1 | #include "SamplingStrategy.h"
|
---|
2 | #include "Ray.h"
|
---|
3 | #include "Intersectable.h"
|
---|
4 | #include "Preprocessor.h"
|
---|
5 | #include "ViewCellsManager.h"
|
---|
6 | #include "AxisAlignedBox3.h"
|
---|
7 | #include "RssTree.h"
|
---|
8 | #include "Vector2.h"
|
---|
9 | #include "RndGauss.h"
|
---|
10 | #include "Mutation.h"
|
---|
11 | #include "Exporter.h"
|
---|
12 | #include "Environment.h"
|
---|
13 | #include "RayCaster.h"
|
---|
14 |
|
---|
15 | #ifdef GTP_INTERNAL
|
---|
16 | #include "ArchModeler2MLRT.hxx"
|
---|
17 | #endif
|
---|
18 |
|
---|
19 | namespace GtpVisibilityPreprocessor {
|
---|
20 |
|
---|
21 |
|
---|
22 |
|
---|
23 | #define MUTATION_USE_CDF 0
|
---|
24 |
|
---|
25 | //#define SIL_TERMINATION_MUTATION_PROB 0.8f
|
---|
26 |
|
---|
27 | #define EVALUATE_MUTATION_STATS 1
|
---|
28 |
|
---|
29 | //#define Q_SEARCH_STEPS 3
|
---|
30 |
|
---|
31 | // VH - commened out !!!!! 8/1/2008
|
---|
32 | #define SORT_RAY_ENTRIES 1
|
---|
33 |
|
---|
34 | // use avg ray contribution as importance
|
---|
35 | // if 0 the importance is evaluated from the succ of mutations
|
---|
36 | #define USE_AVG_CONTRIBUTION 1
|
---|
37 |
|
---|
38 | MutationBasedDistribution::RayEntry &
|
---|
39 | MutationBasedDistribution::GetEntry(const int index)
|
---|
40 | {
|
---|
41 | #if SORT_RAY_ENTRIES
|
---|
42 | return mRays[index];
|
---|
43 | #else
|
---|
44 | return mRays[(mBufferStart+index)%mRays.size()];
|
---|
45 | #endif
|
---|
46 | }
|
---|
47 |
|
---|
48 | void
|
---|
49 | MutationBasedDistribution::Update(VssRayContainer &vssRays)
|
---|
50 | {
|
---|
51 | // for (int i=0; i < mRays.size(); i++)
|
---|
52 | // cout<<mRays[i].mMutations<<" ";
|
---|
53 | // cout<<endl;
|
---|
54 | cerr<<"Mutation update..."<<endl;
|
---|
55 | cerr<<"rays = "<<mRays.size()<<endl;
|
---|
56 | if ((int)mRays.size()) {
|
---|
57 | cerr<<"Oversampling factors = "<<
|
---|
58 | GetEntry(0).mMutations<<" "<<
|
---|
59 | GetEntry(1).mMutations<<" "<<
|
---|
60 | GetEntry(2).mMutations<<" "<<
|
---|
61 | GetEntry(3).mMutations<<" "<<
|
---|
62 | GetEntry(4).mMutations<<" "<<
|
---|
63 | GetEntry(5).mMutations<<" ... "<<
|
---|
64 | GetEntry((int)mRays.size()-6).mMutations<<" "<<
|
---|
65 | GetEntry((int)mRays.size()-5).mMutations<<" "<<
|
---|
66 | GetEntry((int)mRays.size()-4).mMutations<<" "<<
|
---|
67 | GetEntry((int)mRays.size()-3).mMutations<<" "<<
|
---|
68 | GetEntry((int)mRays.size()-2).mMutations<<" "<<
|
---|
69 | GetEntry((int)mRays.size()-1).mMutations<<endl;
|
---|
70 | }
|
---|
71 | int contributingRays = 0;
|
---|
72 |
|
---|
73 | int mutationRays = 0;
|
---|
74 | int dummyNcMutations = 0;
|
---|
75 | int dummyCMutations = 0;
|
---|
76 |
|
---|
77 | int reverseCandidates = 0;
|
---|
78 |
|
---|
79 | #if 0
|
---|
80 | sort(mRays.begin(), mRays.end());
|
---|
81 | // reset the start of the buffer
|
---|
82 | mBufferStart = 0;
|
---|
83 | #endif
|
---|
84 |
|
---|
85 | for (int i=0; i < vssRays.size(); i++)
|
---|
86 | if (vssRays[i]->mTerminationObject) {
|
---|
87 | if (vssRays[i]->mPvsContribution) {
|
---|
88 | // reset the counter of unsuccsseful mutation for a generating ray (if it exists)
|
---|
89 | if (vssRays[i]->mDistribution == MUTATION_BASED_DISTRIBUTION &&
|
---|
90 | vssRays[i]->mGeneratorId != -1
|
---|
91 | ) {
|
---|
92 | mRays[vssRays[i]->mGeneratorId].mUnsuccessfulMutations = 0;
|
---|
93 | #if EVALUATE_MUTATION_STATS
|
---|
94 | mutationRays++;
|
---|
95 |
|
---|
96 | Intersectable *newObject = vssRays[i]->mTerminationObject;
|
---|
97 |
|
---|
98 | Intersectable *oldObject = mRays[vssRays[i]->mGeneratorId].mRay->mTerminationObject;
|
---|
99 | // the ray generated a contribution although it hits the same object
|
---|
100 | // mark this using a counter
|
---|
101 | if (oldObject == newObject)
|
---|
102 | dummyCMutations++;
|
---|
103 | #endif
|
---|
104 | }
|
---|
105 | contributingRays++;
|
---|
106 | if (mRays.size() < mMaxRays) {
|
---|
107 | VssRay *newRay = new VssRay(*vssRays[i]);
|
---|
108 | // add this ray
|
---|
109 | newRay->Ref();
|
---|
110 | mRays.push_back(RayEntry(newRay));
|
---|
111 | } else {
|
---|
112 | // unref the old ray and add the new ray into the mutation buffer
|
---|
