[162] | 1 | #include "Matrix4x4.h"
|
---|
| 2 | #include "Vector3.h"
|
---|
| 3 |
|
---|
| 4 | // standard headers
|
---|
| 5 | #include <iomanip>
|
---|
| 6 | using namespace std;
|
---|
| 7 |
|
---|
[863] | 8 | namespace GtpVisibilityPreprocessor {
|
---|
[162] | 9 |
|
---|
[860] | 10 |
|
---|
[209] | 11 | Matrix4x4::Matrix4x4(const Vector3 &a, const Vector3 &b, const Vector3 &c)
|
---|
| 12 | {
|
---|
| 13 | // first index is column [x], the second is row [y]
|
---|
| 14 | x[0][0] = a.x;
|
---|
[245] | 15 | x[1][0] = b.x;
|
---|
| 16 | x[2][0] = c.x;
|
---|
[209] | 17 | x[3][0] = 0.0f;
|
---|
[162] | 18 |
|
---|
[245] | 19 | x[0][1] = a.y;
|
---|
[209] | 20 | x[1][1] = b.y;
|
---|
[245] | 21 | x[2][1] = c.y;
|
---|
[209] | 22 | x[3][1] = 0.0f;
|
---|
| 23 |
|
---|
[245] | 24 | x[0][2] = a.z;
|
---|
| 25 | x[1][2] = b.z;
|
---|
[209] | 26 | x[2][2] = c.z;
|
---|
| 27 | x[3][2] = 0.0f;
|
---|
| 28 |
|
---|
| 29 | x[0][3] = 0.0f;
|
---|
| 30 | x[1][3] = 0.0f;
|
---|
| 31 | x[2][3] = 0.0f;
|
---|
| 32 | x[3][3] = 1.0f;
|
---|
[245] | 33 |
|
---|
[209] | 34 | }
|
---|
| 35 |
|
---|
| 36 | void
|
---|
| 37 | Matrix4x4::SetColumns(const Vector3 &a, const Vector3 &b, const Vector3 &c)
|
---|
| 38 | {
|
---|
| 39 | // first index is column [x], the second is row [y]
|
---|
| 40 | x[0][0] = a.x;
|
---|
[245] | 41 | x[1][0] = a.y;
|
---|
| 42 | x[2][0] = a.z;
|
---|
[209] | 43 | x[3][0] = 0.0f;
|
---|
| 44 |
|
---|
[245] | 45 | x[0][1] = b.x;
|
---|
[209] | 46 | x[1][1] = b.y;
|
---|
[245] | 47 | x[2][1] = b.z;
|
---|
[209] | 48 | x[3][1] = 0.0f;
|
---|
| 49 |
|
---|
[245] | 50 | x[0][2] = c.x;
|
---|
| 51 | x[1][2] = c.y;
|
---|
[209] | 52 | x[2][2] = c.z;
|
---|
| 53 | x[3][2] = 0.0f;
|
---|
| 54 |
|
---|
| 55 | x[0][3] = 0.0f;
|
---|
| 56 | x[1][3] = 0.0f;
|
---|
| 57 | x[2][3] = 0.0f;
|
---|
| 58 | x[3][3] = 1.0f;
|
---|
| 59 | }
|
---|
| 60 |
|
---|
[162] | 61 | // full constructor
|
---|
| 62 | Matrix4x4::Matrix4x4(float x11, float x12, float x13, float x14,
|
---|
[1980] | 63 | float x21, float x22, float x23, float x24,
|
---|
| 64 | float x31, float x32, float x33, float x34,
|
---|
| 65 | float x41, float x42, float x43, float x44)
|
---|
[162] | 66 | {
|
---|
[209] | 67 | // first index is column [x], the second is row [y]
|
---|
[162] | 68 | x[0][0] = x11;
|
---|
| 69 | x[1][0] = x12;
|
---|
| 70 | x[2][0] = x13;
|
---|
| 71 | x[3][0] = x14;
|
---|
| 72 |
|
---|
| 73 | x[0][1] = x21;
|
---|
| 74 | x[1][1] = x22;
|
---|
| 75 | x[2][1] = x23;
|
---|
| 76 | x[3][1] = x24;
|
---|
| 77 |
|
---|
| 78 | x[0][2] = x31;
|
---|
| 79 | x[1][2] = x32;
|
---|
| 80 | x[2][2] = x33;
|
---|
| 81 | x[3][2] = x34;
|
---|
| 82 |
|
---|
| 83 | x[0][3] = x41;
|
---|
| 84 | x[1][3] = x42;
|
---|
| 85 | x[2][3] = x43;
|
---|
