source: GTP/trunk/Lib/Vis/Preprocessing/src/HierarchyManager.h @ 1706

Revision 1706, 16.1 KB checked in by mattausch, 18 years ago (diff)

worked on full evaluation framework

Line 
1#ifndef _HierarchyManager_H__
2#define _HierarchyManager_H__
3
4#include <stack>
5
6#include "Mesh.h"
7#include "Containers.h"
8#include "Statistics.h"
9#include "VssRay.h"
10#include "RayInfo.h"
11#include "gzstream.h"
12#include "SubdivisionCandidate.h"
13
14
15
16namespace GtpVisibilityPreprocessor {
17
18class ViewCellLeaf;
19class OspTree;
20class VspTree;
21class Plane3;
22class AxisAlignedBox3;
23class Ray;
24class ViewCellsStatistics;
25class ViewCellsManager;
26class MergeCandidate;
27class Beam;
28class ViewCellsTree;
29class Environment;
30class VspInterior;
31class VspLeaf;
32class VspNode;
33class KdNode;
34class KdInterior;
35class KdLeaf;
36class OspTree;
37class KdIntersectable;
38class KdTree;
39class VspTree;
40class KdTreeStatistics;
41class BvHierarchy;
42class Exporter;
43class ViewCellsParseHandlers;
44
45
46#define COUNT_ORIGIN_OBJECTS 1
47
48/** View space / object space hierarchy statistics.
49*/
50class HierarchyStatistics: public StatisticsBase
51{
52public:
53        /// total number of entries in the pvs
54        int mPvsEntries;
55        /// storage cost in MB
56        float mMemory;
57        /// total number of nodes
58        int mNodes;
59        /// maximal reached depth
60        int mMaxDepth;
61        /// accumulated depth
62        int mAccumDepth;
63        /// time spent for queue repair
64        float mRepairTime;
65
66        // global cost ratio violations
67        int mGlobalCostMisses;
68        /// total cost of subdivision
69        float mTotalCost;
70        /// render cost decrease of subdivision
71        float mRenderCostDecrease;
72
73        // Constructor
74        HierarchyStatistics()
75        {
76                Reset();
77        }
78
79        int Nodes() const {return mNodes;}
80        int Interior() const { return mNodes / 2 - 1; }
81        int Leaves() const { return (mNodes / 2) + 1; }
82       
83        // TODO: computation wrong
84        double AvgDepth() const { return mAccumDepth / (double)Leaves();}
85
86        void Reset()
87        {
88                mGlobalCostMisses = 0;
89                mTotalCost = 0;
90                mRenderCostDecrease = 0;
91
92                mNodes = 0;
93                mMaxDepth = 0;
94                mAccumDepth = 0;
95                mRepairTime = 0;
96                mMemory = 0;
97                mPvsEntries = 0;
98        }
99
100        void Print(ostream &app) const;
101
102        friend ostream &operator<<(ostream &s, const HierarchyStatistics &stat)
103        {
104                stat.Print(s);
105                return s;
106        }
107};
108
109
110/** This class implements a structure holding two different hierarchies,
111        one for object space partitioning and one for view space partitioning.
112
113        The object space and the view space are subdivided using a cost heuristics.
114        If an object space split or a view space split is chosen is also evaluated
115        based on the heuristics.
116       
117        The view space heuristics is evaluated by weighting and adding the pvss of the back and
118        front node of each specific split. unlike for the standalone method vspbsp tree,
119        the pvs of an object would not be the pvs of single object but that of all objects
120        which are contained in the same leaf of the object subdivision. This could be done
121        by storing the pointer to the object space partition parent, which would allow access to all children.
122        Another possibility is to include traced kd-cells in the ray casing process.
123
124        Accordingly, the object space heuristics is evaluated by storing a pvs of view cells with each object.
125        the contribution to an object to the pvs is the number of view cells it can be seen from.
