source: GTP/trunk/Lib/Vis/Preprocessing/src/KdTree.h @ 2524

Revision 2524, 14.3 KB checked in by bittner, 18 years ago (diff)

demo updates

RevLine 
[372]1#ifndef _KdTree_H__
2#define _KdTree_H__
3
4#include <functional>
[2176]5//
[372]6
7#include "Containers.h"
8#include "AxisAlignedBox3.h"
9#include "Ray.h"
[2116]10//#include "ObjectPvs.h"
[469]11#include "Viewcell.h"
[1184]12#include "VssRay.h"
[2116]13//#include "IntersectableWrapper.h"
14#include "gzstream.h"
[860]15
16namespace GtpVisibilityPreprocessor {
17
[2116]18class KdNode;
19class KdLeaf;
20class KdInterior;
21class Intersectable;
22class KdIntersectable;
23class Beam;
24class KdTree;
25//class KdViewCell;
[1112]26 
27  //  KdTree *SceneKdTree;
28
[372]29// --------------------------------------------------------------
30// Static statistics for kd-tree search
31// --------------------------------------------------------------
32class KdTreeStatistics
33{
34public: 
35  // total number of nodes
36  int nodes;
37  // number of splits along each of the axes
38  int splits[7];
39  // totals number of rays
40  int rays;
41  // total number of query domains
42  int queryDomains;
43  // total number of ray references
44  int rayRefs;
45  // refs in non empty leafs
46  int rayRefsNonZeroQuery;
47  // total number of query references
48  int objectRefs;
49  // nodes with zero queries
50  int zeroQueryNodes;
51  // max depth nodes
52  int maxDepthNodes;
53  // max depth nodes
54  int minCostNodes;
55  // max number of rays per node
56  int maxObjectRefs;
57  // number of dynamically added ray refs
58  int addedRayRefs;
59  // number of dynamically removed ray refs
60  int removedRayRefs;
61 
62  // Constructor
63  KdTreeStatistics() {
64    Reset();
65  }
66
67  int Nodes() const {return nodes;}
[1176]68  int Interior() const { return nodes / 2; }
69  int Leaves() const { return (nodes / 2) + 1; }
[372]70
71  void Reset() {
72    nodes = 0;
73    for (int i=0; i<7; i++)
74      splits[i] = 0;
75    rays = queryDomains = 0;
76    rayRefs = rayRefsNonZeroQuery = objectRefs = 0;
77    zeroQueryNodes = 0;
78    maxDepthNodes = 0;
79    minCostNodes = 0;
80    maxObjectRefs = 0;
81    addedRayRefs = removedRayRefs = 0;
82  }
83
84  void
[2176]85  Print(std::ostream &app) const;
[372]86
[2176]87  friend std::ostream &operator<<(std::ostream &s, const KdTreeStatistics &stat) {
[372]88    stat.Print(s);
89    return s;
90  }
91 
92};
93
94 
95class KdInterior;
96/** Abstract class for kd-tree node */
97class KdNode {
98public:
99 
[1613]100  static int sMailId;
101  static int sReservedMailboxes;
[1176]102  int mMailbox;
[1761]103
104  KdIntersectable *mIntersectable;
[1176]105 
106  void Mail() { mMailbox = sMailId; }
107  //static void NewMail() { sMailId ++; }
108  bool Mailed() const { return mMailbox == sMailId; }
109 
110  static void NewMail(const int reserve = 1) {
111                sMailId += sReservedMailboxes;
112                sReservedMailboxes = reserve;
113        }
114        void Mail(const int mailbox) { mMailbox = sMailId + mailbox; }
115        bool Mailed(const int mailbox) const { return mMailbox == sMailId + mailbox; }
[372]116
[1002]117  virtual ~KdNode(){};
[372]118  KdNode(KdInterior *parent);