| 86 | x[3][3] = x44;
|
---|
| 87 | }
|
---|
| 88 |
|
---|
| 89 | // inverse matrix computation gauss_jacobiho method .. from N.R. in C
|
---|
| 90 | // if matrix is regular = computatation successfull = returns 0
|
---|
| 91 | // in case of singular matrix returns 1
|
---|
| 92 | int
|
---|
| 93 | Matrix4x4::Invert()
|
---|
| 94 | {
|
---|
| 95 | int indxc[4],indxr[4],ipiv[4];
|
---|
| 96 | int i,icol,irow,j,k,l,ll,n;
|
---|
| 97 | float big,dum,pivinv,temp;
|
---|
| 98 | // satisfy the compiler
|
---|
| 99 | icol = irow = 0;
|
---|
| 100 |
|
---|
| 101 | // the size of the matrix
|
---|
| 102 | n = 4;
|
---|
| 103 |
|
---|
| 104 | for ( j = 0 ; j < n ; j++) /* zero pivots */
|
---|
| 105 | ipiv[j] = 0;
|
---|
| 106 |
|
---|
| 107 | for ( i = 0; i < n; i++)
|
---|
| 108 | {
|
---|
| 109 | big = 0.0;
|
---|
| 110 | for (j = 0 ; j < n ; j++)
|
---|
| 111 | if (ipiv[j] != 1)
|
---|
| 112 | for ( k = 0 ; k<n ; k++)
|
---|
| 113 | {
|
---|
| 114 | if (ipiv[k] == 0)
|
---|
| 115 | {
|
---|
| 116 | if (fabs(x[k][j]) >= big)
|
---|
| 117 | {
|
---|
| 118 | big = fabs(x[k][j]);
|
---|
| 119 | irow = j;
|
---|
| 120 | icol = k;
|
---|
| 121 | }
|
---|
| 122 | }
|
---|
| 123 | else
|
---|
| 124 | if (ipiv[k] > 1)
|
---|
| 125 | return 1; /* singular matrix */
|
---|
| 126 | }
|
---|
| 127 | ++(ipiv[icol]);
|
---|
| 128 | if (irow != icol)
|
---|
| 129 | {
|
---|
| 130 | for ( l = 0 ; l<n ; l++)
|
---|
| 131 | {
|
---|
| 132 | temp = x[l][icol];
|
---|
| 133 | x[l][icol] = x[l][irow];
|
---|
| 134 | x[l][irow] = temp;
|
---|
| 135 | }
|
---|
| 136 | }
|
---|
| 137 | indxr[i] = irow;
|
---|
| 138 | indxc[i] = icol;
|
---|
[2678] | 139 | if (x[icol][icol] == 0.0f)
|
---|
[162] | 140 | return 1; /* singular matrix */
|
---|
| 141 |
|
---|
[2678] | 142 | pivinv = 1.0f / x[icol][icol];
|
---|
| 143 | x[icol][icol] = 1.0f ;
|
---|
[162] | 144 | for ( l = 0 ; l<n ; l++)
|
---|
| 145 | x[l][icol] = x[l][icol] * pivinv ;
|
---|
| 146 |
|
---|
| 147 | for (ll = 0 ; ll < n ; ll++)
|
---|
| 148 | if (ll != icol)
|
---|
| 149 | {
|
---|
| 150 | dum = x[icol][ll];
|
---|
[2678] | 151 | x[icol][ll] = 0.0f;
|
---|
[162] | 152 | for ( l = 0 ; l<n ; l++)
|
---|
| 153 | x[l][ll] = x[l][ll] - x[l][icol] * dum ;
|
---|
| 154 | }
|
---|
| 155 | }
|
---|
| 156 | for ( l = n; l--; )
|
---|
| 157 | {
|
---|
| 158 | if (indxr[l] != indxc[l])
|
---|
| 159 | for ( k = 0; k<n ; k++)
|
---|
| 160 | {
|
---|
| 161 | temp = x[indxr[l]][k];
|
---|
| 162 | x[indxr[l]][k] = x[indxc[l]][k];
|
---|
| 163 | x[indxc[l]][k] = temp;
|
---|
| 164 | }
|
---|
| 165 | }
|
---|
| 166 |
|
---|
| 167 | return 0 ; // matrix is regular .. inversion has been succesfull
|
---|
| 168 | }
|
---|
| 169 |
|
---|
| 170 | // Invert the given matrix using the above inversion routine.