126
127        @note
128        There is a potential efficiency problem involved in a sense that once a certain type
129        of split is chosen for view space / object space, the candidates for the next split of
130        object space / view space must be reevaluated.
131*/
132class HierarchyManager
133{
134public:
135        /** Constructor with the view space partition tree and
136                the object space hierarchy type as argument.
137        */
138        HierarchyManager(const int objectSpaceHierarchyType);
139        /** Hack: OspTree will copy the content from this kd tree.
140                Only view space hierarchy will be constructed.
141        */
142        HierarchyManager(KdTree *kdTree);
143
144        /** Deletes space partition and view space partition.
145        */
146        ~HierarchyManager();
147
148        /** Constructs the view space and object space subdivision from a given set of rays
149                and a set of objects.
150                @param sampleRays the set of sample rays the construction is based on
151                @param objects the set of objects
152        */
153        void Construct(
154                const VssRayContainer &sampleRays,
155                const ObjectContainer &objects,
156                AxisAlignedBox3 *forcedViewSpace);
157
158        enum
159        {
160                NO_OBJ_SUBDIV,
161                KD_BASED_OBJ_SUBDIV,
162                BV_BASED_OBJ_SUBDIV
163        };
164
165        enum
166        {
167                NO_VIEWSPACE_SUBDIV,
168                KD_BASED_VIEWSPACE_SUBDIV
169        };
170
171        /** The type of object space subdivison
172        */
173        int GetObjectSpaceSubdivisionType() const;     
174        /** The type of view space space subdivison
175        */
176        int GetViewSpaceSubdivisionType() const;
177        /** Sets a pointer to the view cells manager.
178        */             
179        void SetViewCellsManager(ViewCellsManager *vcm);
180        /** Sets a pointer to the view cells tree.
181        */
182        void SetViewCellsTree(ViewCellsTree *vcTree);
183        /** Exports the object hierarchy to disc.
184        */
185        void ExportObjectSpaceHierarchy(OUT_STREAM &stream);
186        /** Adds a sample to the pvs of the specified view cell.
187        */
188        bool AddSampleToPvs(
189                Intersectable *obj,
190                const Vector3 &hitPoint,
191                ViewCell *vc,
192                const float pdf,
193                float &contribution) const;
194
195        /** Print out statistics.
196        */
197        void PrintHierarchyStatistics(ostream &stream) const;
198
199        /** Returns the view space partition tree.
200        */
201        VspTree *GetVspTree();
202
203        /** Returns view space bounding box.
204        */
205        //AxisAlignedBox3 GetViewSpaceBox() const;
206
207        /** Returns object space bounding box.
208        */
209        AxisAlignedBox3 GetObjectSpaceBox() const;
210
211        /** Exports object space hierarchy for visualization.
212        */
213        void ExportObjectSpaceHierarchy(Exporter *exporter,
214                                                                        const ObjectContainer &objects,
215                                                                        const AxisAlignedBox3 *bbox,
216                                                                        const bool exportBounds = true) const;
217
218        /** Returns intersectable pierced by this ray.
219        */
220        Intersectable *GetIntersectable(const VssRay &ray, const bool isTermination) const;
221
222        /** Export object space partition bounding boxes.
223        */
224        void ExportBoundingBoxes(OUT_STREAM &stream, const ObjectContainer &objects);
225
226        friend ostream &operator<<(ostream &s, const HierarchyManager &hm)
227        {
228                hm.PrintHierarchyStatistics(s);
229                return s;
230        }
231
232        HierarchyStatistics &GetHierarchyStats() { return mHierarchyStats; };
233
234        inline bool ConsiderMemory() const { return mConsiderMemory; }
235        inline float GetMemoryConst() const { return mMemoryConst; }
236
237       
238        void EvaluateSubdivision(const VssRayContainer &sampleRays,                                                                                     
239                                                         const ObjectContainer &objects,
240                                                         const string &filename);
241
242        float mInitialRenderCost;
243
244
245protected:
246
247        /** Returns true if the global termination criteria were met.
