#include #include #include #include "ViewCell.h" #include "Plane3.h" #include "OspTree.h" #include "Mesh.h" #include "common.h" #include "Environment.h" #include "Polygon3.h" #include "Ray.h" #include "AxisAlignedBox3.h" #include "Exporter.h" #include "Plane3.h" #include "ViewCellsManager.h" #include "Beam.h" #include "KdTree.h" #include "IntersectableWrapper.h" #include "VspTree.h" namespace GtpVisibilityPreprocessor { #define USE_FIXEDPOINT_T 0 //-- static members OspTree *OspTree::OspSubdivisionCandidate::sOspTree = NULL; // variable for debugging volume contribution for heuristics static float debugVol; static bool ViewCellHasMultipleReferences(Intersectable *obj, ViewCell *vc, bool checkOnlyMailed) { MailablePvsData *vdata = obj->mViewCellPvs.Find(vc); //return false; if (vdata) { // more than one view cell sees this object inside different kd cells if (!checkOnlyMailed || !vdata->Mailed()) { if (checkOnlyMailed) vdata->Mail(); //Debug << "sumpdf: " << vdata->mSumPdf << endl; if (vdata->mSumPdf > 1.5f) return true; } } return false; } void OspTreeStatistics::Print(ostream &app) const { app << "=========== OspTree statistics ===============\n"; app << setprecision(4); app << "#N_CTIME ( Construction time [s] )\n" << Time() << " \n"; app << "#N_NODES ( Number of nodes )\n" << nodes << "\n"; app << "#N_INTERIORS ( Number of interior nodes )\n" << Interior() << "\n"; app << "#N_LEAVES ( Number of leaves )\n" << Leaves() << "\n"; app << "#AXIS_ALIGNED_SPLITS (number of axis aligned splits)\n" << splits[0] + splits[1] + splits[2] << endl; app << "#N_SPLITS ( Number of splits in axes x y z)\n"; for (int i = 0; i < 3; ++ i) app << splits[i] << " "; app << endl; app << "#N_PMAXDEPTHLEAVES ( Percentage of leaves at maximum depth )\n" << maxDepthNodes * 100 / (double)Leaves() << endl; app << "#N_PMINPVSLEAVES ( Percentage of leaves with mininimal PVS )\n" << minPvsNodes * 100 / (double)Leaves() << endl; //app << "#N_PMINOBJECTREFLEAVES ( Percentage of leaves with minimal number of object ref)\n" //<< minObjectNodes * 100 / (double)Leaves() << endl; app << "#N_MAXCOSTNODES ( Percentage of leaves with terminated because of max cost ratio )\n" << maxCostNodes * 100 / (double)Leaves() << endl; app << "#N_PMINPROBABILITYLEAVES ( Percentage of leaves with mininum probability )\n" << minProbabilityNodes * 100 / (double)Leaves() << endl; app << "#N_PMAXDEPTH ( Maximal reached depth )\n" << maxDepth << endl; app << "#N_PMINDEPTH ( Minimal reached depth )\n" << minDepth << endl; app << "#AVGDEPTH ( average depth )\n" << AvgDepth() << endl; app << "#N_INVALIDLEAVES (number of invalid leaves )\n" << invalidLeaves << endl; app << "#N_MAXOBJECTREFS ( Max number of object refs / leaf )\n" << maxObjectRefs << "\n"; // app << "#N_RAYS (number of rays / leaf)\n" << AvgRays() << endl; //app << "#N_PVS: " << pvs << endl; app << "========== END OF VspTree statistics ==========\n"; } /******************************************************************/ /* class VspNode implementation */ /******************************************************************/ /*******************************************************************/ /* class OspTree implementation */ /*******************************************************************/ OspTree::OspTree(): mRoot(NULL), mTimeStamp(1), mCopyFromKdTree(false) { ReadEnvironment(); mSubdivisionCandidates = new vector; } OspTree::OspTree(const KdTree &kdTree) { ReadEnvironment(); // copy values from kd tree mCopyFromKdTree = true; mBoundingBox = kdTree.GetBox(); mRoot = kdTree.GetRoot(); mSubdivisionCandidates = new vector; } OspTree::~OspTree() { // delete kd intersectables KdIntersectableMap::iterator it, it_end = mKdIntersectables.end(); for (it = mKdIntersectables.begin(); it != mKdIntersectables.end(); ++ it) { DEL_PTR((*it).second); } // delete hierarchy only if not using the hierarchy from // some other kd tree (otherwise the other kd tree has to do the job) if (!mCopyFromKdTree) DEL_PTR(mRoot); DEL_PTR(mSubdivisionCandidates); mSubdivisionStats.close(); } void OspTree::ReadEnvironment() { bool randomize = false; Environment::GetSingleton()->GetBoolValue("VspTree.Construction.randomize", randomize); if (randomize) Randomize(); // initialise random generator for heuristics //-- termination criteria for autopartition