|
---|
| 171 | Matrix4x4
|
---|
| 172 | Invert(const Matrix4x4& M)
|
---|
| 173 | {
|
---|
| 174 | Matrix4x4 InvertMe = M;
|
---|
| 175 | InvertMe.Invert();
|
---|
| 176 | return InvertMe;
|
---|
| 177 | }
|
---|
| 178 |
|
---|
| 179 |
|
---|
| 180 | // Transpose the matrix.
|
---|
| 181 | void
|
---|
| 182 | Matrix4x4::Transpose()
|
---|
| 183 | {
|
---|
| 184 | for (int i = 0; i < 4; i++)
|
---|
| 185 | for (int j = i; j < 4; j++)
|
---|
| 186 | if (i != j) {
|
---|
| 187 | float temp = x[i][j];
|
---|
| 188 | x[i][j] = x[j][i];
|
---|
| 189 | x[j][i] = temp;
|
---|
| 190 | }
|
---|
| 191 | }
|
---|
| 192 |
|
---|
| 193 | // Transpose the given matrix using the transpose routine above.
|
---|
| 194 | Matrix4x4
|
---|
| 195 | Transpose(const Matrix4x4& M)
|
---|
| 196 | {
|
---|
| 197 | Matrix4x4 TransposeMe = M;
|
---|
| 198 | TransposeMe.Transpose();
|
---|
| 199 | return TransposeMe;
|
---|
| 200 | }
|
---|
| 201 |
|
---|
| 202 | // Construct an identity matrix.
|
---|
| 203 | Matrix4x4
|
---|
| 204 | IdentityMatrix()
|
---|
| 205 | {
|
---|
| 206 | Matrix4x4 M;
|
---|
| 207 |
|
---|
| 208 | for (int i = 0; i < 4; i++)
|
---|
| 209 | for (int j = 0; j < 4; j++)
|
---|
[2678] | 210 | M.x[i][j] = (i == j) ? 1.0f : 0.0f;
|
---|
[162] | 211 | return M;
|
---|
| 212 | }
|
---|
| 213 |
|
---|
| 214 | // Construct a zero matrix.
|
---|
| 215 | Matrix4x4
|
---|
| 216 | ZeroMatrix()
|
---|
| 217 | {
|
---|
| 218 | Matrix4x4 M;
|
---|
| 219 | for (int i = 0; i < 4; i++)
|
---|
| 220 | for (int j = 0; j < 4; j++)
|
---|
| 221 | M.x[i][j] = 0;
|
---|
| 222 | return M;
|
---|
| 223 | }
|
---|
| 224 |
|
---|
| 225 | // Construct a translation matrix given the location to translate to.
|
---|
| 226 | Matrix4x4
|
---|
| 227 | TranslationMatrix(const Vector3& Location)
|
---|
| 228 | {
|
---|
| 229 | Matrix4x4 M = IdentityMatrix();
|
---|
| 230 | M.x[3][0] = Location.x;
|
---|
| 231 | M.x[3][1] = Location.y;
|
---|
| 232 | M.x[3][2] = Location.z;
|
---|
| 233 | return M;
|
---|
| 234 | }
|
---|
| 235 |
|
---|
| 236 | // Construct a rotation matrix. Rotates Angle radians about the
|
---|
| 237 | // X axis.
|
---|
| 238 | Matrix4x4
|
---|
| 239 | RotationXMatrix(float Angle)
|
---|
| 240 | {
|
---|
| 241 | Matrix4x4 M = IdentityMatrix();
|
---|
| 242 | float Cosine = cos(Angle);
|
---|
| 243 | float Sine = sin(Angle);
|
---|
| 244 | M.x[1][1] = Cosine;
|
---|
| 245 | M.x[2][1] = -Sine;
|
---|
| 246 | M.x[1][2] = Sine;
|
---|
| 247 | M.x[2][2] = Cosine;
|
---|
| 248 | return M;
|
---|
| 249 | }
|
---|
| 250 |
|
---|
| 251 | // Construct a rotation matrix. Rotates Angle radians about the
|
---|
| 252 | // Y axis.
