1 | #include "Matrix4x4.h"
|
---|
2 | #include "Vector3.h"
|
---|
3 |
|
---|
4 | // standard headers
|
---|
5 | #include <iomanip>
|
---|
6 | using namespace std;
|
---|
7 |
|
---|
8 | namespace GtpVisibilityPreprocessor {
|
---|
9 |
|
---|
10 |
|
---|
11 | Matrix4x4::Matrix4x4(const Vector3 &a, const Vector3 &b, const Vector3 &c)
|
---|
12 | {
|
---|
13 | // first index is column [x], the second is row [y]
|
---|
14 | x[0][0] = a.x;
|
---|
15 | x[1][0] = b.x;
|
---|
16 | x[2][0] = c.x;
|
---|
17 | x[3][0] = 0.0f;
|
---|
18 |
|
---|
19 | x[0][1] = a.y;
|
---|
20 | x[1][1] = b.y;
|
---|
21 | x[2][1] = c.y;
|
---|
22 | x[3][1] = 0.0f;
|
---|
23 |
|
---|
24 | x[0][2] = a.z;
|
---|
25 | x[1][2] = b.z;
|
---|
26 | x[2][2] = c.z;
|
---|
27 | x[3][2] = 0.0f;
|
---|
28 |
|
---|
29 | x[0][3] = 0.0f;
|
---|
30 | x[1][3] = 0.0f;
|
---|
31 | x[2][3] = 0.0f;
|
---|
32 | x[3][3] = 1.0f;
|
---|
33 |
|
---|
34 | }
|
---|
35 |
|
---|
36 | void
|
---|
37 | Matrix4x4::SetColumns(const Vector3 &a, const Vector3 &b, const Vector3 &c)
|
---|
38 | {
|
---|
39 | // first index is column [x], the second is row [y]
|
---|
40 | x[0][0] = a.x;
|
---|
41 | x[1][0] = a.y;
|
---|
42 | x[2][0] = a.z;
|
---|
43 | x[3][0] = 0.0f;
|
---|
44 |
|
---|
45 | x[0][1] = b.x;
|
---|
46 | x[1][1] = b.y;
|
---|
47 | x[2][1] = b.z;
|
---|
48 | x[3][1] = 0.0f;
|
---|
49 |
|
---|
50 | x[0][2] = c.x;
|
---|
51 | x[1][2] = c.y;
|
---|
52 | x[2][2] = c.z;
|
---|
53 | x[3][2] = 0.0f;
|
---|
54 |
|
---|
55 | x[0][3] = 0.0f;
|
---|
56 | x[1][3] = 0.0f;
|
---|
57 | x[2][3] = 0.0f;
|
---|
58 | x[3][3] = 1.0f;
|
---|
59 | }
|
---|
60 |
|
---|
61 | // full constructor
|
---|
62 | Matrix4x4::Matrix4x4(float x11, float x12, float x13, float x14,
|
---|
63 | float x21, float x22, float x23, float x24,
|
---|
64 | float x31, float x32, float x33, float x34,
|
---|
65 | float x41, float x42, float x43, float x44)
|
---|
66 | {
|
---|
67 | // first index is column [x], the second is row [y]
|
---|
68 | x[0][0] = x11;
|
---|
69 | x[1][0] = x12;
|
---|
70 | x[2][0] = x13;
|
---|
71 | x[3][0] = x14;
|
---|
72 |
|
---|
73 | x[0][1] = x21;
|
---|
74 | x[1][1] = x22;
|
---|
75 | x[2][1] = x23;
|
---|
76 | x[3][1] = x24;
|
---|
77 |
|
---|
78 | x[0][2] = x31;
|
---|
79 | x[1][2] = x32;
|
---|
80 | x[2][2] = x33;
|
---|
81 | x[3][2] = x34;
|
---|
82 |
|
---|
83 | x[0][3] = x41;
|
---|
84 | x[1][3] = x42;
|
---|
85 | x[2][3] = x43;
|
---|
86 | x[3][3] = x44;
|
---|
87 | }
|
---|
88 |
|
---|