Environment::GetSingleton()->GetIntValue("OspTree.Termination.maxDepth", mTermMaxDepth); Environment::GetSingleton()->GetIntValue("OspTree.Termination.maxLeaves", mTermMaxLeaves); Environment::GetSingleton()->GetIntValue("OspTree.Termination.minObjects", mTermMinObjects); Environment::GetSingleton()->GetFloatValue("OspTree.Termination.minProbability", mTermMinProbability); Environment::GetSingleton()->GetIntValue("OspTree.Termination.missTolerance", mTermMissTolerance); //-- max cost ratio for early tree termination Environment::GetSingleton()->GetFloatValue("OspTree.Termination.maxCostRatio", mTermMaxCostRatio); Environment::GetSingleton()->GetFloatValue("OspTree.Termination.minGlobalCostRatio", mTermMinGlobalCostRatio); //-- factors for bsp tree split plane heuristics Environment::GetSingleton()->GetFloatValue("OspTree.Termination.ct_div_ci", mCtDivCi); //-- partition criteria Environment::GetSingleton()->GetFloatValue("OspTree.Construction.epsilon", mEpsilon); // if only the driving axis is used for axis aligned split Environment::GetSingleton()->GetBoolValue("OspTree.splitUseOnlyDrivingAxis", mOnlyDrivingAxis); Environment::GetSingleton()->GetFloatValue("OspTree.maxStaticMemory", mMaxMemory); Environment::GetSingleton()->GetBoolValue("OspTree.useCostHeuristics", mUseCostHeuristics); char subdivisionStatsLog[100]; Environment::GetSingleton()->GetStringValue("OspTree.subdivisionStats", subdivisionStatsLog); mSubdivisionStats.open(subdivisionStatsLog); Environment::GetSingleton()->GetFloatValue("OspTree.Construction.splitBorder", mSplitBorder); Environment::GetSingleton()->GetFloatValue( "OspTree.Construction.renderCostDecreaseWeight", mRenderCostDecreaseWeight); //-- debug output Debug << "******* OSP tree options ******** " << endl; Debug << "max depth: " << mTermMaxDepth << endl; Debug << "min probabiliy: " << mTermMinProbability << endl; Debug << "min objects: " << mTermMinObjects << endl; Debug << "max cost ratio: " << mTermMaxCostRatio << endl; Debug << "miss tolerance: " << mTermMissTolerance << endl; Debug << "max leaves: " << mTermMaxLeaves << endl; Debug << "randomize: " << randomize << endl; Debug << "min global cost ratio: " << mTermMinGlobalCostRatio << endl; Debug << "global cost miss tolerance: " << mTermGlobalCostMissTolerance << endl; Debug << "only driving axis: " << mOnlyDrivingAxis << endl; Debug << "max memory: " << mMaxMemory << endl; Debug << "use cost heuristics: " << mUseCostHeuristics << endl; Debug << "subdivision stats log: " << subdivisionStatsLog << endl; Debug << "split borders: " << mSplitBorder << endl; Debug << "render cost decrease weight: " << mRenderCostDecreaseWeight << endl; Debug << endl; } void OspTree::SplitObjects(KdLeaf *parent, const AxisAlignedPlane& splitPlane, const ObjectContainer &objects, ObjectContainer &front, ObjectContainer &back) { ObjectContainer::const_iterator oit, oit_end = objects.end(); for (oit = objects.begin(); oit != oit_end; ++ oit) { Intersectable *object = *oit; // initialise leaf references of objects if (parent->IsRoot()) { object->mReferences = 1; } // remove parent ref -- object->mReferences; // determine the side of this ray with respect to the plane const AxisAlignedBox3 box = object->GetBox(); if (box.Max(splitPlane.mAxis) >= splitPlane.mPosition) { front.push_back(object); ++ object->mReferences; } if (box.Min(splitPlane.mAxis) < splitPlane.mPosition) { back.push_back(object); ++ object->mReferences; } } mOspStats.objectRefs -= (int)objects.size(); mOspStats.objectRefs += (int)(back.size() + front.size()); } KdInterior *OspTree::SubdivideNode( const AxisAlignedPlane &splitPlane, const OspTraversalData &tData, OspTraversalData &frontData, OspTraversalData &backData ) { KdLeaf *leaf = tData.mNode; // two new leaves mOspStats.nodes += 2; // add the new nodes to the tree KdInterior *node = new KdInterior(leaf->mParent); const int axis = splitPlane.mAxis; const float position = splitPlane.mPosition; node->mAxis = axis; node->mPosition = position; node->mBox = tData.mBoundingBox; //-- the front and back traversal data is filled with the new values // bounding boxes: split front and back node geometry tData.mBoundingBox.Split(splitPlane.mAxis, splitPlane.mPosition, frontData.mBoundingBox, backData.mBoundingBox); frontData.mDepth = backData.mDepth = tData.mDepth + 1; //-- subdivide rays frontData.mRays = new RayInfoContainer(); backData.mRays = new RayInfoContainer(); /* SplitRays(splitPlane, *tData.mRays, *frontData.mRays, *backData.mRays); */ //-- classify objects int objectsBack = 0; int objectsFront = 0; ObjectContainer::const_iterator