113 | *mRays[mBufferStart].mRay = *vssRays[i];
|
---|
114 | mRays[mBufferStart].mMutations = 0;
|
---|
115 | mRays[mBufferStart].mUnsuccessfulMutations = 0;
|
---|
116 | mRays[mBufferStart].ResetReverseMutation();
|
---|
117 | // mRays[mBufferStart] = RayEntry(newRay);
|
---|
118 | mBufferStart++;
|
---|
119 | if (mBufferStart >= mMaxRays)
|
---|
120 | mBufferStart = 0;
|
---|
121 | }
|
---|
122 | } else {
|
---|
123 | // the ray did not generate any contribution
|
---|
124 | if (vssRays[i]->mDistribution == MUTATION_BASED_DISTRIBUTION &&
|
---|
125 | vssRays[i]->mGeneratorId != -1
|
---|
126 | ) {
|
---|
127 | // check whether not to store a new backward mutation candidate
|
---|
128 | // this happens if the new ray is occluded significantly closer than
|
---|
129 | // the generator ray
|
---|
130 | VssRay *oldRay = mRays[vssRays[i]->mGeneratorId].mRay;
|
---|
131 | VssRay *newRay = vssRays[i];
|
---|
132 |
|
---|
133 | Intersectable *oldObject = oldRay->mTerminationObject;
|
---|
134 |
|
---|
135 |
|
---|
136 | // only allow one reverse mutation per generator ray
|
---|
137 | if (!mRays[newRay->mGeneratorId].HasReverseMutation()) {
|
---|
138 | if (DotProd(oldRay->GetDir(), newRay->GetDir()) > 0.0f) {
|
---|
139 | float oldDist = Magnitude(oldRay->mTermination - newRay->mOrigin);
|
---|
140 | float newDist = Magnitude(newRay->mTermination - newRay->mOrigin);
|
---|
141 |
|
---|
142 | if (newDist < oldDist - oldObject->GetBox().Radius()*mReverseSamplesDistance) {
|
---|
143 | Vector3 origin, termination;
|
---|
144 | if (ComputeReverseMutation(*oldRay, *newRay, origin, termination)) {
|
---|
145 | mRays[newRay->mGeneratorId].SetReverseMutation(origin, termination);
|
---|
146 | }
|
---|
147 | reverseCandidates++;
|
---|
148 | //mReverseCandidates
|
---|
149 | }
|
---|
150 | }
|
---|
151 | }
|
---|
152 | #if EVALUATE_MUTATION_STATS
|
---|
153 | mutationRays++;
|
---|
154 |
|
---|
155 | Intersectable *newObject = vssRays[i]->mTerminationObject;
|
---|
156 |
|
---|
157 | if (oldObject == newObject)
|
---|
158 | dummyNcMutations++;
|
---|
159 | #endif
|
---|
160 | }
|
---|
161 | }
|
---|
162 | }
|
---|
163 |
|
---|
164 | if (mutationRays) {
|
---|
165 | cout<<"Mutated rays:"<<mutationRays<<endl;
|
---|
166 | cout<<"Dummy mutations ratio:"<<100.0f*(dummyCMutations + dummyNcMutations)/
|
---|
167 | (float)mutationRays<<"%"<<endl;
|
---|
168 | cout<<"Dummy NC mutations ratio:"<<100.0f*dummyNcMutations/(float)mutationRays<<"%"<<endl;
|
---|
169 | cout<<"Dummy C mutations ratio:"<<100.0f*dummyCMutations/(float)mutationRays<<"%"<<endl;
|
---|
170 | cout<<"Reverse candidates:"<<100.0f*reverseCandidates/(float)mutationRays<<endl;
|
---|
171 | }
|
---|
172 |
|
---|
173 | float pContributingRays = contributingRays/(float)vssRays.size();
|
---|
174 |
|
---|
175 | cout<<"Ratio of contributing rays:"<<pContributingRays<<endl;
|
---|
176 |
|
---|
177 | if (mUseUnsuccCountImportance) {
|
---|
178 | // use unsucc mutation samples as feedback on importance
|
---|
179 | for (int i=0; i < mRays.size(); i++) {
|
---|
180 | const float minImportance = 0.1f;
|
---|
181 | const int minImportanceSamples = 20;
|
---|
182 | mRays[i].mImportance = minImportance +
|
---|
183 | (1-minImportance)*exp(-3.0f*mRays[i].mUnsuccessfulMutations/minImportanceSamples);
|
---|
184 | }
|
---|
185 | } else {
|
---|
186 | float importance = 1.0f;
|
---|
187 | if (mUsePassImportance)
|
---|
188 | importance = 1.0f/(pContributingRays + 1e-5);
|
---|
189 | // set this values for last contributingRays
|
---|
190 | int index = mBufferStart - 1;
|
---|
191 |
|
---|
192 | for (int i=0; i < contributingRays; i++, index--) {
|
---|
193 | if (index < 0)
|
---|
194 | index = (int)mRays.size()-1;
|
---|
195 | mRays[index].mImportance = importance;
|
---|
196 | }
|
---|
197 | }
|
---|
198 |
|
---|
199 | #if SORT_RAY_ENTRIES
|
---|
200 | long t1 = GetTime();
|
---|
201 | sort(mRays.begin(), mRays.end());
|
---|
202 | // reset the start of the buffer
|
---|
203 | mBufferStart = 0;
|
---|
204 | mLastIndex = (int)mRays.size();
|
---|
205 | cout<<"Mutation candidates sorted in "<<TimeDiff(t1, GetTime())<<" ms."<<endl;
|
---|
206 | #endif
|
---|
207 |
|
---|
208 | #if MUTATION_USE_CDF
|