89 | // inverse matrix computation gauss_jacobiho method .. from N.R. in C
|
---|
90 | // if matrix is regular = computatation successfull = returns 0
|
---|
91 | // in case of singular matrix returns 1
|
---|
92 | int
|
---|
93 | Matrix4x4::Invert()
|
---|
94 | {
|
---|
95 | int indxc[4],indxr[4],ipiv[4];
|
---|
96 | int i,icol,irow,j,k,l,ll,n;
|
---|
97 | float big,dum,pivinv,temp;
|
---|
98 | // satisfy the compiler
|
---|
99 | icol = irow = 0;
|
---|
100 |
|
---|
101 | // the size of the matrix
|
---|
102 | n = 4;
|
---|
103 |
|
---|
104 | for ( j = 0 ; j < n ; j++) /* zero pivots */
|
---|
105 | ipiv[j] = 0;
|
---|
106 |
|
---|
107 | for ( i = 0; i < n; i++)
|
---|
108 | {
|
---|
109 | big = 0.0;
|
---|
110 | for (j = 0 ; j < n ; j++)
|
---|
111 | if (ipiv[j] != 1)
|
---|
112 | for ( k = 0 ; k<n ; k++)
|
---|
113 | {
|
---|
114 | if (ipiv[k] == 0)
|
---|
115 | {
|
---|
116 | if (fabs(x[k][j]) >= big)
|
---|
117 | {
|
---|
118 | big = fabs(x[k][j]);
|
---|
119 | irow = j;
|
---|
120 | icol = k;
|
---|
121 | }
|
---|
122 | }
|
---|
123 | else
|
---|
124 | if (ipiv[k] > 1)
|
---|
125 | return 1; /* singular matrix */
|
---|
126 | }
|
---|
127 | ++(ipiv[icol]);
|
---|
128 | if (irow != icol)
|
---|
129 | {
|
---|
130 | for ( l = 0 ; l<n ; l++)
|
---|
131 | {
|
---|
132 | temp = x[l][icol];
|
---|
133 | x[l][icol] = x[l][irow];
|
---|
134 | x[l][irow] = temp;
|
---|
135 | }
|
---|
136 | }
|
---|
137 | indxr[i] = irow;
|
---|
138 | indxc[i] = icol;
|
---|
139 | if (x[icol][icol] == 0.0)
|
---|
140 | return 1; /* singular matrix */
|
---|
141 |
|
---|
142 | pivinv = 1.0 / x[icol][icol];
|
---|
143 | x[icol][icol] = 1.0 ;
|
---|
144 | for ( l = 0 ; l<n ; l++)
|
---|
145 | x[l][icol] = x[l][icol] * pivinv ;
|
---|
146 |
|
---|
147 | for (ll = 0 ; ll < n ; ll++)
|
---|
148 | if (ll != icol)
|
---|
149 | {
|
---|
150 | dum = x[icol][ll];
|
---|
151 | x[icol][ll] = 0.0;
|
---|
152 | for ( l = 0 ; l<n ; l++)
|
---|
153 | x[l][ll] = x[l][ll] - x[l][icol] * dum ;
|
---|
154 | }
|
---|
155 | }
|
---|
156 | for ( l = n; l--; )
|
---|
157 | {
|
---|
158 | if (indxr[l] != indxc[l])
|
---|
159 | for ( k = 0; k<n ; k++)
|
---|
160 | {
|
---|
161 | temp = x[indxr[l]][k];
|
---|
162 | x[indxr[l]][k] = x[indxc[l]][k];
|
---|
163 | x[indxc[l]][k] = temp;
|
---|
164 | }
|
---|
165 | }
|
---|
166 |
|
---|
167 | return 0 ; // matrix is regular .. inversion has been succesfull
|
---|
168 | }
|
---|
169 |
|
---|
170 | // Invert the given matrix using the above inversion routine.