119
120  /** Determines whether this node is a leaf or interior node
121      @return true if leaf
122  */
123  virtual bool IsLeaf() const = 0;
124
125  /** Determines whether this node is the root of the tree
126      @return true if root
127  */
128  virtual bool IsRoot() const {
129    return mParent == NULL;
130  }
131
132  /** Parent of the node - the parent is a little overhead for maintanance of the tree,
133      but allows various optimizations of tree traversal algorithms */
134  KdInterior *mParent;
[1989]135  short mDepth;
136  short mPvsTermination;
[372]137};
138
139/** Implementation of the kd-tree interior node */
140class KdInterior : public KdNode {
141
142public:
143   
144  KdInterior(KdInterior *parent):KdNode(parent), mBack(NULL), mFront(NULL) {}
145
[1002]146  ~KdInterior();
147
[372]148  /** \sa KdNode::IsLeaf() */
149  virtual bool IsLeaf() const { return false; }
150
151  /** splitting axis */
152  int mAxis;
153  /** splitting position, absolute position within the bounding box of this node */
154  float mPosition;
155  /** bounding box of interior node */
156  AxisAlignedBox3 mBox;
157
158  /** back node */
159  KdNode *mBack;
160  /** front node */
161  KdNode *mFront;
162
163  void SetupChildLinks(KdNode *b, KdNode *f) {
164    mBack = b;
165    mFront = f;
166    b->mParent = f->mParent = this;
167  }
168 
169  void ReplaceChildLink(KdNode *oldChild, KdNode *newChild) {
170    if (mBack == oldChild)
171      mBack = newChild;
172    else
173      mFront = newChild;
174  }
175 
176 
177};
178 
[1233]179class SubdivisionCandidate;
[372]180 
181/** Implementation of the kd-tree leaf node */
182class KdLeaf : public KdNode {
183public:
[469]184  KdLeaf(KdInterior *parent, const int objects):
185          KdNode(parent), mViewCell(NULL) {
[372]186    mObjects.reserve(objects);
187  }
188 
[469]189  void AddPassingRay(const Ray &ray, const int contributions) {
[372]190    mPassingRays.AddRay(ray, contributions);
191                //              Debug << "adding passing ray" << endl;
192  }
193
[1999]194  ~KdLeaf();
[372]195       
196        void AddPassingRay2(const Ray &ray,
[469]197                                                const int objects,
198                                                const int viewcells
199                                                ) {
[372]200    mPassingRays.AddRay2(ray, objects, viewcells);
201                //              Debug << "adding passing ray" << endl;
202  }
203
[2117]204  /** \sa KdNode::IsLeaf()
205  */
[372]206  virtual bool IsLeaf() const { return true; }
207
208
[2117]209  /// pointers to occluders contained in this node
[372]210  ObjectContainer mObjects;
[1072]211
[2117]212  /// Ray set description of the rays passing through this node
[372]213  PassingRaySet mPassingRays;
214       
[2117]215  /// PVS consisting of visible KdTree nodes
[2116]216  //KdPvs mKdPvs;
[1109]217
218  /// pvs of view cells seeing this node.
[1233]219  SubdivisionCandidate *mSubdivisionCandidate;
[1109]220
[1144]221  /// pointer to view cell.
[469]222  KdViewCell *mViewCell;
[1144]223
[1184]224  VssRayContainer mVssRays;
225
[1144]226   /// Objects that are referenced in more than one leaf.