---|
209 | // compute cdf
|
---|
210 | mRays[0].mCdf = mRays[0].mImportance/(mRays[0].mMutations+1);
|
---|
211 | for (int i=1; i < mRays.size(); i++)
|
---|
212 | mRays[i].mCdf = mRays[i-1].mCdf + mRays[i].mImportance/(mRays[i].mMutations+1);
|
---|
213 |
|
---|
214 | float scale = 1.0f/mRays[i-1].mCdf;
|
---|
215 | for (i=0; i < mRays.size(); i++) {
|
---|
216 | mRays[i].mCdf *= scale;
|
---|
217 | }
|
---|
218 | #endif
|
---|
219 |
|
---|
220 | cout<<"Importance = "<<
|
---|
221 | GetEntry(0).mImportance<<" "<<
|
---|
222 | GetEntry((int)mRays.size()-1).mImportance<<endl;
|
---|
223 |
|
---|
224 | cout<<"Sampling factor = "<<
|
---|
225 | GetEntry(0).GetSamplingFactor()<<" "<<
|
---|
226 | GetEntry((int)mRays.size()-1).GetSamplingFactor()<<endl;
|
---|
227 |
|
---|
228 | cerr<<"Mutation update done."<<endl;
|
---|
229 | }
|
---|
230 |
|
---|
231 |
|
---|
232 | Vector3
|
---|
233 | MutationBasedDistribution::ComputeOriginMutation(const VssRay &ray,
|
---|
234 | const Vector3 &U,
|
---|
235 | const Vector3 &V,
|
---|
236 | const Vector2 vr2,
|
---|
237 | const float radius
|
---|
238 | )
|
---|
239 | {
|
---|
240 | #if 0
|
---|
241 | return (U*(r[0] - 0.5f) + V*(r[1] - 0.5f))*(2*radius);
|
---|
242 | #endif
|
---|
243 |
|
---|
244 |
|
---|
245 | // Output random variable
|
---|
246 | Vector2 gaussvec2;
|
---|
247 |
|
---|
248 | // Here we apply transform to gaussian, so 2D bivariate
|
---|
249 | // normal distribution
|
---|
250 | // float sigma = ComputeSigmaFromRadius(radius);
|
---|
251 | float sigma = radius;
|
---|
252 | GaussianOn2D(vr2,
|
---|
253 | sigma, // input
|
---|
254 | gaussvec2); // output
|
---|
255 |
|
---|
256 |
|
---|
257 | // Here we tranform the point correctly to 3D space using base
|
---|
258 | // vectors of the 3D space defined by the direction
|
---|
259 | Vector3 shift = gaussvec2.xx * U + gaussvec2.yy * V;
|
---|
260 |
|
---|
261 | // cout<<shift<<endl;
|
---|
262 | return shift;
|
---|
263 | }
|
---|
264 |
|
---|
265 | Vector3
|
---|
266 | MutationBasedDistribution::ComputeTerminationMutation(const VssRay &ray,
|
---|
267 | const Vector3 &U,
|
---|
268 | const Vector3 &V,
|
---|
269 | const Vector2 vr2,
|
---|
270 | const float radius
|
---|
271 | )
|
---|
272 | {
|
---|
273 | #if 0
|
---|
274 | return (U*(vr2.xx - 0.5f) + V*(vr2.yy - 0.5f))*(4.0f*radius);
|
---|
275 | #endif
|
---|
276 | Vector2 gaussvec2;
|
---|
277 | #if 1
|
---|
278 | float sigma = radius;
|
---|
279 | GaussianOn2D(vr2,
|
---|
280 | sigma, // input
|
---|
281 | gaussvec2); // output
|
---|
282 | Vector3 shift = gaussvec2.xx * U + gaussvec2.yy * V;
|
---|
283 | // cout<<shift<<endl;
|
---|
284 | return shift;
|
---|
285 | #endif
|
---|
286 | #if 0
|
---|
287 | // Here we estimate standard deviation (sigma) from radius
|
---|
288 | float sigma = 1.1f*ComputeSigmaFromRadius(radius);
|
---|
289 | Vector3 vr3(vr2.xx, vr2.yy, RandomValue(0,1));
|
---|
290 | PolarGaussianOnDisk(vr3,
|
---|
291 | sigma,
|
---|
292 | radius, // input
|
---|
293 | gaussvec2); // output
|
---|
294 |
|
---|
295 | // Here we tranform the point correctly to 3D space using base
|
---|
296 | // vectors of the 3D space defined by the direction
|
---|
297 | Vector3 shift = gaussvec2.xx * U + gaussvec2.yy * V;
|
---|
298 |
|
---|
299 | // cout<<shift<<endl;
|
---|
300 | return shift;
|
---|
301 | #endif
|
---|
302 | }
|
---|
303 |
|
---|
304 | bool
|
---|
305 | MutationBasedDistribution::ComputeReverseMutation(
|
---|
306 | const VssRay &oldRay,
|
---|
307 | const VssRay &newRay,
|
---|
308 | Vector3 &origin,
|
---|
309 | Vector3 &termination
|
---|
310 | )
|
---|
311 | {
|
---|
312 | #ifdef GTP_INTERNAL
|
---|
313 | static int counter = 0;
|
---|
314 |
|
---|
315 |
|
---|
316 | // first reconstruct the termination point
|
---|
317 | Vector3 oldDir = Normalize(oldRay.GetDir());
|
---|
318 | Plane3 oldPlane(oldDir, oldRay.mTermination);
|
---|
319 |
|
---|
320 | termination = oldPlane.FindIntersection(newRay.mOrigin,
|
---|
321 | newRay.mTermination);
|
---|
322 |
|
---|
323 | // now find the new origin of the ray by casting ray backward from the termination and termining
|
---|
324 | // silhouette point with respect to the occluding object (object containing the newRay termination)