|
---|
171 | Matrix4x4
|
---|
172 | Invert(const Matrix4x4& M)
|
---|
173 | {
|
---|
174 | Matrix4x4 InvertMe = M;
|
---|
175 | InvertMe.Invert();
|
---|
176 | return InvertMe;
|
---|
177 | }
|
---|
178 |
|
---|
179 |
|
---|
180 | // Transpose the matrix.
|
---|
181 | void
|
---|
182 | Matrix4x4::Transpose()
|
---|
183 | {
|
---|
184 | for (int i = 0; i < 4; i++)
|
---|
185 | for (int j = i; j < 4; j++)
|
---|
186 | if (i != j) {
|
---|
187 | float temp = x[i][j];
|
---|
188 | x[i][j] = x[j][i];
|
---|
189 | x[j][i] = temp;
|
---|
190 | }
|
---|
191 | }
|
---|
192 |
|
---|
193 | // Transpose the given matrix using the transpose routine above.
|
---|
194 | Matrix4x4
|
---|
195 | Transpose(const Matrix4x4& M)
|
---|
196 | {
|
---|
197 | Matrix4x4 TransposeMe = M;
|
---|
198 | TransposeMe.Transpose();
|
---|
199 | return TransposeMe;
|
---|
200 | }
|
---|
201 |
|
---|
202 | // Construct an identity matrix.
|
---|
203 | Matrix4x4
|
---|
204 | IdentityMatrix()
|
---|
205 | {
|
---|
206 | Matrix4x4 M;
|
---|
207 |
|
---|
208 | for (int i = 0; i < 4; i++)
|
---|
209 | for (int j = 0; j < 4; j++)
|
---|
210 | M.x[i][j] = (i == j) ? 1.0 : 0.0;
|
---|
211 | return M;
|
---|
212 | }
|
---|
213 |
|
---|
214 | // Construct a zero matrix.
|
---|
215 | Matrix4x4
|
---|
216 | ZeroMatrix()
|
---|
217 | {
|
---|
218 | Matrix4x4 M;
|
---|
219 | for (int i = 0; i < 4; i++)
|
---|
220 | for (int j = 0; j < 4; j++)
|
---|
221 | M.x[i][j] = 0;
|
---|
222 | return M;
|
---|
223 | }
|
---|
224 |
|
---|
225 | // Construct a translation matrix given the location to translate to.
|
---|
226 | Matrix4x4
|
---|
227 | TranslationMatrix(const Vector3& Location)
|
---|
228 | {
|
---|
229 | Matrix4x4 M = IdentityMatrix();
|
---|
230 | M.x[3][0] = Location.x;
|
---|
231 | M.x[3][1] = Location.y;
|
---|
232 | M.x[3][2] = Location.z;
|
---|
233 | return M;
|
---|
234 | }
|
---|
235 |
|
---|
236 | // Construct a rotation matrix. Rotates Angle radians about the
|
---|
237 | // X axis.
|
---|
238 | Matrix4x4
|
---|
239 | RotationXMatrix(float Angle)
|
---|
240 | {
|
---|
241 | Matrix4x4 M = IdentityMatrix();
|
---|
242 | float Cosine = cos(Angle);
|
---|
243 | float Sine = sin(Angle);
|
---|
244 | M.x[1][1] = Cosine;
|
---|
245 | M.x[2][1] = -Sine;
|
---|
246 | M.x[1][2] = Sine;
|
---|
247 | M.x[2][2] = Cosine;
|
---|
248 | return M;
|
---|
249 | }
|
---|
250 |
|
---|
251 | // Construct a rotation matrix. Rotates Angle radians about the
|
---|
252 | // Y axis.