227  ObjectContainer mMultipleObjects;
228
229  /// universal counter
230  int mCounter;
[372]231};
232
233
234/** KdTree for indexing scene entities - occluders/occludees/viewcells */
235class KdTree {
[878]236 
[372]237protected:
238  struct TraversalData
239  { 
240    KdNode *mNode;
241    AxisAlignedBox3 mBox;
242    int mDepth;
243    float mPriority;
244   
245    TraversalData() {}
246
247    TraversalData(KdNode *n, const float p):
248      mNode(n), mPriority(p)
249    {}
250   
251    TraversalData(KdNode *n,
252                   const AxisAlignedBox3 &b,
253                   const int d):
254      mNode(n), mBox(b), mDepth(d) {}
255   
256
257    bool operator<(
[752]258                                   const TraversalData &b) const {
[372]259      KdLeaf *leafa = (KdLeaf *) mNode;
260      KdLeaf *leafb = (KdLeaf *) b.mNode;
261      return
[752]262                leafa->mObjects.size()*mBox.SurfaceArea()
263                <
264                leafb->mObjects.size()*b.mBox.SurfaceArea();
[372]265    }
266
267
268    // comparator for the
269    struct less_priority : public
[2176]270    std::binary_function<const TraversalData, const TraversalData, bool> {
[372]271     
272      bool operator()(const TraversalData a, const TraversalData b) {
273                                return a.mPriority < b.mPriority;
274      }
275     
276    };
277
278  };
279
280 
281
282public:
283
284  enum {SPLIT_OBJECT_MEDIAN,
285        SPLIT_SPATIAL_MEDIAN,
286        SPLIT_SAH};
287 
288  KdTree();
[1002]289
290  ~KdTree();
[372]291   
292  /** Insert view cell into the tree */
293  virtual void InsertViewCell(ViewCell *viewCell) {
294    //      mRoot->mViewcells.push_back(viewCell);
295  }
296
297  virtual bool Construct();
298
299  /** Check whether subdivision criteria are met for the given subtree.
300      If not subdivide the leafs of the subtree. The criteria are specified in
301      the environment as well as the subdivision method. By default surface area
302      heuristics is used.
303       
304      @param subtree root of the subtree
305
306      @return true if subdivision was performed, false if subdivision criteria
307      were already met
308  */
309  virtual KdNode *Subdivide(const TraversalData &tdata);
310
311  /** Get the root of the tree */
312  KdNode *GetRoot() const {
313    return mRoot;
314  }
315
316
317  AxisAlignedBox3 GetBox() const { return mBox; }
318
319  int
320  CastRay(
[504]321                  Ray &ray
322                  );
323 
[372]324
[504]325  int
[505]326  CastBeam(
[512]327                   Beam &beam
[505]328                   );
[504]329 
330 
[469]331  /** Casts line segment into tree.
332          @returns intersected view cells.
333  */
334  int CastLineSegment(const Vector3 &origin,
335                                          const Vector3 &termination,
336                                          vector<ViewCell *> &viewcells);
337
338
[372]339  const KdTreeStatistics &GetStatistics() const {
340    return mStat;
341  }
342
[1594]343  /** Returns or creates a new intersectable for use in a kd based pvs.
344          The OspTree is responsible for destruction of the intersectable.
345  */
346  KdIntersectable *GetOrCreateKdIntersectable(KdNode *node);
347
[1989]348
[372]349  void
[1989]350  SetPvsTerminationNodes(
351                                                 const float maxArea);
352 
353  KdNode *
354  GetPvsNode(const Vector3 &point) const;
355 
356
357  void
[1974]358  CollectKdObjects(const AxisAlignedBox3 &box,
[1989]359                                   ObjectContainer &objects
[1974]360                                   );
361
362  void
[372]363  CollectObjects(KdNode *n, ObjectContainer &objects);
[859]364
[372]365  void
[859]366  CollectObjects(const AxisAlignedBox3 &box,
367                                 ObjectContainer &objects);
368
369  void
[372]370  CollectLeaves(vector<KdLeaf *> &leaves);
371       
[469]372  /** If the kd tree is used as view cell container, this
373          methods creates the view cells.