|
---|
| 253 | Matrix4x4
|
---|
| 254 | RotationYMatrix(float Angle)
|
---|
| 255 | {
|
---|
| 256 | Matrix4x4 M = IdentityMatrix();
|
---|
| 257 | float Cosine = cos(Angle);
|
---|
| 258 | float Sine = sin(Angle);
|
---|
| 259 | M.x[0][0] = Cosine;
|
---|
| 260 | M.x[2][0] = -Sine;
|
---|
| 261 | M.x[0][2] = Sine;
|
---|
| 262 | M.x[2][2] = Cosine;
|
---|
| 263 | return M;
|
---|
| 264 | }
|
---|
| 265 |
|
---|
| 266 | // Construct a rotation matrix. Rotates Angle radians about the
|
---|
| 267 | // Z axis.
|
---|
| 268 | Matrix4x4
|
---|
| 269 | RotationZMatrix(float Angle)
|
---|
| 270 | {
|
---|
| 271 | Matrix4x4 M = IdentityMatrix();
|
---|
| 272 | float Cosine = cos(Angle);
|
---|
| 273 | float Sine = sin(Angle);
|
---|
| 274 | M.x[0][0] = Cosine;
|
---|
| 275 | M.x[1][0] = -Sine;
|
---|
| 276 | M.x[0][1] = Sine;
|
---|
| 277 | M.x[1][1] = Cosine;
|
---|
| 278 | return M;
|
---|
| 279 | }
|
---|
| 280 |
|
---|
| 281 | // Construct a yaw-pitch-roll rotation matrix. Rotate Yaw
|
---|
| 282 | // radians about the XY axis, rotate Pitch radians in the
|
---|
| 283 | // plane defined by the Yaw rotation, and rotate Roll radians
|
---|
| 284 | // about the axis defined by the previous two angles.
|
---|
| 285 | Matrix4x4
|
---|
| 286 | RotationYPRMatrix(float Yaw, float Pitch, float Roll)
|
---|
| 287 | {
|
---|
| 288 | Matrix4x4 M;
|
---|
| 289 | float ch = cos(Yaw);
|
---|
| 290 | float sh = sin(Yaw);
|
---|
| 291 | float cp = cos(Pitch);
|
---|
| 292 | float sp = sin(Pitch);
|
---|
| 293 | float cr = cos(Roll);
|
---|
| 294 | float sr = sin(Roll);
|
---|
| 295 |
|
---|
| 296 | M.x[0][0] = ch * cr + sh * sp * sr;
|
---|
| 297 | M.x[1][0] = -ch * sr + sh * sp * cr;
|
---|
| 298 | M.x[2][0] = sh * cp;
|
---|
| 299 | M.x[0][1] = sr * cp;
|
---|
| 300 | M.x[1][1] = cr * cp;
|
---|
| 301 | M.x[2][1] = -sp;
|
---|
| 302 | M.x[0][2] = -sh * cr - ch * sp * sr;
|
---|
| 303 | M.x[1][2] = sr * sh + ch * sp * cr;
|
---|
| 304 | M.x[2][2] = ch * cp;
|
---|
| 305 | for (int i = 0; i < 4; i++)
|
---|
| 306 | M.x[3][i] = M.x[i][3] = 0;
|
---|
| 307 | M.x[3][3] = 1;
|
---|
| 308 |
|
---|
| 309 | return M;
|
---|
| 310 | }
|
---|
| 311 |
|
---|
| 312 | // Construct a rotation of a given angle about a given axis.
|
---|
| 313 | // Derived from Eric Haines's SPD (Standard Procedural
|
---|
| 314 | // Database).