|
---|
253 | Matrix4x4
|
---|
254 | RotationYMatrix(float Angle)
|
---|
255 | {
|
---|
256 | Matrix4x4 M = IdentityMatrix();
|
---|
257 | float Cosine = cos(Angle);
|
---|
258 | float Sine = sin(Angle);
|
---|
259 | M.x[0][0] = Cosine;
|
---|
260 | M.x[2][0] = -Sine;
|
---|
261 | M.x[0][2] = Sine;
|
---|
262 | M.x[2][2] = Cosine;
|
---|
263 | return M;
|
---|
264 | }
|
---|
265 |
|
---|
266 | // Construct a rotation matrix. Rotates Angle radians about the
|
---|
267 | // Z axis.
|
---|
268 | Matrix4x4
|
---|
269 | RotationZMatrix(float Angle)
|
---|
270 | {
|
---|
271 | Matrix4x4 M = IdentityMatrix();
|
---|
272 | float Cosine = cos(Angle);
|
---|
273 | float Sine = sin(Angle);
|
---|
274 | M.x[0][0] = Cosine;
|
---|
275 | M.x[1][0] = -Sine;
|
---|
276 | M.x[0][1] = Sine;
|
---|
277 | M.x[1][1] = Cosine;
|
---|
278 | return M;
|
---|
279 | }
|
---|
280 |
|
---|
281 | // Construct a yaw-pitch-roll rotation matrix. Rotate Yaw
|
---|
282 | // radians about the XY axis, rotate Pitch radians in the
|
---|
283 | // plane defined by the Yaw rotation, and rotate Roll radians
|
---|
284 | // about the axis defined by the previous two angles.
|
---|
285 | Matrix4x4
|
---|
286 | RotationYPRMatrix(float Yaw, float Pitch, float Roll)
|
---|
287 | {
|
---|
288 | Matrix4x4 M;
|
---|
289 | float ch = cos(Yaw);
|
---|
290 | float sh = sin(Yaw);
|
---|
291 | float cp = cos(Pitch);
|
---|
292 | float sp = sin(Pitch);
|
---|
293 | float cr = cos(Roll);
|
---|
294 | float sr = sin(Roll);
|
---|
295 |
|
---|
296 | M.x[0][0] = ch * cr + sh * sp * sr;
|
---|
297 | M.x[1][0] = -ch * sr + sh * sp * cr;
|
---|
298 | M.x[2][0] = sh * cp;
|
---|
299 | M.x[0][1] = sr * cp;
|
---|
300 | M.x[1][1] = cr * cp;
|
---|
301 | M.x[2][1] = -sp;
|
---|
302 | M.x[0][2] = -sh * cr - ch * sp * sr;
|
---|
303 | M.x[1][2] = sr * sh + ch * sp * cr;
|
---|
304 | M.x[2][2] = ch * cp;
|
---|
305 | for (int i = 0; i < 4; i++)
|
---|
306 | M.x[3][i] = M.x[i][3] = 0;
|
---|
307 | M.x[3][3] = 1;
|
---|
308 |
|
---|
309 | return M;
|
---|
310 | }
|
---|
311 |
|
---|
312 | // Construct a rotation of a given angle about a given axis.
|
---|
313 | // Derived from Eric Haines's SPD (Standard Procedural
|
---|
314 | // Database).