248        */
249        bool GlobalTerminationCriteriaMet(SubdivisionCandidate *candidate) const;
250
251        /** Prepare construction of the hierarchies, set parameters, compute
252                first split candidates.
253        */
254        SubdivisionCandidate *PrepareObjectSpaceSubdivision(const VssRayContainer &sampleRays,
255                                                                                                                const ObjectContainer &objects);
256
257
258        /** Create bounding box and root.
259        */
260        void InitialiseObjectSpaceSubdivision(const ObjectContainer &objects);
261
262        /** Returns memory usage of object space hierarchy.
263        */
264        float GetObjectSpaceMemUsage() const;
265
266
267        //////////////////////////////
268        // the main loop
269
270        /** This is for interleaved construction / sequential construction.
271        */
272        void RunConstruction(const bool repairQueue,
273                                                 const VssRayContainer &sampleRays,
274                                                 const ObjectContainer &objects,
275                                                 AxisAlignedBox3 *forcedViewSpace);
276       
277        /** This is for interleaved construction using some objects
278                and some view space splits.
279        */
280        int RunConstruction(SplitQueue &splitQueue,
281                                                SubdivisionCandidateContainer &chosenCandidates,
282                                                //const float minRenderCostDecr,
283                                                SubdivisionCandidate *oldCandidate,
284                                                const int minSteps,
285                                                const int maxSteps);
286
287        /** Default subdivision method.
288        */
289        void RunConstruction(const bool repairQueue);
290               
291        ////////////////////////////////////////////////
292
293        /** Evaluates the subdivision candidate and executes the split.
294        */
295        bool ApplySubdivisionCandidate(SubdivisionCandidate *sc,
296                                                                   SplitQueue &splitQueue,
297                                                                   const bool repairQueue);
298
299        /** Tests if hierarchy construction is finished.
300        */
301        bool FinishedConstruction() const;
302
303        /** Returns next subdivision candidate from the split queue.
304        */
305        SubdivisionCandidate *NextSubdivisionCandidate(SplitQueue &splitQueue);
306
307        /** Repairs the dirty entries of the subdivision candidate queue. The
308                list of entries is given in the dirty list.
309        */
310        void RepairQueue(const SubdivisionCandidateContainer &dirtyList,
311                                         SplitQueue &splitQueue,
312                                         const bool recomputeSplitPlaneOnRepair);
313
314        /** Collect subdivision candidates which were affected by the splits from the
315                chosenCandidates list.
316        */
317        void CollectDirtyCandidates(const SubdivisionCandidateContainer &chosenCandidates,
318                                                                SubdivisionCandidateContainer &dirtyList);
319
320        /** Evaluate subdivision stats for log.
321        */
322        void EvalSubdivisionStats();
323
324        void AddSubdivisionStats(const int splits,
325                                                         const float renderCostDecr,
326                                                         const float totalRenderCost,
327                                                         const int totalPvsEntries,
328                                                         const float memory,
329                                                         const float renderCostPerStorage,
330                                                         const float vspOspRatio);
331
332        bool AddSampleToPvs(Intersectable *obj,
333                                                const float pdf,
334                                                float &contribution) const;
335
336        /** Collect affected view space candidates.
337        */
338        void CollectViewSpaceDirtyList(SubdivisionCandidate *sc,
339                                                                   SubdivisionCandidateContainer &dirtyList);
340
341        /** Collect affected object space candidates.
342        */
343        void CollectObjectSpaceDirtyList(SubdivisionCandidate *sc,
344                                                                         SubdivisionCandidateContainer &dirtyList);
345               
346        /** Export object space partition tree.
347        */
348        void ExportOspTree(Exporter *exporter,
349                                           const ObjectContainer &objects) const;
350
351        /** Parse the environment variables.