|
---|
325 |
|
---|
326 | Plane3 newPlane(oldDir, newRay.mTermination);
|
---|
327 |
|
---|
328 | Vector3 oldPivot = newPlane.FindIntersection(oldRay.mOrigin,
|
---|
329 | oldRay.mTermination);
|
---|
330 |
|
---|
331 | Vector3 newPivot = newRay.mTermination;
|
---|
332 | Vector3 line = 2.0f*(oldPivot - newPivot);
|
---|
333 |
|
---|
334 | Intersectable *occluder = newRay.mTerminationObject;
|
---|
335 |
|
---|
336 |
|
---|
337 | AxisAlignedBox3 box = occluder->GetBox();
|
---|
338 | // consider slightly larger neighborhood of the occluder
|
---|
339 | // in search for unocclude reverse ray
|
---|
340 | box.Scale(2.0f);
|
---|
341 | //box.Scale(200.0f);
|
---|
342 |
|
---|
343 |
|
---|
344 | const int packetSize = 4;
|
---|
345 | static int hit_triangles[packetSize];
|
---|
346 | static float dist[packetSize];
|
---|
347 | static Vector3 dirs[packetSize];
|
---|
348 | static Vector3 shifts[packetSize];
|
---|
349 | static Vector3 origs[packetSize];
|
---|
350 | // now find the silhouette along the line
|
---|
351 | int i;
|
---|
352 | float left = 0.0f;
|
---|
353 | float right = 1.0f;
|
---|
354 |
|
---|
355 | // cast rays to find silhouette ray
|
---|
356 | for (int j=0; j < mSilhouetteSearchSteps; j++) {
|
---|
357 | for (i=0; i < packetSize; i++) {
|
---|
358 | float r = left + (i+1)*(right-left)/(packetSize+1);
|
---|
359 | shifts[i] = r*line;
|
---|
360 | dirs[i] = Normalize(newPivot + shifts[i] - termination );
|
---|
361 | origs[i] = termination;
|
---|
362 | // mlrtaStoreRayASEye4(&termination.x, &dirs[i].x, i);
|
---|
363 | }
|
---|
364 |
|
---|
365 | // mlrtaTraverseGroupASEye4(&box.Min().x, &box.Max().x, hit_triangles, dist);
|
---|
366 | assert(preprocessor->mRayCaster);
|
---|
367 | preprocessor->mRayCaster->CastRaysPacket4(box.Min(),
|
---|
368 | box.Max(),
|
---|
369 | origs,
|
---|
370 | dirs,
|
---|
371 | hit_triangles,
|
---|
372 | dist);
|
---|
373 |
|
---|
374 | for (i=0; i < packetSize; i++) {
|
---|
375 | //cout<<hit_triangles[i]<<endl;
|
---|
376 | if (hit_triangles[i] == -1) {
|
---|
377 | // break on first passing ray
|
---|
378 | break;
|
---|
379 | }
|
---|
380 | }
|
---|
381 | float rr = left + (i+1)*(right-left)/(packetSize+1);
|
---|
382 | float rl = left + i*(right-left)/(packetSize+1);
|
---|
383 | left = rl;
|
---|
384 | right = rr;
|
---|
385 | }
|
---|
386 |
|
---|
387 |
|
---|
388 | float t = right;
|
---|
389 | if (right==1.0f)
|
---|
390 | return false;
|
---|
391 |
|
---|
392 |
|
---|
393 | if (i == packetSize)
|
---|
394 | origin = newPivot + right*line;
|
---|
395 | else
|
---|
396 | origin = newPivot + shifts[i];
|
---|
397 |
|
---|
398 | if (0) {
|
---|
399 |
|
---|
400 | static VssRayContainer rRays;
|
---|
401 | static int counter = 0;
|
---|
402 | char filename[256];
|
---|
403 |
|
---|
404 | if (counter < 50) {
|
---|
405 | sprintf(filename, "reverse_rays_%03d.x3d", counter++);
|
---|
406 |
|
---|
407 | VssRay tRay(origin, termination, NULL, NULL);
|
---|
408 | rRays.push_back((VssRay *)&oldRay);
|
---|
409 | rRays.push_back((VssRay *)&newRay);
|
---|
410 | rRays.push_back(&tRay);
|
---|
411 |
|
---|
412 | Exporter *exporter = NULL;
|
---|
413 | exporter = Exporter::GetExporter(filename);
|
---|
414 |
|
---|
415 | exporter->SetFilled();
|
---|
416 |
|
---|
417 | Intersectable *occludee =
|
---|
418 | oldRay.mTerminationObject;
|
---|
419 |
|
---|
420 | exporter->SetForcedMaterial(RgbColor(0,0,1));
|
---|
421 | exporter->ExportIntersectable(occluder);
|
---|
422 | exporter->SetForcedMaterial(RgbColor(0,1,0));
|
---|
423 | exporter->ExportIntersectable(occludee);
|
---|
424 | exporter->ResetForcedMaterial();
|
---|
425 |
|
---|
426 | exporter->SetWireframe();
|
---|
427 |
|
---|
428 |
|
---|
429 | exporter->ExportRays(rRays, RgbColor(1, 0, 0));
|
---|
430 | delete exporter;
|
---|
431 | rRays.clear();
|
---|
432 | }
|
---|
433 | }
|
---|
434 |
|
---|
435 | return true;
|
---|
436 | #else
|
---|
437 | cerr << "warning: reverse mutation not supported!" << endl;
|
---|
438 | return false;
|
---|
439 | #endif
|
---|
440 |
|
---|
441 |
|
---|
442 | // now the origin and termination is swapped compred to the generator ray
|
---|
443 | // swap(origin, termination);???