|
---|
315 | Matrix4x4
|
---|
316 | RotationAxisMatrix(const Vector3& axis, float angle)
|
---|
317 | {
|
---|
318 | Matrix4x4 M;
|
---|
319 | double cosine = cos(angle);
|
---|
320 | double sine = sin(angle);
|
---|
321 | double one_minus_cosine = 1 - cosine;
|
---|
322 |
|
---|
323 | M.x[0][0] = axis.x * axis.x + (1.0 - axis.x * axis.x) * cosine;
|
---|
324 | M.x[0][1] = axis.x * axis.y * one_minus_cosine + axis.z * sine;
|
---|
325 | M.x[0][2] = axis.x * axis.z * one_minus_cosine - axis.y * sine;
|
---|
326 | M.x[0][3] = 0;
|
---|
327 |
|
---|
328 | M.x[1][0] = axis.x * axis.y * one_minus_cosine - axis.z * sine;
|
---|
329 | M.x[1][1] = axis.y * axis.y + (1.0 - axis.y * axis.y) * cosine;
|
---|
330 | M.x[1][2] = axis.y * axis.z * one_minus_cosine + axis.x * sine;
|
---|
331 | M.x[1][3] = 0;
|
---|
332 |
|
---|
333 | M.x[2][0] = axis.x * axis.z * one_minus_cosine + axis.y * sine;
|
---|
334 | M.x[2][1] = axis.y * axis.z * one_minus_cosine - axis.x * sine;
|
---|
335 | M.x[2][2] = axis.z * axis.z + (1.0 - axis.z * axis.z) * cosine;
|
---|
336 | M.x[2][3] = 0;
|
---|
337 |
|
---|
338 | M.x[3][0] = 0;
|
---|
339 | M.x[3][1] = 0;
|
---|
340 | M.x[3][2] = 0;
|
---|
341 | M.x[3][3] = 1;
|
---|
342 |
|
---|
343 | return M;
|
---|
344 | }
|
---|
345 |
|
---|
346 |
|
---|
347 | // Constructs the rotation matrix that rotates 'vec1' to 'vec2'
|
---|
348 | Matrix4x4
|
---|
349 | RotationVectorsMatrix(const Vector3 &vecStart,
|
---|
350 | const Vector3 &vecTo)
|
---|
351 | {
|
---|
352 | Vector3 vec = CrossProd(vecStart, vecTo);
|
---|
353 |
|
---|
354 | if (Magnitude(vec) > Limits::Small) {
|
---|
355 | // vector exist, compute angle
|
---|
356 | float angle = acos(DotProd(vecStart, vecTo));
|
---|
357 | // normalize for sure
|
---|
358 | vec.Normalize();
|
---|
359 | return RotationAxisMatrix(vec, angle);
|
---|
360 | }
|
---|
361 |
|
---|
362 | // opposite or colinear vectors
|
---|
363 | Matrix4x4 ret = IdentityMatrix();
|
---|
364 | if (DotProd(vecStart, vecTo) < 0.0)
|
---|
365 | ret *= -1.0; // opposite vectors
|
---|
366 |
|
---|
367 | return ret;
|
---|
368 | }
|
---|
369 |
|
---|
370 |
|
---|
371 | // Construct a scale matrix given the X, Y, and Z parameters
|
---|
372 | // to scale by. To scale uniformly, let X==Y==Z.
|
---|
373 | Matrix4x4
|
---|
374 | ScaleMatrix(float X, float Y, float Z)
|
---|
375 | {
|
---|
376 | Matrix4x4 M = IdentityMatrix();
|
---|
377 |
|
---|
378 | M.x[0][0] = X;
|
---|
379 | M.x[1][1] = Y;
|
---|
380 | M.x[2][2] = Z;
|
---|
381 |
|
---|
382 | return M;
|
---|
383 | }
|
---|
384 |
|
---|
385 | // Construct a rotation matrix that makes the x, y, z axes
|
---|
386 | // correspond to the vectors given.
|
---|
387 | Matrix4x4
|
---|
388 | GenRotation(const Vector3 &x, const Vector3 &y, const Vector3 &z)
|
---|
389 | {
|
---|
390 | Matrix4x4 M = IdentityMatrix();
|
---|
391 |
|
---|
392 | #if 1
|
---|
393 | // x y
|
---|
394 | M.x[0][0] = x.x;
|
---|
395 | M.x[1][0] = x.y;
|
---|
396 | M.x[2][0] = x.z;
|
---|
397 |
|
---|
398 | M.x[0][1] = y.x;
|
---|
399 | M.x[1][1] = y.y;
|
---|
400 | M.x[2][1] = y.z;
|
---|
401 |
|
---|
402 | M.x[0][2] = z.x;
|
---|
403 | M.x[1][2] = z.y;
|
---|
404 | M.x[2][2] = z.z;
|
---|
405 | #else
|
---|
406 | // x y -- old version
|
---|
407 | M.x[0][0] = x.x;
|
---|
408 | M.x[0][1] = x.y;
|
---|
409 | M.x[0][2] = x.z;
|
---|
410 |
|
---|
411 | M.x[1][0] = y.x;
|
---|
412 | M.x[1][1] = y.y;
|
---|
413 | M.x[1][2] = y.z;
|
---|
414 |
|
---|
415 | M.x[2][0] = z.x;
|
---|
416 | M.x[2][1] = z.y;
|
---|
417 | M.x[2][2] = z.z;
|
---|
418 | #endif
|
---|
419 |
|
---|
420 | return M;
|
---|
421 | }
|
---|
422 |
|
---|
423 | // Construct a quadric matrix. After Foley et al. pp. 528-529.