352        */
353        void ParseEnvironment();
354
355        bool StartObjectSpaceSubdivision() const;
356        bool StartViewSpaceSubdivision() const;
357
358
359        ////////////////////////////
360        // Helper function for preparation of subdivision
361
362        /** Prepare bv hierarchy for subdivision
363        */
364        SubdivisionCandidate *PrepareBvHierarchy(const VssRayContainer &sampleRays,
365                                                                           const ObjectContainer &objects);
366
367        /** Prepare object space kd tree for subdivision.
368        */
369        SubdivisionCandidate *PrepareOspTree(const VssRayContainer &sampleRays,
370                                                                   const ObjectContainer &objects);
371
372        /** Prepare view space subdivision and add candidate to queue.
373        */
374        SubdivisionCandidate *PrepareViewSpaceSubdivision(const VssRayContainer &sampleRays,
375                                                                                                          const ObjectContainer &objects);
376
377        /** Was object space subdivision already constructed?
378        */
379        bool ObjectSpaceSubdivisionConstructed() const;
380       
381        /** Was view space subdivision already constructed?
382        */
383        bool ViewSpaceSubdivisionConstructed() const;
384
385        /** Reset the split queue, i.e., reevaluate the split candidates.
386        */
387    void ResetQueue(SplitQueue &splitQueue, const bool recomputeSplitPlane);
388
389        /** After the suddivision has ended, do some final tasks.
390        */
391        void FinishObjectSpaceSubdivision(const ObjectContainer &objects,
392                                                                          const bool removeRayRefs = true) const;
393
394        /** Returns depth of object space subdivision.
395        */
396        int GetObjectSpaceSubdivisionDepth() const;
397
398        /** Returns number of leaves in object space subdivision.
399        */
400        int GetObjectSpaceSubdivisionLeaves() const;
401        int GetObjectSpaceSubdivisionNodes() const;
402
403        /** Construct object space partition interleaved with view space partition.
404                Each time the best object or view space candidate is selected
405                for the next split.
406        */
407        void ConstructInterleaved(const VssRayContainer &sampleRays,
408                                                          const ObjectContainer &objects,
409                                                          AxisAlignedBox3 *forcedViewSpace);
410
411        /** Construct object space partition interleaved with view space partition.
412                The method chooses a number candidates of each type for subdivision.
413                The number is determined by the "gradient", i.e., the render cost decrease.
414                Once this render cost decrease is lower than the render cost decrease
415                for the splits of previous type, the method will stop current subdivision and
416                evaluate if view space or object space would be the beneficial for the
417                next number of split.
418        */
419        void ConstructInterleavedWithGradient(const VssRayContainer &sampleRays,
420                                                                                  const ObjectContainer &objects,
421                                                                                  AxisAlignedBox3 *forcedViewSpace);
422
423        /** Use iteration to construct the object space hierarchy.
424        */
425        void ConstructMultiLevel(const VssRayContainer &sampleRays,
426                                                         const ObjectContainer &objects,
427                                                         AxisAlignedBox3 *forcedViewSpace);
428
429        /** Based on a given subdivision, we try to optimize using an
430                multiple iteration over view and object space.
431        */
432        void OptimizeMultiLevel(const VssRayContainer &sampleRays,                                                                                       
433                                                        const ObjectContainer &objects,
434                                                        AxisAlignedBox3 *forcedViewSpace);
435
436        /** Reset the object space subdivision.
437                E.g., deletes hierarchy and resets stats.
438                so construction can be restarted.