|
---|
444 | // -> perhaps not neccessary as the reverse mutation wil only be used once!
|
---|
445 | }
|
---|
446 |
|
---|
447 | Vector3
|
---|
448 | MutationBasedDistribution::ComputeSilhouetteTerminationMutation(const VssRay &ray,
|
---|
449 | const Vector3 &origin,
|
---|
450 | const AxisAlignedBox3 &box,
|
---|
451 | const Vector3 &U,
|
---|
452 | const Vector3 &V,
|
---|
453 | const float radius
|
---|
454 | )
|
---|
455 | {
|
---|
456 | #ifdef GTP_INTERNAL
|
---|
457 |
|
---|
458 | const int packetSize = 4;
|
---|
459 | static int hit_triangles[packetSize];
|
---|
460 | static float dist[packetSize];
|
---|
461 | static Vector3 dirs[packetSize];
|
---|
462 | static Vector3 shifts[packetSize];
|
---|
463 | static Vector3 origs[packetSize];
|
---|
464 | // mutate the
|
---|
465 | float alpha = RandomValue(0.0f, Real(2.0*M_PI));
|
---|
466 | //float alpha = vr2.x*2.0f*M_PI;
|
---|
467 |
|
---|
468 | // direction along which we will mutate the ray
|
---|
469 | Vector3 line = sin(alpha)*U + cos(alpha)*V;
|
---|
470 |
|
---|
471 | // cout<<line<<endl;
|
---|
472 | // create 16 rays along the selected dir
|
---|
473 | int i;
|
---|
474 | float left = 0.0f;
|
---|
475 | float right = radius;
|
---|
476 |
|
---|
477 | AxisAlignedBox3 _box = box;
|
---|
478 | _box.Scale(1.1f);
|
---|
479 | // cast rays to find silhouette ray
|
---|
480 | for (int j=0; j < mSilhouetteSearchSteps; j++) {
|
---|
481 | for (i=0; i < packetSize; i++) {
|
---|
482 | float r = left + (i+1)*(right-left)/(packetSize+1);
|
---|
483 | shifts[i] = r*line;
|
---|
484 | dirs[i] = Normalize(ray.mTermination + shifts[i] - origin );
|
---|
485 | origs[i] = origin;
|
---|
486 | //mlrtaStoreRayASEye4(&origin.x, &dirs[i].x, i);
|
---|
487 | }
|
---|
488 |
|
---|
489 | // mlrtaTraverseGroupASEye4(&box.Min().x, &box.Max().x, hit_triangles, dist);
|
---|
490 | assert(preprocessor->mRayCaster);
|
---|
491 | preprocessor->mRayCaster->CastRaysPacket4(_box.Min(),
|
---|
492 | _box.Max(),
|
---|
493 | origs,
|
---|
494 | dirs,
|
---|
495 | hit_triangles,
|
---|
496 | dist);
|
---|
497 |
|
---|
498 | for (i=0; i < packetSize; i++) {
|
---|
499 | if (hit_triangles[i] == -1) {
|
---|
500 | // if (hit_triangles[i] == -1 || !box.IsInside(origin + dist[i]*dirs[i])) {
|
---|
501 | // break on first passing ray
|
---|
502 | break;
|
---|
503 | }
|
---|
504 | }
|
---|
505 | float rr = left + (i+1)*(right-left)/(packetSize+1);
|
---|
506 | float rl = left + i*(right-left)/(packetSize+1);
|
---|
507 | left = rl;
|
---|
508 | right = rr;
|
---|
509 | }
|
---|
510 |
|
---|
511 | Vector3 shift;
|
---|
512 |
|
---|
513 | if (i == packetSize) {
|
---|
514 | // cerr<<"Warning: hit the same box here should never happen!"<<endl;
|
---|
515 | // shift the ray even a bit more
|
---|
516 | //cout<<"W"<<i<<endl;
|
---|
517 | // return (RandomValue(1.0f, 1.5f)*radius)*line;
|
---|
518 | shift = right*line;
|
---|
519 | } else {
|
---|
520 | // cout<<i<<endl;
|
---|
521 | shift = shifts[i];
|
---|
522 | }
|
---|
523 |
|
---|
524 |
|
---|
525 | if (0) {
|
---|
526 |
|
---|
527 | static VssRayContainer rRays;
|
---|
528 | static int counter = 0;
|
---|
529 | char filename[256];
|
---|
530 |
|
---|
531 | if (counter < 50) {
|
---|
532 | sprintf(filename, "sil_rays_%03d.x3d", counter++);
|
---|
533 |
|
---|
534 | VssRay tRays[10];
|
---|
535 | rRays.push_back((VssRay *)&ray);
|
---|
536 | for (int k=0; k < packetSize; k++)
|
---|
537 | if (k!=i) {
|
---|
538 | tRays[k] = VssRay(origin, ray.mTermination + shifts[k], NULL, NULL);
|
---|
539 | rRays.push_back(&tRays[k]);
|
---|
540 | }
|
---|
541 |
|
---|
542 | Exporter *exporter = NULL;
|
---|
543 | exporter = Exporter::GetExporter(filename);
|
---|
544 |
|
---|
545 | exporter->SetFilled();
|
---|
546 |
|
---|
547 | Intersectable *occluder =
|
---|
548 | ray.mTerminationObject;
|
---|
549 |
|
---|
550 | // cout<<occluder->Type()<<endl;
|
---|
551 |
|
---|