374          @returns the newly created view cells in a view cell container
375  */
376  void
377  CreateAndCollectViewCells(ViewCellContainer &viewCells) const;
378
[372]379  AxisAlignedBox3 GetBox(const KdNode *node) const {
380    KdInterior *parent = node->mParent;
381    if (parent == NULL)
382      return mBox;
383   
384    if (!node->IsLeaf())
385      return ((KdInterior *)node)->mBox;
386   
387    AxisAlignedBox3 box(parent->mBox);
388    if (parent->mFront == node)
389      box.SetMin(parent->mAxis, parent->mPosition);
390    else
391      box.SetMax(parent->mAxis, parent->mPosition);
392    return box;
393  }
[1594]394
395  float GetSurfaceArea(const KdNode *node) const {
396        return GetBox(node).SurfaceArea();
397  }
398
399 
[372]400  KdNode *
401  FindRandomNeighbor(KdNode *n,
[469]402                                         bool onlyUnmailed
403                                         );
[372]404 
405  KdNode *
406  KdTree::GetRandomLeaf(const Plane3 &halfspace);
407
[859]408  KdNode *
409  GetRandomLeaf(const bool onlyUnmailed = false);
[1594]410
411
412  KdNode *
413  GetNode(const Vector3 &point, const float maxArea) const;
414
[1999]415  void GetBoxIntersections(const AxisAlignedBox3 &box,
[2113]416                                                   vector<KdLeaf *> &leaves);
[1999]417
[372]418  int
419  FindNeighbors(KdNode *n,
[859]420                                vector<KdNode *> &neighbors,
421                                bool onlyUnmailed
422                                );
[372]423
[2176]424  bool ExportBinTree(const std::string &filename);
[2332]425
426  /// loads kd tree from disk. note: sorts objects by id
[2176]427  bool LoadBinTree(const std::string &filename, ObjectContainer &object);
[1194]428
[372]429protected:
430
431  struct RayData {
432    // pointer to the actual ray
433    Ray *ray;
434   
435    // endpoints  - do we need them?
436#if USE_FIXEDPOINT_T
437    short tmin, tmax;
438#else
439    float tmin, tmax;
440#endif
441
442    RayData():ray(NULL) {}
443    RayData(Ray *r):ray(r), tmin(0),
444
445#if USE_FIXEDPOINT_T
446#define FIXEDPOINT_ONE 0x7FFE
447                          //                      tmax(0xFFFF)
448                          tmax(FIXEDPOINT_ONE)
449#else
450      tmax(1.0f)
451#endif
452    {}
453
454    RayData(Ray *r,
455            const float _min,
456            const float _max
457            ):ray(r) {
458      SetTMin(_min);
459      SetTMax(_max);
460    }
461
462    RayData(Ray *r,
463            const short _min,
464            const float _max
465            ):ray(r), tmin(_min) {
466      SetTMax(_max);
467    }
468
469    RayData(Ray *r,
470            const float _min,
471            const short _max
472            ):ray(r), tmax(_max) {
473      SetTMin(_min);
474    }
475
476    friend bool operator<(const RayData &a, const RayData &b) {
477      return a.ray < b.ray;
478    }
479   
480   
481    float ExtrapOrigin(const int axis) const {
482      return ray->GetLoc(axis) + GetTMin()*ray->GetDir(axis);
483    }
484   
485    float ExtrapTermination(const int axis) const {
486      return ray->GetLoc(axis) + GetTMax()*ray->GetDir(axis);
487    }
488   
489#if USE_FIXEDPOINT_T
490    float GetTMin () const { return tmin/(float)(FIXEDPOINT_ONE); }
491    float GetTMax () const { return tmax/(float)(FIXEDPOINT_ONE); }
492
493    void SetTMin (const float t) {
494      tmin = (short) (t*(float)(FIXEDPOINT_ONE));
495    }
496   
497    void SetTMax (const float t) {
498      tmax = (short) (t*(float)(FIXEDPOINT_ONE));
499      tmax++;
500      //      if (tmax!=0xFFFF)
501      //        tmax++;
502    }
503#else
504    float GetTMin () const { return tmin; }
505    float GetTMax () const { return tmax; }
506
507    void SetTMin (const float t) { tmin = t; }