|
---|
| 315 | Matrix4x4
|
---|
| 316 | RotationAxisMatrix(const Vector3& axis, float angle)
|
---|
| 317 | {
|
---|
| 318 | Matrix4x4 M;
|
---|
| 319 | double cosine = cos(angle);
|
---|
| 320 | double sine = sin(angle);
|
---|
| 321 | double one_minus_cosine = 1 - cosine;
|
---|
| 322 |
|
---|
[2678] | 323 | M.x[0][0] = axis.x * axis.x + (1.0f - axis.x * axis.x) * cosine;
|
---|
[162] | 324 | M.x[0][1] = axis.x * axis.y * one_minus_cosine + axis.z * sine;
|
---|
| 325 | M.x[0][2] = axis.x * axis.z * one_minus_cosine - axis.y * sine;
|
---|
| 326 | M.x[0][3] = 0;
|
---|
| 327 |
|
---|
| 328 | M.x[1][0] = axis.x * axis.y * one_minus_cosine - axis.z * sine;
|
---|
[2678] | 329 | M.x[1][1] = axis.y * axis.y + (1.0f - axis.y * axis.y) * cosine;
|
---|
[162] | 330 | M.x[1][2] = axis.y * axis.z * one_minus_cosine + axis.x * sine;
|
---|
| 331 | M.x[1][3] = 0;
|
---|
| 332 |
|
---|
| 333 | M.x[2][0] = axis.x * axis.z * one_minus_cosine + axis.y * sine;
|
---|
| 334 | M.x[2][1] = axis.y * axis.z * one_minus_cosine - axis.x * sine;
|
---|
[2678] | 335 | M.x[2][2] = axis.z * axis.z + (1.0f - axis.z * axis.z) * cosine;
|
---|
[162] | 336 | M.x[2][3] = 0;
|
---|
| 337 |
|
---|
| 338 | M.x[3][0] = 0;
|
---|
| 339 | M.x[3][1] = 0;
|
---|
| 340 | M.x[3][2] = 0;
|
---|
| 341 | M.x[3][3] = 1;
|
---|
| 342 |
|
---|
| 343 | return M;
|
---|
| 344 | }
|
---|
| 345 |
|
---|
| 346 |
|
---|
| 347 | // Constructs the rotation matrix that rotates 'vec1' to 'vec2'
|
---|
| 348 | Matrix4x4
|
---|
| 349 | RotationVectorsMatrix(const Vector3 &vecStart,
|
---|
| 350 | const Vector3 &vecTo)
|
---|
| 351 | {
|
---|
| 352 | Vector3 vec = CrossProd(vecStart, vecTo);
|
---|
[176] | 353 |
|
---|
[162] | 354 | if (Magnitude(vec) > Limits::Small) {
|
---|
| 355 | // vector exist, compute angle
|
---|
| 356 | float angle = acos(DotProd(vecStart, vecTo));
|
---|
| 357 | // normalize for sure
|
---|
| 358 | vec.Normalize();
|
---|
| 359 | return RotationAxisMatrix(vec, angle);
|
---|
| 360 | }
|
---|
| 361 |
|
---|
| 362 | // opposite or colinear vectors
|
---|
| 363 | Matrix4x4 ret = IdentityMatrix();
|
---|
| 364 | if (DotProd(vecStart, vecTo) < 0.0)
|
---|
| 365 | ret *= -1.0; // opposite vectors
|
---|
| 366 |
|
---|
| 367 | return ret;
|
---|
| 368 | }
|
---|
| 369 |
|
---|
| 370 |
|
---|
| 371 | // Construct a scale matrix given the X, Y, and Z parameters
|
---|
| 372 | // to scale by. To scale uniformly, let X==Y==Z.
|
---|
| 373 | Matrix4x4
|
---|
| 374 | ScaleMatrix(float X, float Y, float Z)
|
---|
| 375 | {
|
---|
| 376 | Matrix4x4 M = IdentityMatrix();
|
---|
| 377 |
|
---|
| 378 | M.x[0][0] = X;
|
---|
| 379 | M.x[1][1] = Y;
|
---|
| 380 | M.x[2][2] = Z;
|
---|
| 381 |
|
---|
| 382 | return M;
|
---|
| 383 | }
|
---|
| 384 |
|
---|
| 385 | // Construct a rotation matrix that makes the x, y, z axes
|
---|
| 386 | // correspond to the vectors given.
|
---|
| 387 | Matrix4x4
|
---|
| 388 | GenRotation(const Vector3 &x, const Vector3 &y, const Vector3 &z)
|
---|
| 389 | {
|
---|
| 390 | Matrix4x4 M = IdentityMatrix();
|
---|
| 391 |
|
---|
| 392 | #if 1
|
---|
| 393 | // x y
|
---|
| 394 | M.x[0][0] = x.x;
|
---|
| 395 | M.x[1][0] = x.y;
|
---|
| 396 | M.x[2][0] = x.z;
|
---|
| 397 |
|
---|
| 398 | M.x[0][1] = y.x;
|
---|
| 399 | M.x[1][1] = y.y;
|
---|
| 400 | M.x[2][1] = y.z;
|
---|
| 401 |
|
---|
| 402 | M.x[0][2] = z.x;
|
---|
| 403 | M.x[1][2] = z.y;
|
---|
| 404 | M.x[2][2] = z.z;
|
---|
| 405 | #else
|
---|
| 406 | // x y -- old version
|
---|
| 407 | M.x[0][0] = x.x;
|
---|
| 408 | M.x[0][1] = x.y;
|
---|
| 409 | M.x[0][2] = x.z;
|
---|
| 410 |
|
---|
| 411 | M.x[1][0] = y.x;
|
---|
| 412 | M.x[1][1] = y.y;
|
---|
| 413 | M.x[1][2] = y.z;
|
---|
| 414 |
|
---|
| 415 | M.x[2][0] = z.x;
|
---|
| 416 | M.x[2][1] = z.y;
|
---|
| 417 | M.x[2][2] = z.z;
|
---|
| 418 | #endif
|
---|
| 419 |
|
---|
| 420 | return M;
|
---|
| 421 | }
|
---|
| 422 |
|
---|
| 423 | // Construct a quadric matrix. After Foley et al. pp. 528-529.