552 | exporter->SetForcedMaterial(RgbColor(0,0,1));
|
---|
553 | exporter->ExportIntersectable(occluder);
|
---|
554 |
|
---|
555 | exporter->SetWireframe();
|
---|
556 |
|
---|
557 | exporter->SetForcedMaterial(RgbColor(0,1,0));
|
---|
558 | exporter->ExportBox(occluder->GetBox());
|
---|
559 |
|
---|
560 | exporter->SetForcedMaterial(RgbColor(0,1,1));
|
---|
561 | exporter->ExportBox(_box);
|
---|
562 |
|
---|
563 | exporter->ResetForcedMaterial();
|
---|
564 |
|
---|
565 | exporter->ExportRays(rRays, RgbColor(1, 0, 0));
|
---|
566 |
|
---|
567 | rRays.clear();
|
---|
568 | tRays[0] = VssRay(origin, ray.mTermination+shift, NULL, NULL);
|
---|
569 | rRays.push_back((VssRay *)&tRays[0]);
|
---|
570 | exporter->ExportRays(rRays, RgbColor(1, 1, 0));
|
---|
571 |
|
---|
572 | delete exporter;
|
---|
573 | rRays.clear();
|
---|
574 | }
|
---|
575 | }
|
---|
576 |
|
---|
577 | return shift;
|
---|
578 |
|
---|
579 |
|
---|
580 | #else
|
---|
581 | //cerr << "warning: shiluette mutation not supported" << endl;
|
---|
582 | return Vector3(0, 0, 0);
|
---|
583 | #endif
|
---|
584 |
|
---|
585 | }
|
---|
586 |
|
---|
587 |
|
---|
588 | bool
|
---|
589 | MutationBasedDistribution::GenerateSample(SimpleRay &sray)
|
---|
590 | {
|
---|
591 |
|
---|
592 | if (mRays.size() == 0) {
|
---|
593 | float rr[5];
|
---|
594 | // use direction based distribution until we have some mutation candidates
|
---|
595 | Vector3 origin, direction;
|
---|
596 |
|
---|
597 | for (int i=0; i < 5; i++)
|
---|
598 | rr[i] = RandomValue(0,1);
|
---|
599 |
|
---|
600 | mPreprocessor.mViewCellsManager->GetViewPoint(origin,
|
---|
601 | Vector3(rr[0], rr[1], rr[2]));
|
---|
602 |
|
---|
603 |
|
---|
604 | direction = UniformRandomVector(rr[3], rr[4]);
|
---|
605 |
|
---|
606 | const float pdf = 1.0f;
|
---|
607 | sray = SimpleRay(origin, direction, MUTATION_BASED_DISTRIBUTION, pdf);
|
---|
608 | sray.mGeneratorId = -1;
|
---|
609 |
|
---|
610 | return true;
|
---|
611 | }
|
---|
612 |
|
---|
613 | int index;
|
---|
614 |
|
---|
615 | #if !MUTATION_USE_CDF
|
---|
616 | #if SORT_RAY_ENTRIES
|
---|
617 | // RAYS are sorted -> find mitation candidate from the tail of the buffer
|
---|
618 | index = mLastIndex - 1;
|
---|
619 | if (index < 0 || index >= mRays.size()-1) {
|
---|
620 | index = (int)mRays.size() - 1;
|
---|
621 | } else
|
---|
622 | if (
|
---|
623 | mRays[index].GetSamplingFactor() >= mRays[mLastIndex].GetSamplingFactor()) {
|
---|
624 | // make another round to equalize the oversampling factor
|
---|
625 |
|
---|
626 | // cout<<"R2"<<endl;
|
---|
627 | // cout<<mLastIndex<<endl;
|
---|
628 | // cout<<index<<endl;
|
---|
629 | index = (int)mRays.size() - 1;
|
---|
630 | }
|
---|
631 | #else
|
---|
632 | // get tail of the buffer
|
---|
633 | index = (mLastIndex+1)%mRays.size();
|
---|
634 | if (mRays[index].GetSamplingFactor() >
|
---|
635 | mRays[mLastIndex].GetSamplingFactor()) {
|
---|
636 | // search back for index where this is valid
|
---|
637 | index = (mLastIndex - 1 + mRays.size())%mRays.size();
|
---|
638 | for (int i=0; i < mRays.size(); i++) {
|
---|
639 |
|
---|
640 | // if (mRays[index].mMutations > mRays[mLastIndex].mMutations)
|
---|
641 | // break;
|
---|
642 | if (mRays[index].GetSamplingFactor() >
|
---|
643 | mRays[mLastIndex].GetSamplingFactor() )
|
---|
644 | break;
|
---|
645 | index = (index - 1 + mRays.size())%mRays.size();
|
---|
646 | }
|
---|
647 | // go one step back
|
---|
648 | index = (index+1)%mRays.size();
|
---|
649 | }
|
---|
650 | #endif
|
---|
651 | #else
|
---|
652 |
|
---|
653 | static HaltonSequence iHalton;
|
---|
654 | iHalton.GetNext(1, rr);
|
---|
655 | //rr[0] = RandomValue(0,1);
|
---|
656 | // use binary search to find index with this cdf
|
---|
657 | int l=0, r=(int)mRays.size()-1;
|
---|
658 | while(l<r) {
|
---|
659 | int i = (l+r)/2;
|
---|
660 | if (rr[0] < mRays[i].mCdf )
|
---|
661 | r = i;
|
---|
662 | else
|
---|
663 | l = i+1;
|
---|