mi, mi_end = leaf->mObjects.end(); for ( mi = leaf->mObjects.begin(); mi != mi_end; ++ mi) { // determine the side of this ray with respect to the plane const AxisAlignedBox3 box = (*mi)->GetBox(); if (box.Max(axis) >= position) ++ objectsFront; if (box.Min(axis) < position) ++ objectsBack; } // TODO matt: compute pvs //frontData.mPvs = objectsFront; //backData.mPvs = objectsBack; //CheckViewCellsPvs(leaf, *tData.mRays); RemoveParentViewCellsPvs(leaf, *tData.mRays); ///////////// //-- create front and back leaf KdLeaf *back = new KdLeaf(node, objectsBack); KdLeaf *front = new KdLeaf(node, objectsFront); KdInterior *parent = leaf->mParent; // replace a link from node's parent if (parent) { parent->ReplaceChildLink(leaf, node); node->mParent = parent; } else // new root { mRoot = node; } // and setup child links node->SetupChildLinks(back, front); SplitObjects(leaf, splitPlane, leaf->mObjects, front->mObjects, back->mObjects); FilterRays(front, *tData.mRays, *frontData.mRays); FilterRays(back, *tData.mRays, *backData.mRays); ++ mOspStats.splits[splitPlane.mAxis]; //-- eval view cells pvs // remove parent pvs update pvs of left and right leaves // Note: It is necessary to update first left and then right pvs. // We need to store the view cells seen by each object, // but also if the view cells are seen as part of two different // kd leaves, which is stored in the pdf component of the pvs entry. // Because if an object is part of a view cell more than once, // it cannot be removed from the pvs by splitting a kd node where // the view cell sees only the other child of the node. // This is important during the subdivision //MailablePvsData::NewMail(); UpdateViewCellsPvs(front, *frontData.mRays); UpdateViewCellsPvs(back, *backData.mRays); //////////////////////////////////// ProcessMultipleRefs(front); ProcessMultipleRefs(back); frontData.mNode = front; backData.mNode = back; // compute probability, i.e., volume of seen view cells frontData.mProbability = EvalViewCellsVolume(front, *frontData.mRays); backData.mProbability = EvalViewCellsVolume(back, *backData.mRays); //delete leaf; return node; } KdNode *OspTree::Subdivide(SplitQueue &tQueue, SubdivisionCandidate *splitCandidate, const bool globalCriteriaMet) { OspSubdivisionCandidate *sc = dynamic_cast(splitCandidate); OspTraversalData &tData = sc->mParentData; KdNode *newNode = tData.mNode; if (!LocalTerminationCriteriaMet(tData) && !globalCriteriaMet) { OspTraversalData tFrontData; OspTraversalData tBackData; //-- continue subdivision // create new interior node and two leaf node const AxisAlignedPlane splitPlane = sc->mSplitPlane; newNode = SubdivideNode(splitPlane, tData, tFrontData, tBackData); const int maxCostMisses = sc->mMaxCostMisses; // how often was max cost ratio missed in this branch? tFrontData.mMaxCostMisses = maxCostMisses; tBackData.mMaxCostMisses = maxCostMisses; mTotalCost -= sc->GetRenderCostDecrease(); // subdivision statistics if (1) EvalSubdivisionStats(*sc); //-- push the new split candidates on the queue OspSubdivisionCandidate *frontCandidate = new OspSubdivisionCandidate(tFrontData); OspSubdivisionCandidate *backCandidate = new OspSubdivisionCandidate(tBackData); EvalSubdivisionCandidate(*frontCandidate); EvalSubdivisionCandidate(*backCandidate); tQueue.Push(frontCandidate); tQueue.Push(backCandidate); // delete old leaf node DEL_PTR(tData.mNode); } //-- terminate traversal if (newNode->IsLeaf()) { EvaluateLeafStats(tData); const bool mStoreRays= true; //-- store additional info if (mStoreRays) { KdLeaf *leaf = dynamic_cast(newNode); RayInfoContainer::const_iterator it, it_end = tData.mRays->end(); for (it = tData.mRays->begin(); it != it_end; ++ it) { (*it).mRay->Ref(); leaf->mVssRays.push_back((*it).mRay); } } } //-- cleanup tData.Clear(); return newNode; } void OspTree::EvalSubdivisionCandidate(OspSubdivisionCandidate &splitCandidate) { // compute locally best split plane const float ratio = SelectSplitPlane(splitCandidate.mParentData, splitCandidate.mSplitPlane); const bool success = ratio < mTermMaxCostRatio; float oldRenderCost; // compute global decrease in render cost const float renderCostDecr = EvalRenderCostDecrease(splitCandidate.mSplitPlane, splitCandidate.mParentData, oldRenderCost); splitCandidate.SetRenderCostDecrease(renderCostDecr); #if 0 const float priority = (float)-data.mDepth; #else // take render cost of node into account // otherwise danger of being stuck