|
---|
| 424 | Matrix4x4
|
---|
| 425 | QuadricMatrix(float a, float b, float c, float d, float e,
|
---|
| 426 | float f, float g, float h, float j, float k)
|
---|
| 427 | {
|
---|
| 428 | Matrix4x4 M;
|
---|
| 429 |
|
---|
| 430 | M.x[0][0] = a; M.x[0][1] = d; M.x[0][2] = f; M.x[0][3] = g;
|
---|
| 431 | M.x[1][0] = d; M.x[1][1] = b; M.x[1][2] = e; M.x[1][3] = h;
|
---|
| 432 | M.x[2][0] = f; M.x[2][1] = e; M.x[2][2] = c; M.x[2][3] = j;
|
---|
| 433 | M.x[3][0] = g; M.x[3][1] = h; M.x[3][2] = j; M.x[3][3] = k;
|
---|
| 434 |
|
---|
| 435 | return M;
|
---|
| 436 | }
|
---|
| 437 |
|
---|
| 438 | // Construct various "mirror" matrices, which flip coordinate
|
---|
| 439 | // signs in the various axes specified.
|
---|
| 440 | Matrix4x4
|
---|
| 441 | MirrorX()
|
---|
| 442 | {
|
---|
| 443 | Matrix4x4 M = IdentityMatrix();
|
---|
| 444 | M.x[0][0] = -1;
|
---|
| 445 | return M;
|
---|
| 446 | }
|
---|
| 447 |
|
---|
| 448 | Matrix4x4
|
---|
| 449 | MirrorY()
|
---|
| 450 | {
|
---|
| 451 | Matrix4x4 M = IdentityMatrix();
|
---|
| 452 | M.x[1][1] = -1;
|
---|
| 453 | return M;
|
---|
| 454 | }
|
---|
| 455 |
|
---|
| 456 | Matrix4x4
|
---|
| 457 | MirrorZ()
|
---|
| 458 | {
|
---|
| 459 | Matrix4x4 M = IdentityMatrix();
|
---|
| 460 | M.x[2][2] = -1;
|
---|
| 461 | return M;
|
---|
| 462 | }
|
---|
| 463 |
|
---|
| 464 | Matrix4x4
|
---|
| 465 | RotationOnly(const Matrix4x4& x)
|
---|
| 466 | {
|
---|
| 467 | Matrix4x4 M = x;
|
---|
| 468 | M.x[3][0] = M.x[3][1] = M.x[3][2] = 0;
|
---|
| 469 | return M;
|
---|
| 470 | }
|
---|
| 471 |
|
---|
| 472 | // Add corresponding elements of the two matrices.
|
---|
| 473 | Matrix4x4&
|
---|
| 474 | Matrix4x4::operator+= (const Matrix4x4& A)
|
---|
| 475 | {
|
---|
| 476 | for (int i = 0; i < 4; i++)
|
---|
| 477 | for (int j = 0; j < 4; j++)
|
---|
| 478 | x[i][j] += A.x[i][j];
|
---|
| 479 | return *this;
|
---|
| 480 | }
|
---|
| 481 |
|
---|
| 482 | // Subtract corresponding elements of the matrices.
|
---|
| 483 | Matrix4x4&
|
---|
| 484 | Matrix4x4::operator-= (const Matrix4x4& A)
|
---|
| 485 | {
|
---|
| 486 | for (int i = 0; i < 4; i++)
|
---|
| 487 | for (int j = 0; j < 4; j++)
|
---|
| 488 | x[i][j] -= A.x[i][j];
|
---|
| 489 | return *this;
|
---|
| 490 | }
|
---|
| 491 |
|
---|
| 492 | // Scale each element of the matrix by A.