439        */
440        SubdivisionCandidate *ResetObjectSpaceSubdivision(const VssRayContainer &rays,
441                                                                                                          const ObjectContainer &objects);
442
443        SubdivisionCandidate *ResetViewSpaceSubdivision(const VssRayContainer &rays,
444                                                                                                        const ObjectContainer &objects,
445                                                                                                        AxisAlignedBox3 *forcedViewSpace);
446
447
448        ///////////////////////////
449
450        void ExportStats(ofstream &stats, SplitQueue &tQueue, const ObjectContainer &objects);
451
452        void CollectBestSet(const int maxSplits,
453                                                const float maxMemoryCost,
454                                                vector<VspNode *> &vspNodes,
455                                                vector<BvhNode *> &bvhNodes);
456
457        void ExtractStatistics(const int maxSplits,
458                                                   const float maxMemoryCost,
459                                                   float &renderCost,
460                                                   float &memory,
461                                                   int &pvsEntries);
462protected:
463
464        /** construction types
465                sequential: construct first view space, then object space
466                interleaved: construct view space and object space fully interleaved
467                gradient: construct view space / object space until a threshold is reached
468                multilevel: iterate until subdivisions converge to the optimum.
469        */
470        enum {SEQUENTIAL, INTERLEAVED, GRADIENT, MULTILEVEL};
471
472        /// type of hierarchy construction
473        int mConstructionType;
474
475        /// Type of object space partition
476        int mObjectSpaceSubdivisionType;
477        /// Type of view space partition
478    int mViewSpaceSubdivisionType;
479
480        /// the traversal queue
481        SplitQueue mTQueue;
482       
483        ////////////
484        //-- helper variables
485       
486        // the original osp type
487        int mSavedObjectSpaceSubdivisionType;
488        // the original vsp type
489        int mSavedViewSpaceSubdivisionType;
490        /// the current subdivision candidate
491        //SubdivisionCandidate *mCurrentCandidate;
492
493
494        ///////////////////
495        // Hierarchies
496
497        /// view space hierarchy
498        VspTree *mVspTree;
499        /// object space partition kd tree
500        OspTree *mOspTree;
501
502        public:
503        /// bounding volume hierarchy
504        BvHierarchy *mBvHierarchy;
505       
506protected:
507
508
509        //////////
510        //-- global termination criteria
511
512        /// the mininal acceptable cost ratio for a split
513        float mTermMinGlobalCostRatio;
514        /// the threshold for global cost miss tolerance
515        int mTermGlobalCostMissTolerance;
516        /// maximum number of leaves
517        int mTermMaxLeaves;
518        /// Maximal allowed memory consumption.
519        float mTermMaxMemory;
520
521
522        ////////////////////
523
524        /// number of minimal steps of the same type
525        int mMinStepsOfSameType;
526        int mMaxStepsOfSameType;
527
528        /// statistics about the hierarchy
529        HierarchyStatistics mHierarchyStats;
530
531        int mMinDepthForObjectSpaceSubdivion;
532        int mMinDepthForViewSpaceSubdivion;
533       
534        //int mMinRenderCostDecrease;
535
536        ofstream mSubdivisionStats;
537
538        /// if the queue should be repaired after a subdivision steps
539        bool mRepairQueue;
540
541        bool mStartWithObjectSpace;
542        /** if multi level construction method should be used
543                where we iterate over both hierarchies until we
544                converge to the optimum.
545        */
546        bool mUseMultiLevelConstruction;
547
548        /// number of iteration steps for multilevel approach   
549        int mNumMultiLevels;
550
551        /** if split plane should be recomputed for the repair.
552                Otherwise only the priority is recomputed, the
553                split plane itself stays the same
554        */
555        bool mRecomputeSplitPlaneOnRepair;
556
557        /** If memory should be considered during choosing
558                of the next split type during gradient method.
559        */
560        bool mConsiderMemory;
561
562        /// constant value for driving the heuristics
563        float mMemoryConst;
564       
565        bool mConsiderMemory2;
566
567        int mTimeStamp;
568        friend VspTree;
569        friend OspTree;
570        friend BvHierarchy;
571        friend ViewCellsParseHandlers;
572
573};
574
575}
576
577#endif
Note: See TracBrowser for help on using the repository browser.