in a local minimum!! const float factor = mRenderCostDecreaseWeight; const float priority = factor * renderCostDecr + (1.0f - factor) * oldRenderCost; #endif // compute global decrease in render cost splitCandidate.SetPriority(priority); splitCandidate.mMaxCostMisses = success ? splitCandidate.mParentData.mMaxCostMisses : splitCandidate.mParentData.mMaxCostMisses + 1; } inline bool OspTree::LocalTerminationCriteriaMet(const OspTraversalData &data) const { // matt: TODO return ( //(data.mNode->mObjects.size() < mTermMinObjects) || //(data.mProbability <= mTermMinProbability) || (data.mDepth >= mTermMaxDepth) ); } inline bool OspTree::GlobalTerminationCriteriaMet(const OspTraversalData &data) const { // matt: TODO return (0 || (mOspStats.Leaves() >= mTermMaxLeaves) //|| mOutOfMemory || (mGlobalCostMisses >= mTermGlobalCostMissTolerance) ); } void OspTree::EvaluateLeafStats(const OspTraversalData &data) { // the node became a leaf -> evaluate stats for leafs KdLeaf *leaf = data.mNode; ++ mCreatedLeaves; /*if (data.mPvs > mOspStats.maxPvs) { mOspStats.maxPvs = data.mPvs; } mOspStats.pvs += data.mPvs; if (data.mDepth < mOspStats.minDepth) { mOspStats.minDepth = data.mDepth; }*/ if (data.mDepth >= mTermMaxDepth) { ++ mOspStats.maxDepthNodes; //Debug << "new max depth: " << mVspStats.maxDepthNodes << endl; } if (data.mProbability <= mTermMinProbability) ++ mOspStats.minProbabilityNodes; // accumulate depth to compute average depth mOspStats.accumDepth += data.mDepth; // if ((int)(leaf->mObjects.size()) < mTermMinCost) // ++ mOspStats.minCostNodes; if ((int)(leaf->mObjects.size()) > mOspStats.maxObjectRefs) mOspStats.maxObjectRefs = (int)leaf->mObjects.size(); #ifdef _DEBUG Debug << "BSP stats: " << "Depth: " << data.mDepth << " (max: " << mTermMaxDepth << "), " << "Prob: " << data.mProbability << " (min: " << mTermMinProbability << ")\n"; #endif } float OspTree::EvalLocalCostHeuristics(const OspTraversalData &tData, const AxisAlignedBox3 &box, const int axis, float &position, int &objectsFront, int &objectsBack) { RayInfoContainer usedRays; int mMaxTests = 500000; // HACK if (mMaxTests < (int)tData.mRays->size()) { GetRayInfoSets(*tData.mRays, mMaxTests, usedRays); } else { usedRays = *tData.mRays; } // go through the lists, count the number of objects left and right // and evaluate the following cost funcion: // C = ct_div_ci + (ol + or)/queries const float minBox = box.Min(axis); const float maxBox = box.Max(axis); Debug << "min: " << minBox << " max: " << maxBox << endl; const float sizeBox = maxBox - minBox; float minBand = minBox + mSplitBorder * (maxBox - minBox); float maxBand = minBox + (1.0f - mSplitBorder) * (maxBox - minBox); const float viewSpaceVol = mVspTree->GetBoundingBox().GetVolume(); //-- sort so we can use a sweep SortSubdivisionCandidates(tData, axis, minBand, maxBand); float totalVol = 0; float voll = 0; float volr = totalVol; ViewCellContainer touchedViewCells; const float totalRenderCost = PrepareHeuristics(tData, touchedViewCells); float renderCost = totalRenderCost; /// this is kind of a reverse pvs const int totalPvs = (int)tData.mNode->mObjects.size(); int pvsl = 0; int pvsr = totalPvs; float sum = (float)totalVol * sizeBox; Debug << "total render cost: " << renderCost / viewSpaceVol << endl; ///////////////////////////////// // note: initialised to take mid split // if no good split can be found, position = minBox + 0.5f * sizeBox; // the relative cost ratio float ratio = 99999999.0f; bool splitPlaneFound = false; float volBack = voll; float volFront = volr; int pvsBack = pvsl; int pvsFront = pvsr; float minRenderCost = 1e20f; debugVol = 0; ///////////////////////////// // the sweep heuristics //-- traverse through events and find best split plane vector::const_iterator ci, ci_end = mSubdivisionCandidates->end(); //minRenderCost = RandomValue(0,viewSpaceVol); for (ci = mSubdivisionCandidates->begin(); ci != ci_end; ++ ci) { Intersectable *object = (*ci).mObject; EvalHeuristicsContribution(tData.mNode, *ci, renderCost, touchedViewCells ); // Note: sufficient to compare size of bounding boxes of front and back side? if (((*ci).mPos >= minBand) && ((*ci).mPos <= maxBand)) { float currentPos; Debug << "current min: " << minRenderCost / viewSpaceVol << endl; // HACK: current positition is BETWEEN visibility events if (1 && /*((*ci).mType == SortableEntry::BOX_INTERSECT) &&*/ ((ci + 1) != ci_end)) currentPos = ((*ci).mPos + (*(ci + 1)).mPos) * 