|
---|
| 493 | Matrix4x4&
|
---|
| 494 | Matrix4x4::operator*= (float A)
|
---|
| 495 | {
|
---|
| 496 | for (int i = 0; i < 4; i++)
|
---|
| 497 | for (int j = 0; j < 4; j++)
|
---|
| 498 | x[i][j] *= A;
|
---|
| 499 | return *this;
|
---|
| 500 | }
|
---|
| 501 |
|
---|
| 502 | // Multiply two matrices.
|
---|
| 503 | Matrix4x4&
|
---|
| 504 | Matrix4x4::operator*= (const Matrix4x4& A)
|
---|
| 505 | {
|
---|
| 506 | Matrix4x4 ret = *this;
|
---|
| 507 |
|
---|
| 508 | for (int i = 0; i < 4; i++)
|
---|
| 509 | for (int j = 0; j < 4; j++) {
|
---|
| 510 | float subt = 0;
|
---|
| 511 | for (int k = 0; k < 4; k++)
|
---|
| 512 | subt += ret.x[i][k] * A.x[k][j];
|
---|
| 513 | x[i][j] = subt;
|
---|
| 514 | }
|
---|
| 515 | return *this;
|
---|
| 516 | }
|
---|
| 517 |
|
---|
| 518 | // Add corresponding elements of the matrices.
|
---|
| 519 | Matrix4x4
|
---|
| 520 | operator+ (const Matrix4x4& A, const Matrix4x4& B)
|
---|
| 521 | {
|
---|
| 522 | Matrix4x4 ret;
|
---|
| 523 |
|
---|
| 524 | for (int i = 0; i < 4; i++)
|
---|
| 525 | for (int j = 0; j < 4; j++)
|
---|
| 526 | ret.x[i][j] = A.x[i][j] + B.x[i][j];
|
---|
| 527 | return ret;
|
---|
| 528 | }
|
---|
| 529 |
|
---|
| 530 | // Subtract corresponding elements of the matrices.
|
---|
| 531 | Matrix4x4
|
---|
| 532 | operator- (const Matrix4x4& A, const Matrix4x4& B)
|
---|
| 533 | {
|
---|
| 534 | Matrix4x4 ret;
|
---|
| 535 |
|
---|
| 536 | for (int i = 0; i < 4; i++)
|
---|
| 537 | for (int j = 0; j < 4; j++)
|
---|
| 538 | ret.x[i][j] = A.x[i][j] - B.x[i][j];
|
---|
| 539 | return ret;
|
---|
| 540 | }
|
---|
| 541 |
|
---|
| 542 | // Multiply matrices.
|
---|
| 543 | Matrix4x4
|
---|
| 544 | operator* (const Matrix4x4& A, const Matrix4x4& B)
|
---|
| 545 | {
|
---|
| 546 | Matrix4x4 ret;
|
---|
| 547 |
|
---|
| 548 | for (int i = 0; i < 4; i++)
|
---|
| 549 | for (int j = 0; j < 4; j++) {
|
---|
| 550 | float subt = 0;
|
---|
| 551 | for (int k = 0; k < 4; k++)
|
---|
| 552 | subt += A.x[i][k] * B.x[k][j];
|
---|
| 553 | ret.x[i][j] = subt;
|
---|
| 554 | }
|
---|
| 555 | return ret;
|
---|
| 556 | }
|
---|
| 557 |
|
---|
| 558 | // Transform a vector by a matrix.
|
---|
| 559 | Vector3
|
---|
| 560 | operator* (const Matrix4x4& M, const Vector3& v)
|
---|
| 561 | {
|
---|
| 562 | Vector3 ret;
|
---|
| 563 | float denom;
|
---|
| 564 |
|
---|
| 565 | ret.x = v.x * M.x[0][0] + v.y * M.x[1][0] + v.z * M.x[2][0] + M.x[3][0];
|
---|
| 566 | ret.y = v.x * M.x[0][1] + v.y * M.x[1][1] + v.z * M.x[2][1] + M.x[3][1];
|
---|
| 567 | ret.z = v.x * M.x[0][2] + v.y * M.x[1][2] + v.z * M.x[2][2] + M.x[3][2];
|
---|
| 568 | denom = M.x[0][3] + M.x[1][3] + M.x[2][3] + M.x[3][3];
|
---|
| 569 | if (denom != 1.0)
|
---|
| 570 | ret /= denom;
|
---|
| 571 | return ret;
|
---|
| 572 | }
|
---|
| 573 |
|
---|
| 574 | // Apply the rotation portion of a matrix to a vector.
