cost decrease is lower than the render cost decrease
400                for the splits of previous type, the method will stop current subdivision and
401                evaluate if view space or object space would be the beneficial for the
402                next number of split.
403        */
404        void ConstructInterleavedWithGradient(const VssRayContainer &sampleRays,
405                                                                                  const ObjectContainer &objects,
406                                                                                  AxisAlignedBox3 *forcedViewSpace);
407
408        /** Use iteration to construct the object space hierarchy.
409        */
410        void ConstructMultiLevel(const VssRayContainer &sampleRays,
411                                                         const ObjectContainer &objects,
412                                                         AxisAlignedBox3 *forcedViewSpace);
413
414        /** Based on a given subdivision, we try to optimize using an
415                multiple iteration over view and object space.
416        */
417        void OptimizeMultiLevel(const VssRayContainer &sampleRays,                                                                                       
418                                                        const ObjectContainer &objects,
419                                                        AxisAlignedBox3 *forcedViewSpace);
420
421        /** Reset the object space subdivision.
422                E.g., deletes hierarchy and resets stats.
423                so construction can be restarted.
424        */
425        SubdivisionCandidate *ResetObjectSpaceSubdivision(const VssRayContainer &rays,
426                                                                                                          const ObjectContainer &objects);
427
428        SubdivisionCandidate *ResetViewSpaceSubdivision(const VssRayContainer &rays,
429                                                                                                        const ObjectContainer &objects);
430
431
432protected:
433
434        /** construction types
435                sequential: construct first view space, then object space
436                interleaved: construct view space and object space fully interleaved
437                gradient: construct view space / object space until a threshold is reached
438                multilevel: iterate until subdivisions converge to the optimum.
439        */
440        enum {SEQUENTIAL, INTERLEAVED, GRADIENT, MULTILEVEL};
441
442        /// type of hierarchy construction
443        int mConstructionType;
444
445        /// Type of object space partition
446        int mObjectSpaceSubdivisionType;
447        /// Type of view space partition
448    int mViewSpaceSubdivisionType;
449
450        /// the traversal queue
451        SplitQueue mTQueue;
452       
453        ////////////
454        //-- helper variables
455       
456        // the original osp type
457        int mSavedObjectSpaceSubdivisionType;
458        // the original vsp type
459        int mSavedViewSpaceSubdivisionType;
460        /// the current subdivision candidate
461        //SubdivisionCandidate *mCurrentCandidate;
462
463
464        ///////////////////
465        // Hierarchies
466
467        /// view space hierarchy
468        VspTree *mVspTree;
469        /// object space partition kd tree
470        OspTree *mOspTree;
471
472        public:
473        /// bounding volume hierarchy
474        BvHierarchy *mBvHierarchy;
475       
476protected:
477
478
479        //////////
480        //-- global termination criteria
481
482        /// the mininal acceptable cost ratio for a split
483        float mTermMinGlobalCostRatio;
484        /// the threshold for global cost miss tolerance
485        int mTermGlobalCostMissTolerance;
486        /// maximum number of leaves
487        int mTermMaxLeaves;
488
489        ////////////////////
490
491        int mMinStepsOfSameType;
492
493        /// statistics about the hierarchy
494        HierarchyStatistics mHierarchyStats;
495
496        int mMinDepthForObjectSpaceSubdivion;
497        int mMinDepthForViewSpaceSubdivion;
498       
499        //int mMinRenderCostDecrease;
500
501        ofstream mSubdivisionStats;
502
503        /// if the queue should be repaired after a subdivision steps
504        bool mRepairQueue;
505
506        bool mStartWithObjectSpace;
507        /** if multi level construction method should be used
508                where we iterate over both hierarchies until we
509                converge to the optimum.
510        */
511        bool mUseMultiLevelConstruction;
512
513        /// number of iteration steps for multilevel approach   
514        int mNumMultiLevels;
515
516        /** if split plane should be recomputed for the repair.
517                Otherwise only the priority is recomputed, the
518                split plane itself stays the same
519        */
520        bool mRecomputeSplitPlaneOnRepair;
521};
522
523}
524
525#endif
Note: See TracBrowser for help on using the repository browser.