508    void SetTMax (const float t) { tmax = t; }
509#endif
510  };
511
512  struct RayTraversalData {
513    KdNode *mNode;
514    Vector3 mExitPoint;
515    float mMaxT;
516   
517    RayTraversalData() {}
518    RayTraversalData(KdNode *n,
519                     const Vector3 &p,
520                     const float maxt):
521      mNode(n), mExitPoint(p), mMaxT(maxt) {}
522  };
523
524  // --------------------------------------------------------------
525  // For sorting objects
526  // --------------------------------------------------------------
527  struct  SortableEntry
528  {
529    enum {
530      BOX_MIN,
531      BOX_MAX
532    };
533   
534    int type;
535    float value;
536    Intersectable *intersectable;
537   
538    SortableEntry() {}
539    SortableEntry(const int t, const float v, Intersectable *i):type(t),
540                                                                value(v),
541                                                                intersectable(i) {}
542   
543    bool operator<(const SortableEntry &b) const {
544      return value < b.value;
545    }
546   
547  };
[2066]548
549  inline static bool iltS(SortableEntry *a, SortableEntry *b)
550  {
551          return a->value < b->value;
552  }
553
[372]554  // reusable array of split candidates
[2003]555  vector<SortableEntry *> *splitCandidates;
[372]556
557  float
558  BestCostRatio(
559                KdLeaf *node,
560                const AxisAlignedBox3 &box,
561                const int axis,
562                float &position,
563                int &objectsBack,
564                int &objectsFront
565                );
566
567  void
[1233]568  SortSubdivisionCandidates(
[372]569                      KdLeaf *node,
570                      const int axis
571                      );
572
573  void
574  EvaluateLeafStats(const TraversalData &data);
575
576  KdNode *
577  SubdivideNode(
578                KdLeaf *leaf,
579                const AxisAlignedBox3 &box,
580                AxisAlignedBox3 &backBBox,
581                AxisAlignedBox3 &frontBBox
582                );
583
584  bool
585  TerminationCriteriaMet(const KdLeaf *leaf);
586 
587  int
588  SelectPlane(KdLeaf *leaf,
589              const AxisAlignedBox3 &box,
590              float &position
591              );
592
[1143]593        /** does some post processing on the objects in the new child leaves.
594        */
595        void ProcessMultipleRefs(KdLeaf *leaf) const;
[372]596
[1201]597        void ExportBinLeaf(OUT_STREAM  &stream, KdLeaf *leaf);
598        void ExportBinInterior(OUT_STREAM &stream, KdInterior *interior);
599        KdLeaf *ImportBinLeaf(IN_STREAM &stream, KdInterior *parent, const ObjectContainer &objects);
600        KdInterior *ImportBinInterior(IN_STREAM  &stream, KdInterior *parent);
601        KdNode *LoadNextNode(IN_STREAM  &stream, KdInterior *parent, const ObjectContainer &objects);
[1633]602       
603        /** Adds this objects to the kd leaf objects.
604                @warning: Can corrupt the tree
605        */
606        void InsertObjects(KdNode *node, const ObjectContainer &objects);
[1194]607
[752]608  int mTermMaxNodes;
[372]609  float mSplitBorder;
610  int mTermMaxDepth;
611  int mTermMinCost;
612  float mMaxCostRatio;
613  float mCt_div_ci;
614  int mSplitMethod;
615  bool mSahUseFaces;
[2524]616  float mKdPvsArea;
[372]617  /// root of the tree
618  KdNode *mRoot;
619  /// bounding box of the tree root
620  AxisAlignedBox3 mBox;
621  KdTreeStatistics mStat;
[2116]622
[1614]623public:
[1594]624  /// stores the kd node intersectables used for pvs
[1761]625  vector<KdIntersectable *> mKdIntersectables;
626 
[372]627};
628
629
[860]630}
[372]631
632#endif
Note: See TracBrowser for help on using the repository browser.