0.5f; else currentPos = (*ci).mPos; if (renderCost < minRenderCost) { splitPlaneFound = true; minRenderCost = renderCost; position = currentPos; Debug << "pos: " << position << endl; } } } //splitPlaneFound = true; if (splitPlaneFound) { ratio = minRenderCost / totalRenderCost; } Debug << "\n§§§§ eval local cost §§§§" << endl << "old rc: " << totalRenderCost / viewSpaceVol << " new rc: " << minRenderCost / viewSpaceVol << endl << "render cost decrease: " << (totalRenderCost - minRenderCost) / viewSpaceVol << endl; return ratio; } void OspTree::SortSubdivisionCandidates(const OspTraversalData &tData, const int axis, float minBand, float maxBand) { mSubdivisionCandidates->clear(); RayInfoContainer *rays = tData.mRays; KdLeaf *leaf = tData.mNode; int requestedSize = 2 * (int)rays->size() + 2 * (int)leaf->mObjects.size(); // creates a sorted split candidates array if (mSubdivisionCandidates->capacity() > 500000 && requestedSize < (int)(mSubdivisionCandidates->capacity() / 10) ) { delete mSubdivisionCandidates; mSubdivisionCandidates = new vector; } mSubdivisionCandidates->reserve(requestedSize); float pos; //-- insert ray queries //-- we are intersested only in rays which intersect an object that //-- is part of the kd node because they can induce a change in view cell //-- volume on the left and the right part. //-- Note that they cannot induce a change in pvs size!! RayInfoContainer::const_iterator rit, rit_end = rays->end(); for (rit = rays->begin(); rit < rit_end; ++ rit) { VssRay *ray = (*rit).mRay; const bool positive = ray->HasPosDir(axis); if (EndPointInsideNode(leaf, *ray, true)) { pos = ray->mTermination[axis]; mSubdivisionCandidates->push_back( SortableEntry(SortableEntry::BOX_INTERSECT, pos, ray->mTerminationObject, ray) ); } // if hitpoint with object is inside this node if (EndPointInsideNode(leaf, *ray, false)) { pos = ray->mOrigin[axis]; mSubdivisionCandidates->push_back( SortableEntry(SortableEntry::BOX_INTERSECT, pos, ray->mOriginObject, ray) ); } } //-- insert object queries //-- These queries can induce a change in pvs size. //-- Note that they cannot induce a change in view cell volume, as //-- there is no ray associated with these events!! ObjectContainer::const_iterator oit, oit_end = leaf->mObjects.end(); for (oit = leaf->mObjects.begin(); oit != leaf->mObjects.end(); ++ oit ) { Intersectable *object = *oit; const AxisAlignedBox3 box = object->GetBox(); mSubdivisionCandidates->push_back( SortableEntry(SortableEntry::BOX_MIN, box.Min(axis), object, NULL) ); mSubdivisionCandidates->push_back( SortableEntry(SortableEntry::BOX_MAX, box.Max(axis), object, NULL) ); } stable_sort(mSubdivisionCandidates->begin(), mSubdivisionCandidates->end()); } const OspTreeStatistics &OspTree::GetStatistics() const { return mOspStats; } void OspTree::PrepareHeuristics(const VssRay &ray, ViewCellContainer &touchedViewCells) { // collect view cells and set mail + counter ViewCellContainer viewCells; mVspTree->GetViewCells(ray, viewCells); ViewCellContainer::const_iterator vit, vit_end = viewCells.end(); for (vit = viewCells.begin(); vit != vit_end; ++ vit) { ViewCell *vc = (*vit); if (!vc->Mailed()) { vc->Mail(); // set as belonging to front leaf vc->mCounter = 0; touchedViewCells.push_back(vc); } // view cell volume already added => just increase counter ++ vc->mCounter; } } float OspTree::PrepareHeuristics(const OspTraversalData &tData, ViewCellContainer &touchedViewCells) { float renderCost = 0; Intersectable::NewMail(3); ViewCell::NewMail(3); MailablePvsData::NewMail(); KdLeaf *leaf = tData.mNode; RayInfoContainer::const_iterator rit, rit_end = tData.mRays->end(); for (rit = tData.mRays->begin(); rit < rit_end; ++ rit) { VssRay *ray = (*rit).mRay; PrepareHeuristics(*ray, touchedViewCells); } ObjectContainer::const_iterator oit, oit_end = leaf->mObjects.end(); for (oit = leaf->mObjects.begin(); oit != oit_end; ++ oit) { Intersectable *obj = *oit; obj->Mail(); // set as belonging to front leaf ViewCellContainer::const_iterator vit, vit_end = touchedViewCells.end(); for (vit = touchedViewCells.begin(); vit != vit_end; ++ vit) { ViewCell *vc = *vit; MailablePvsData *vdata = obj->mViewCellPvs.Find(vc); if (!vdata) // should never happen continue; if (!vdata->Mailed()) { vdata->Mail(); renderCost += vc->GetVolume(); } } } return renderCost; } void OspTree::AddObjectContribution(KdLeaf *leaf, Intersectable *obj, ViewCellContainer &touchedViewCells, float &renderCost) { //Debug << "add contri to obj: " << obj->mMailbox - Intersectable::sMailId << endl; obj->Mail(2); // set as belonging to both leafs ViewCellContainer::const_iterator vit, vit_end = touchedViewCells.end(); for (vit = touchedViewCells.begin(); vit != vit_end; ++ vit) { ViewCell *vc = *vit; // if obj not previously associated with this view cell => increase render cost if (vc->Mailed(1) && !ViewCellHasMultipleReferences(obj, vc, false)) { //Debug << "add to rendercost: " << vc->GetVolume() / mVspTree->GetBoundingBox().GetVolume() << endl; renderCost += vc->GetVolume(); } } } void OspTree::SubtractObjectContribution(KdLeaf *leaf, Intersectable * obj, ViewCellContainer &touchedViewCells, float &renderCost) { //Debug << "subtract contri from obj: " << obj->mMailbox - Intersectable::sMailId << endl; obj->Mail(1); // set as belonging to back leaf ViewCellContainer::const_iterator vit, vit_end = touchedViewCells.end(); for (vit = touchedViewCells.begin(); vit != vit_end; ++ vit) { ViewCell *vc = *vit; // if obj was previously associated with this view cell but is not now // => decrease render cost if (vc->Mailed() && !ViewCellHasMultipleReferences(obj, vc, false)) { //Debug << "subtract from rendercost: " << vc->GetVolume() / mVspTree->GetBoundingBox().GetVolume() << endl; renderCost -= vc->GetVolume(); } } } void OspTree::EvalRayContribution(KdLeaf *leaf, const VssRay &ray, float &renderCost) { ViewCellContainer viewCells; mVspTree->GetViewCells(ray, viewCells); // classify view cells and compute volume contri accordingly // possible view cell classifications: // view cell mailed => view cell can be seen from left child node // view cell counter > 0 view cell can be seen from right child node // combined: view cell volume belongs to both nodes ViewCellContainer::const_iterator vit, vit_end = viewCells.end(); for (vit = viewCells.begin(); vit != vit_end; ++ vit) { EvalViewCellContribution(leaf, *vit, renderCost); } } void OspTree::EvalViewCellContribution(KdLeaf *leaf, ViewCell *viewCell, float &renderCost) { //Debug << "**************" << endl; //Debug << "vc contri: " << renderCost / mVspTree->GetBoundingBox().GetVolume() << " " << viewCell->mMailbox - ViewCell::sMailId << " counter: " << viewCell->mCounter << endl; const float vol = viewCell->GetVolume(); if (viewCell->Mailed()) { viewCell->Mail(2); // view cell can be seen from both nodes // we now see view cell from both nodes => add contri ObjectContainer::const_iterator oit, oit_end = leaf->mObjects.end(); for (oit = leaf->mObjects.begin(); oit != oit_end; ++ oit) { Intersectable *obj = *oit; // was render cost already added? if (!ViewCellHasMultipleReferences(obj, viewCell, false) && obj->Mailed(1)) { //Debug << "obj mail 1!! " << vol / mVspTree->GetBoundingBox().GetVolume() << endl; renderCost += vol; } } } if (-- viewCell->mCounter == 0) { viewCell->Mail(1); // view cell can be seen from back node only //MailablePvsData::NewMail(); ObjectContainer::const_iterator oit, oit_end = leaf->mObjects.end(); for (oit = leaf->mObjects.begin(); oit != oit_end; ++ oit) { Intersectable *obj = *oit; // can render cost be be reduced? if (!ViewCellHasMultipleReferences(obj, viewCell, false) && obj->Mailed()) { renderCost -= vol; } } } //Debug << "new rc: " << renderCost / mVspTree->GetBoundingBox().GetVolume() << " counter2: " << viewCell->mCounter << endl; //Debug << "**************"<"; SubtractObjectContribution(leaf, ci.mObject, touchedViewCells, renderCost); break; // compute volume contribution from view cells case SortableEntry::BOX_INTERSECT: cout << "i"; // process ray if the hit point with termination / origin object // is inside this kd leaf EvalRayContribution(leaf, *ray, renderCost); break; default: cout << "should not come here" << endl; break; } //cout << "vol left: " << volLeft << " vol right " << volRight << endl; } void OspTree::SetViewCellsManager(ViewCellsManager *vcm) { mViewCellsManager = vcm; } AxisAlignedBox3 OspTree::GetBoundingBox() const { return mBoundingBox; } float OspTree::SelectSplitPlane(const OspTraversalData &tData, AxisAlignedPlane &plane) { float nPosition[3]; float nCostRatio[3]; // create bounding box of node geometry AxisAlignedBox3 box = tData.mBoundingBox; int sAxis = 0; int bestAxis = -1; if (mOnlyDrivingAxis) { sAxis = box.Size().DrivingAxis(); } // -- evaluate split cost for all three axis for (int axis = 0; axis < 3; ++ axis) { if (!mOnlyDrivingAxis || (axis == sAxis)) { if (1 || mUseCostHeuristics) { //-- place split plane using heuristics int objectsFront, objectsBack; nCostRatio[axis] = EvalLocalCostHeuristics(tData, tData.mBoundingBox, axis, nPosition[axis], objectsFront, objectsBack); } /* else { //-- split plane position is spatial median nPosition[axis] = (box.Min()[axis] + box.Max()[axis]) * 0.5f; nCostRatio[axis] = EvalLocalSplitCost(tData, box, axis, nPosition[axis], nProbFront[axis], nProbBack[axis]); }*/ if (bestAxis == -1) { bestAxis = axis; } else if (nCostRatio[axis] < nCostRatio[bestAxis]) { bestAxis = axis; } } } //-- assign values plane.mAxis = bestAxis; // split plane position plane.mPosition = nPosition[bestAxis]; Debug << "val: " << nCostRatio[bestAxis] << " axis: " << bestAxis << endl; return nCostRatio[bestAxis]; } bool OspTree::EndPointInsideNode(KdLeaf *leaf, VssRay &ray, bool isTermination) const { // test if the leaf where the hitpoint is located is the current leaf if (isTermination) { return ray.mTerminationObject && (GetLeaf(ray.mTermination, ray.mTerminationNode) == leaf); } else { return false; // no origin object! return ray.mOriginObject && (GetLeaf(ray.mOrigin, ray.mOriginNode) == leaf); } } void OspTree::EvalSubdivisionStats(const SubdivisionCandidate &sc) { const float costDecr = sc.GetRenderCostDecrease(); AddSubdivisionStats(mOspStats.Leaves(), costDecr, mTotalCost ); } void OspTree::AddSubdivisionStats(const int leaves, const float renderCostDecr, const float totalRenderCost) { mSubdivisionStats << "#Leaves\n" << leaves << endl << "#RenderCostDecrease\n" << renderCostDecr << endl << "#TotalRenderCost\n" << totalRenderCost << endl; //<< "#AvgRenderCost\n" << avgRenderCost << endl; } int OspTree::ClassifyRay(VssRay *ray, KdLeaf *leaf, const AxisAlignedPlane &plane) const { const bool originInside = EndPointInsideNode(leaf, *ray, false); const bool terminationInside = EndPointInsideNode(leaf, *ray, true); const bool originGt = (ray->mOrigin[plane.mAxis] >= plane.mPosition); const bool originLt = (ray->mOrigin[plane.mAxis] <= plane.mPosition); const bool terminationGt = (ray->mTermination[plane.mAxis] >= plane.mPosition); const bool terminationLt = (ray->mTermination[plane.mAxis] <= plane.mPosition); // add view cell volume to front volume const bool addToFront = ((originInside && originGt) || (terminationInside && terminationGt)); // add view cell volume to back volume const bool addToBack = ((originInside && originLt/*!originGt*/) || (terminationInside && terminationLt/*terminationGt*/)); // classify ray with respect to the child nodes the view cells contribute if (addToFront && addToBack) return 0; else if (addToBack) return -1; else if (addToFront) return 1; return -2; } int OspTree::ClassifyRays(const RayInfoContainer &rays, KdLeaf *leaf, const AxisAlignedPlane &plane, RayInfoContainer &frontRays, RayInfoContainer &backRays) const { RayInfoContainer::const_iterator rit, rit_end = rays.end(); for (rit = rays.begin(); rit < rit_end; ++ rit) { VssRay *ray = (*rit).mRay; bool originGt = false; bool terminationGt = false; Intersectable *obj = ray->mOriginObject; if (0 && obj) { originGt = ray->mOrigin[plane.mAxis] >= plane.mPosition; } obj = ray->mTerminationObject; if (obj) { terminationGt = ray->mTermination[plane.mAxis] >= plane.mPosition; } // either begin or end point on front side const bool addToFront = originGt || terminationGt; // add view cell volume to back volume const bool addToBack = !originGt || !terminationGt; // classify ray with respect to the child nodes the view cells contribute if (addToFront) frontRays.push_back(*rit); if (addToBack) backRays.push_back(*rit); } return 0; } float OspTree::EvalRenderCostDecrease(const AxisAlignedPlane &candidatePlane, const OspTraversalData &tData, float &normalizedOldRenderCost) const { float pvsFront = 0; float pvsBack = 0; // probability that view point lies in back / front node float pOverall = 0; float pFront = 0; float pBack = 0; float pFrontAndBack = 0; Intersectable::NewMail(3); KdLeaf *leaf = tData.mNode; const float viewSpaceVol = mVspTree->GetBoundingBox().GetVolume(); const int totalPvs = (int)leaf->mObjects.size(); ObjectContainer::const_iterator oit, oit_end = leaf->mObjects.end(); // evaluate reverse pvs and view cell volume on left and right cell // note: should I take all leaf objects or rather the objects hit by rays? for (oit = leaf->mObjects.begin(); oit != oit_end; ++ oit) { int pvsContri = 0; Intersectable *obj = *oit; const AxisAlignedBox3 