|
---|
| 575 | Vector3
|
---|
| 576 | RotateOnly(const Matrix4x4& M, const Vector3& v)
|
---|
| 577 | {
|
---|
| 578 | Vector3 ret;
|
---|
| 579 | float denom;
|
---|
| 580 |
|
---|
| 581 | ret.x = v.x * M.x[0][0] + v.y * M.x[1][0] + v.z * M.x[2][0];
|
---|
| 582 | ret.y = v.x * M.x[0][1] + v.y * M.x[1][1] + v.z * M.x[2][1];
|
---|
| 583 | ret.z = v.x * M.x[0][2] + v.y * M.x[1][2] + v.z * M.x[2][2];
|
---|
| 584 | denom = M.x[0][3] + M.x[1][3] + M.x[2][3] + M.x[3][3];
|
---|
| 585 | if (denom != 1.0)
|
---|
| 586 | ret /= denom;
|
---|
| 587 | return ret;
|
---|
| 588 | }
|
---|
| 589 |
|
---|
| 590 | // Scale each element of the matrix by B.
|
---|
| 591 | Matrix4x4
|
---|
| 592 | operator* (const Matrix4x4& A, float B)
|
---|
| 593 | {
|
---|
| 594 | Matrix4x4 ret;
|
---|
| 595 |
|
---|
| 596 | for (int i = 0; i < 4; i++)
|
---|
| 597 | for (int j = 0; j < 4; j++)
|
---|
| 598 | ret.x[i][j] = A.x[i][j] * B;
|
---|
| 599 | return ret;
|
---|
| 600 | }
|
---|
| 601 |
|
---|
| 602 | // Overloaded << for C++-style output.
|
---|
| 603 | ostream&
|
---|
| 604 | operator<< (ostream& s, const Matrix4x4& M)
|
---|
| 605 | {
|
---|
| 606 | for (int i = 0; i < 4; i++) { // y
|
---|
| 607 | for (int j = 0; j < 4; j++) { // x
|
---|
| 608 | // x y
|
---|
| 609 | s << setprecision(4) << setw(10) << M.x[j][i];
|
---|
| 610 | }
|
---|
| 611 | s << '\n';
|
---|
| 612 | }
|
---|
| 613 | return s;
|
---|
| 614 | }
|
---|
| 615 |
|
---|
| 616 | // Rotate a direction vector...
|
---|
| 617 | Vector3
|
---|
| 618 | PlaneRotate(const Matrix4x4& tform, const Vector3& p)
|
---|
| 619 | {
|
---|
| 620 | // I sure hope that matrix is invertible...
|
---|
| 621 | Matrix4x4 use = Transpose(Invert(tform));
|
---|
| 622 |
|
---|
| 623 | return RotateOnly(use, p);
|
---|
| 624 | }
|
---|
| 625 |
|
---|
| 626 | // Transform a normal
|
---|
| 627 | Vector3
|
---|
| 628 | TransformNormal(const Matrix4x4& tform, const Vector3& n)
|
---|
| 629 | {
|
---|
| 630 | Matrix4x4 use = NormalTransformMatrix(tform);
|
---|
| 631 |
|
---|
| 632 | return RotateOnly(use, n);
|
---|
| 633 | }
|
---|
| 634 |
|
---|
| 635 | Matrix4x4
|
---|
| 636 | NormalTransformMatrix(const Matrix4x4 &tform)
|
---|
| 637 | {
|
---|
| 638 | Matrix4x4 m = tform;
|
---|
| 639 | // for normal translation vector must be zero!
|
---|
| 640 | m.x[3][0] = m.x[3][1] = m.x[3][2] = 0.0;
|
---|
| 641 | // I sure hope that matrix is invertible...
|
---|
| 642 | return Transpose(Invert(m));
|
---|
| 643 | }
|
---|
| 644 |
|
---|
| 645 | Vector3
|
---|
| 646 | GetTranslation(const Matrix4x4 &M)
|
---|
| 647 | {
|
---|
| 648 | return Vector3(M.x[3][0], M.x[3][1], M.x[3][2]);
|
---|
| 649 | }
|
---|
[860] | 650 |
|
---|
| 651 | } |
---|