|
---|
424 | Matrix4x4
|
---|
425 | QuadricMatrix(float a, float b, float c, float d, float e,
|
---|
426 | float f, float g, float h, float j, float k)
|
---|
427 | {
|
---|
428 | Matrix4x4 M;
|
---|
429 |
|
---|
430 | M.x[0][0] = a; M.x[0][1] = d; M.x[0][2] = f; M.x[0][3] = g;
|
---|
431 | M.x[1][0] = d; M.x[1][1] = b; M.x[1][2] = e; M.x[1][3] = h;
|
---|
432 | M.x[2][0] = f; M.x[2][1] = e; M.x[2][2] = c; M.x[2][3] = j;
|
---|
433 | M.x[3][0] = g; M.x[3][1] = h; M.x[3][2] = j; M.x[3][3] = k;
|
---|
434 |
|
---|
435 | return M;
|
---|
436 | }
|
---|
437 |
|
---|
438 | // Construct various "mirror" matrices, which flip coordinate
|
---|
439 | // signs in the various axes specified.
|
---|
440 | Matrix4x4
|
---|
441 | MirrorX()
|
---|
442 | {
|
---|
443 | Matrix4x4 M = IdentityMatrix();
|
---|
444 | M.x[0][0] = -1;
|
---|
445 | return M;
|
---|
446 | }
|
---|
447 |
|
---|
448 | Matrix4x4
|
---|
449 | MirrorY()
|
---|
450 | {
|
---|
451 | Matrix4x4 M = IdentityMatrix();
|
---|
452 | M.x[1][1] = -1;
|
---|
453 | return M;
|
---|
454 | }
|
---|
455 |
|
---|
456 | Matrix4x4
|
---|
457 | MirrorZ()
|
---|
458 | {
|
---|
459 | Matrix4x4 M = IdentityMatrix();
|
---|
460 | M.x[2][2] = -1;
|
---|
461 | return M;
|
---|
462 | }
|
---|
463 |
|
---|
464 | Matrix4x4
|
---|
465 | RotationOnly(const Matrix4x4& x)
|
---|
466 | {
|
---|
467 | Matrix4x4 M = x;
|
---|
468 | M.x[3][0] = M.x[3][1] = M.x[3][2] = 0;
|
---|
469 | return M;
|
---|
470 | }
|
---|
471 |
|
---|
472 | // Add corresponding elements of the two matrices.
|
---|
473 | Matrix4x4&
|
---|
474 | Matrix4x4::operator+= (const Matrix4x4& A)
|
---|
475 | {
|
---|
476 | for (int i = 0; i < 4; i++)
|
---|
477 | for (int j = 0; j < 4; j++)
|
---|
478 | x[i][j] += A.x[i][j];
|
---|
479 | return *this;
|
---|
480 | }
|
---|
481 |
|
---|
482 | // Subtract corresponding elements of the matrices.
|
---|
483 | Matrix4x4&
|
---|
484 | Matrix4x4::operator-= (const Matrix4x4& A)
|
---|
485 | {
|
---|
486 | for (int i = 0; i < 4; i++)
|
---|
487 | for (int j = 0; j < 4; j++)
|
---|
488 | x[i][j] -= A.x[i][j];
|
---|
489 | return *this;
|
---|
490 | }
|
---|
491 |
|
---|
492 | // Scale each element of the matrix by A.