664 | }
|
---|
665 | index = l;
|
---|
666 | // if (rr[0] >= mRays[r].mCdf)
|
---|
667 | // index = r;
|
---|
668 | // else
|
---|
669 | // index = l;
|
---|
670 |
|
---|
671 |
|
---|
672 | #endif
|
---|
673 | // cout<<index<<" "<<rr[0]<<" "<<mRays[index].mCdf<<" "<<mRays[(index+1)%mRays.size()].mCdf<<endl;
|
---|
674 |
|
---|
675 | // WE HAVE THE INDEX HERE
|
---|
676 |
|
---|
677 | mLastIndex = index;
|
---|
678 | // Debug<<index<<" "<<mRays[index].GetSamplingFactor()<<endl;
|
---|
679 |
|
---|
680 | if (mRays[index].HasReverseMutation()) {
|
---|
681 | //cout<<"R "<<mRays[index].mutatedOrigin<<" "<<mRays[index].mutatedTermination<<endl;
|
---|
682 | sray = SimpleRay(mRays[index].mutatedOrigin,
|
---|
683 | Normalize(mRays[index].mutatedTermination - mRays[index].mutatedOrigin),
|
---|
684 | MUTATION_BASED_DISTRIBUTION,
|
---|
685 | 1.0f);
|
---|
686 |
|
---|
687 |
|
---|
688 | sray.mGeneratorId = index;
|
---|
689 | mRays[index].ResetReverseMutation();
|
---|
690 | mRays[index].mMutations++;
|
---|
691 | mRays[index].mUnsuccessfulMutations++;
|
---|
692 |
|
---|
693 | return true;
|
---|
694 | }
|
---|
695 |
|
---|
696 | return GenerateMutation(index, sray);
|
---|
697 | }
|
---|
698 |
|
---|
699 |
|
---|
700 |
|
---|
701 |
|
---|
702 |
|
---|
703 | bool
|
---|
704 | MutationBasedDistribution::GenerateMutationCandidate(const int index,
|
---|
705 | SimpleRay &sray,
|
---|
706 | Intersectable *object,
|
---|
707 | const AxisAlignedBox3 &box
|
---|
708 | )
|
---|
709 | {
|
---|
710 | float rr[4];
|
---|
711 |
|
---|
712 | VssRay *ray = mRays[index].mRay;
|
---|
713 |
|
---|
714 | // rr[0] = RandomValue(0.0f,0.99999f);
|
---|
715 | // rr[1] = RandomValue(0.0f,0.99999f);
|
---|
716 | // rr[2] = RandomValue(0.0f,0.99999f);
|
---|
717 | // rr[3] = RandomValue(0.0f,0.99999f);
|
---|
718 |
|
---|
719 | // mutate the origin
|
---|
720 | Vector3 d = ray->GetDir();
|
---|
721 |
|
---|
722 | float objectRadius = box.Radius();
|
---|
723 | // cout<<objectRadius<<endl;
|
---|
724 | if (objectRadius < Limits::Small)
|
---|
725 | return false;
|
---|
726 |
|
---|
727 | // Compute right handed coordinate system from direction
|
---|
728 | Vector3 U, V;
|
---|
729 | Vector3 nd = Normalize(d);
|
---|
730 | nd.RightHandedBase(U, V);
|
---|
731 |
|
---|
732 | Vector3 origin = ray->mOrigin;
|
---|
733 | Vector3 termination = ray->mTermination; //box.Center(); //ray->mTermination; //box.Center();
|
---|
734 |
|
---|
735 |
|
---|
736 | // use probabilitistic approach to decide for the type of mutation
|
---|
737 | float a = RandomValue(0.0f,1.0f);
|
---|
738 | bool bidirectional = true;
|
---|
739 |
|
---|
740 | if (mUseSilhouetteSamples && a < mSilhouetteProb) {
|
---|
741 | termination += ComputeSilhouetteTerminationMutation(*ray,
|
---|
742 | origin,
|
---|
743 | box,
|
---|
744 | U, V,
|
---|
745 | 2.0f*objectRadius);
|
---|
746 | bidirectional = false;
|
---|
747 | } else {
|
---|
748 | mRays[index].mHalton.GetNext(4, rr);
|
---|
749 |
|
---|
750 | // fuzzy random mutation
|
---|
751 | origin += ComputeOriginMutation(*ray, U, V,
|
---|
752 | Vector2(rr[0], rr[1]),
|
---|
753 | mMutationRadiusOrigin*objectRadius);
|
---|
754 |
|
---|
755 | termination += ComputeTerminationMutation(*ray, U, V,
|
---|
756 | Vector2(rr[2], rr[3]),
|
---|
757 | mMutationRadiusTermination*objectRadius);
|
---|
758 | }
|
---|
759 |
|
---|
760 | Vector3 direction = termination - origin;
|
---|
761 |
|
---|
762 | if (Magnitude(direction) < Limits::Small)
|
---|
763 | return false;
|
---|
764 |
|
---|
765 | // shift the origin a little bit
|
---|
766 | #if 1
|
---|
767 | origin += direction*0.5f;
|
---|
768 | #else
|
---|
769 | // $$JB - 14.1. 2008 increase shift to test HavranRayCaster
|
---|
770 | origin = 0.5f*(origin + termination);
|
---|
771 | #endif
|
---|
772 |
|
---|
773 | direction.Normalize();
|
---|
774 |
|
---|
775 | // $$ jb the pdf is yet not correct for all sampling methods!