|
---|
493 | Matrix4x4&
|
---|
494 | Matrix4x4::operator*= (float A)
|
---|
495 | {
|
---|
496 | for (int i = 0; i < 4; i++)
|
---|
497 | for (int j = 0; j < 4; j++)
|
---|
498 | x[i][j] *= A;
|
---|
499 | return *this;
|
---|
500 | }
|
---|
501 |
|
---|
502 | // Multiply two matrices.
|
---|
503 | Matrix4x4&
|
---|
504 | Matrix4x4::operator*= (const Matrix4x4& A)
|
---|
505 | {
|
---|
506 | Matrix4x4 ret = *this;
|
---|
507 |
|
---|
508 | for (int i = 0; i < 4; i++)
|
---|
509 | for (int j = 0; j < 4; j++) {
|
---|
510 | float subt = 0;
|
---|
511 | for (int k = 0; k < 4; k++)
|
---|
512 | subt += ret.x[i][k] * A.x[k][j];
|
---|
513 | x[i][j] = subt;
|
---|
514 | }
|
---|
515 | return *this;
|
---|
516 | }
|
---|
517 |
|
---|
518 | // Add corresponding elements of the matrices.
|
---|
519 | Matrix4x4
|
---|
520 | operator+ (const Matrix4x4& A, const Matrix4x4& B)
|
---|
521 | {
|
---|
522 | Matrix4x4 ret;
|
---|
523 |
|
---|
524 | for (int i = 0; i < 4; i++)
|
---|
525 | for (int j = 0; j < 4; j++)
|
---|
526 | ret.x[i][j] = A.x[i][j] + B.x[i][j];
|
---|
527 | return ret;
|
---|
528 | }
|
---|
529 |
|
---|
530 | // Subtract corresponding elements of the matrices.
|
---|
531 | Matrix4x4
|
---|
532 | operator- (const Matrix4x4& A, const Matrix4x4& B)
|
---|
533 | {
|
---|
534 | Matrix4x4 ret;
|
---|
535 |
|
---|
536 | for (int i = 0; i < 4; i++)
|
---|
537 | for (int j = 0; j < 4; j++)
|
---|
538 | ret.x[i][j] = A.x[i][j] - B.x[i][j];
|
---|
539 | return ret;
|
---|
540 | }
|
---|
541 |
|
---|
542 | // Multiply matrices.
|
---|
543 | Matrix4x4
|
---|
544 | operator* (const Matrix4x4& A, const Matrix4x4& B)
|
---|
545 | {
|
---|
546 | Matrix4x4 ret;
|
---|
547 |
|
---|
548 | for (int i = 0; i < 4; i++)
|
---|
549 | for (int j = 0; j < 4; j++) {
|
---|
550 | float subt = 0;
|
---|
551 | for (int k = 0; k < 4; k++)
|
---|
552 | subt += A.x[i][k] * B.x[k][j];
|
---|
553 | ret.x[i][j] = subt;
|
---|
554 | }
|
---|
555 | return ret;
|
---|
556 | }
|
---|
557 |
|
---|
558 | // Transform a vector by a matrix.
|
---|
559 | Vector3
|
---|
560 | operator* (const Matrix4x4& M, const Vector3& v)
|
---|
561 | {
|
---|
562 | Vector3 ret;
|
---|
563 | float denom;
|
---|
564 |
|
---|
565 | ret.x = v.x * M.x[0][0] + v.y * M.x[1][0] + v.z * M.x[2][0] + M.x[3][0];
|
---|
566 | ret.y = v.x * M.x[0][1] + v.y * M.x[1][1] + v.z * M.x[2][1] + M.x[3][1];
|
---|
567 | ret.z = v.x * M.x[0][2] + v.y * M.x[1][2] + v.z * M.x[2][2] + M.x[3][2];
|
---|
568 | denom = M.x[0][3] + M.x[1][3] + M.x[2][3] + M.x[3][3];
|
---|
569 | if (denom != 1.0)
|
---|
570 | ret /= denom;
|
---|
571 | return ret;
|
---|
572 | }
|
---|
573 |
|
---|
574 | // Apply the rotation portion of a matrix to a vector.
|
---|
575 | Vector3
|
---|
576 | RotateOnly(const Matrix4x4& M, const Vector3& v)
|
---|
577 | {
|
---|
578 | Vector3 ret;
|
---|
579 | float denom;
|
---|
580 |
|
---|
581 | ret.x = v.x * M.x[0][0] + v.y * M.x[1][0] + v.z * M.x[2][0];
|
---|
582 | ret.y = v.x * M.x[0][1] + v.y * M.x[1][1] + v.z * M.x[2][1];
|
---|
583 | ret.z = v.x * M.x[0][2] + v.y * M.x[1][2] + v.z * M.x[2][2];
|
---|
584 | denom = M.x[0][3] + M.x[1][3] + M.x[2][3] + M.x[3][3];
|
---|
585 | if (denom != 1.0)
|
---|
586 | ret /= denom;
|
---|
587 | return ret;
|
---|
588 | }
|
---|
589 |
|
---|
590 | // Scale each element of the matrix by B.
|
---|
591 | Matrix4x4
|
---|
592 | operator* (const Matrix4x4& A, float B)
|
---|
593 | {
|
---|
594 | Matrix4x4 ret;
|
---|
595 |
|
---|
596 | for (int i = 0; i < 4; i++)
|
---|
597 | for (int j = 0; j < 4; j++)
|
---|
598 | ret.x[i][j] = A.x[i][j] * B;
|
---|
599 | return ret;
|
---|
600 | }
|
---|
601 |
|
---|
602 | // Overloaded << for C++-style output.
|
---|
603 | ostream&
|
---|
604 | operator<< (ostream& s, const Matrix4x4& M)
|
---|
605 | {
|
---|
606 | for (int i = 0; i < 4; i++) { // y
|
---|
607 | for (int j = 0; j < 4; j++) { // x
|
---|
608 | // x y
|
---|
609 | s << setprecision(4) << setw(10) << M.x[j][i];
|
---|
610 | }
|
---|
611 | s << '\n';
|
---|
612 | }
|
---|
613 | return s;
|
---|
614 | }
|
---|
615 |
|
---|
616 | // Rotate a direction vector...
|
---|
617 | Vector3
|
---|
618 | PlaneRotate(const Matrix4x4& tform, const Vector3& p)
|
---|
619 | {
|
---|
620 | // I sure hope that matrix is invertible...
|
---|
621 | Matrix4x4 use = Transpose(Invert(tform));
|
---|
622 |
|
---|
623 | return RotateOnly(use, p);
|
---|
624 | }
|
---|
625 |
|
---|
626 | // Transform a normal
|
---|
627 | Vector3
|
---|
628 | TransformNormal(const Matrix4x4& tform, const Vector3& n)
|
---|
629 | {
|
---|
630 | Matrix4x4 use = NormalTransformMatrix(tform);
|
---|
631 |
|
---|
632 | return RotateOnly(use, n);
|
---|
633 | }
|
---|
634 |
|
---|
635 | Matrix4x4
|
---|
636 | NormalTransformMatrix(const Matrix4x4 &tform)
|
---|
637 | {
|
---|
638 | Matrix4x4 m = tform;
|
---|
639 | // for normal translation vector must be zero!
|
---|
640 | m.x[3][0] = m.x[3][1] = m.x[3][2] = 0.0;
|
---|
641 | // I sure hope that matrix is invertible...
|
---|
642 | return Transpose(Invert(m));
|
---|
643 | }
|
---|
644 |
|
---|
645 | Vector3
|
---|
646 | GetTranslation(const Matrix4x4 &M)
|
---|
647 | {
|
---|
648 | return Vector3(M.x[3][0], M.x[3][1], M.x[3][2]);
|
---|
649 | }
|
---|
650 |
|
---|
651 | } |
---|