|
---|
776 | const float pdf = 1.0f;
|
---|
777 |
|
---|
778 | sray = SimpleRay(origin, direction, MUTATION_BASED_DISTRIBUTION, pdf);
|
---|
779 | sray.mGeneratorId = index;
|
---|
780 | sray.SetBidirectional(bidirectional);
|
---|
781 |
|
---|
782 | return true;
|
---|
783 | }
|
---|
784 |
|
---|
785 | bool
|
---|
786 | MutationBasedDistribution::GenerateMutation(const int index, SimpleRay &sray)
|
---|
787 | {
|
---|
788 | VssRay *ray = mRays[index].mRay;
|
---|
789 |
|
---|
790 | Intersectable *object = ray->mTerminationObject;
|
---|
791 |
|
---|
792 | AxisAlignedBox3 box = object->GetBox();
|
---|
793 |
|
---|
794 | if (GenerateMutationCandidate(index, sray, object, box)) {
|
---|
795 | mRays[index].mMutations++;
|
---|
796 | mRays[index].mUnsuccessfulMutations++;
|
---|
797 | return true;
|
---|
798 | }
|
---|
799 | return false;
|
---|
800 | }
|
---|
801 |
|
---|
802 |
|
---|
803 |
|
---|
804 | MutationBasedDistribution::MutationBasedDistribution(Preprocessor &preprocessor
|
---|
805 | ) :
|
---|
806 | SamplingStrategy(preprocessor)
|
---|
807 | {
|
---|
808 | mType = MUTATION_BASED_DISTRIBUTION;
|
---|
809 | mBufferStart = 0;
|
---|
810 | mLastIndex = 0;
|
---|
811 |
|
---|
812 | Environment::GetSingleton()->GetIntValue("Mutation.bufferSize",
|
---|
813 | mMaxRays);
|
---|
814 |
|
---|
815 | mRays.reserve(mMaxRays);
|
---|
816 |
|
---|
817 | Environment::GetSingleton()->GetFloatValue("Mutation.radiusOrigin",
|
---|
818 | mMutationRadiusOrigin);
|
---|
819 |
|
---|
820 | Environment::GetSingleton()->GetFloatValue("Mutation.radiusTermination",
|
---|
821 | mMutationRadiusTermination);
|
---|
822 |
|
---|
823 | bool useEnhancedFeatures;
|
---|
824 |
|
---|
825 | #ifdef GTP_INTERNAL
|
---|
826 | int rayCaster;
|
---|
827 | Environment::GetSingleton()->GetIntValue("Preprocessor.rayCastMethod",
|
---|
828 | rayCaster);
|
---|
829 | useEnhancedFeatures = (rayCaster !=
|
---|
830 | RayCaster::INTERNAL_RAYCASTER);
|
---|
831 | #else
|
---|
832 | useEnhancedFeatures = false;
|
---|
833 | #endif
|
---|
834 |
|
---|
835 | if (useEnhancedFeatures) {
|
---|
836 | Environment::GetSingleton()->GetBoolValue("Mutation.useReverseSamples",
|
---|
837 | mUseReverseSamples);
|
---|
838 |
|
---|
839 | Environment::GetSingleton()->GetFloatValue("Mutation.reverseSamplesDistance",
|
---|
840 |
|
---|
841 | mReverseSamplesDistance);
|
---|
842 |
|
---|
843 | Environment::GetSingleton()->GetFloatValue("Mutation.silhouetteProb",
|
---|
844 | mSilhouetteProb);
|
---|
845 |
|
---|
846 | } else {
|
---|
847 | mUseReverseSamples = false;
|
---|
848 | mReverseSamplesDistance = 1e20f;
|
---|
849 | mSilhouetteProb = 0.0f;
|
---|
850 | }
|
---|
851 |
|
---|
852 | Environment::GetSingleton()->GetBoolValue("Mutation.useSilhouetteSamples",
|
---|
853 | mUseSilhouetteSamples);
|
---|
854 |
|
---|
855 | Environment::GetSingleton()->GetIntValue("Mutation.silhouetteSearchSteps",
|
---|
856 | mSilhouetteSearchSteps);
|
---|
857 |
|
---|
858 |
|
---|
859 | Environment::GetSingleton()->GetBoolValue("Mutation.usePassImportance",
|
---|
860 | mUsePassImportance);
|
---|
861 |
|
---|
862 |
|
---|
863 | Environment::GetSingleton()->GetBoolValue("Mutation.useUnsuccCountImportance",
|
---|
864 | mUseUnsuccCountImportance);
|
---|
865 |
|
---|
866 |
|
---|
867 |
|
---|
868 | }
|
---|
869 |
|
---|
870 |
|
---|
871 |
|
---|
872 | }
|
---|