box = obj->GetBox(); // test if box falls in left / right child node if (box.Max(candidatePlane.mAxis) >= candidatePlane.mPosition) { ++ pvsFront; obj->Mail(); } if (box.Min(candidatePlane.mAxis) < candidatePlane.mPosition) { ++ pvsBack; if (obj->Mailed()) obj->Mail(2); else obj->Mail(1); } } ViewCellContainer touchedViewCells; // sum up volume seen from the objects of left and right children // => the volume is the weight for the render cost equation ViewCell::NewMail(3); RayInfoContainer::const_iterator rit, rit_end = tData.mRays->end(); //map objectsMap; for (rit = tData.mRays->begin(); rit < rit_end; ++ rit) { VssRay *ray = (*rit).mRay; // add volume to volumes of left and / or right children // if one of the ray end points is inside const int classification = ClassifyRay(ray, leaf, candidatePlane); ViewCellContainer viewCells; mVspTree->GetViewCells(*ray, viewCells); ViewCellContainer::const_iterator vit, vit_end = viewCells.end(); // traverse through view cells and classify them according // to them being seen from to back / front / front and back node for (vit = viewCells.begin(); vit != vit_end; ++ vit) { ViewCell *vc = *vit; // if not previously mailed if (!vc->Mailed() && !vc->Mailed(1) && !vc->Mailed(2)) { touchedViewCells.push_back(vc); } // classify / mail the view cell MailViewCell(vc, classification); } } // evaluate view cells volume contribution // with respect to the mail box classification ViewCellContainer::const_iterator vit, vit_end = touchedViewCells.end(); for (vit = touchedViewCells.begin(); vit != vit_end; ++ vit) { AddViewCellVolumeContri(*vit, pFront, pBack, pFrontAndBack); } ////////////////////////////////////////////// // // evaluate contribution of objects which are part of other kd nodes // which are seen by the same view cell // These contributions cannot be reduced by splitting, because // the object would still be part of the pvs float newRc = 0; float rc = 0; MailablePvsData::NewMail(); //ObjectContainer::const_iterator oit, oit_end = leaf->mObjects.end(); for (oit = leaf->mObjects.begin(); oit != oit_end; ++ oit) { Intersectable *obj = *oit; ViewCellContainer::const_iterator vit, vit_end = touchedViewCells.end(); for (vit = touchedViewCells.begin(); vit != vit_end; ++ vit) { ViewCell *vc = *vit; MailablePvsData *vdata = obj->mViewCellPvs.Find(vc); if (!vdata) { Debug << "error! should not come here" << endl; continue; } if (!vdata->Mailed()) { vdata->Mail(); rc += vc->GetVolume(); if ((vdata->mSumPdf > 1.5) || vc->Mailed(2) || obj->Mailed(2) || (obj->Mailed() && vc->Mailed()) || (obj->Mailed(1) && vc->Mailed(1)) ) { newRc += vc->GetVolume(); } } } } ///////////////////////////// //-- pvs rendering heuristics const float oldRenderCost = rc; // sum up the terms: // the view cells seeing // a) the left node are weighted by the #left node objects // b) the right node are weighted by the #right node objects // c) both nodes are weighted by the #parent node objects const float newRenderCost = newRc; // normalize volume with view space volume const float renderCostDecrease = (oldRenderCost - newRenderCost) / viewSpaceVol; Debug << "\nrender cost decrease: " << endl << "old rc: " << oldRenderCost / viewSpaceVol << " new rc: " << newRenderCost / viewSpaceVol << endl << "render cost decrease: " << renderCostDecrease << endl; normalizedOldRenderCost = oldRenderCost / viewSpaceVol; return renderCostDecrease; } void OspTree::ComputeBoundingBox(const ObjectContainer &objects) { mBoundingBox.Initialize(); ObjectContainer::const_iterator oit, oit_end = objects.end(); //-- compute bounding box for (oit = objects.begin(); oit != oit_end; ++ oit) { Intersectable *obj = *oit; // compute bounding box of view space mBoundingBox.Include(obj->GetBox()); } } void OspTree::ProcessMultipleRefs(KdLeaf *leaf) const { // find objects from multiple kd-leaves ObjectContainer::const_iterator oit, oit_end = leaf->mObjects.end(); for (oit = leaf->mObjects.begin(); oit != oit_end; ++ oit) { Intersectable *object = *oit; if (object->mReferences > 1) { leaf->mMultipleObjects.push_back(object); } } } void OspTree::CollectLeaves(vector &leaves) const { stack nodeStack; nodeStack.push(mRoot); while (!nodeStack.empty()) { KdNode *node = nodeStack.top(); nodeStack.pop(); if (node->IsLeaf()) { KdLeaf *leaf = (KdLeaf *)node; leaves.push_back(leaf); } else { KdInterior *interior = (KdInterior *)node; nodeStack.push(interior->mBack); nodeStack.push(interior->mFront); } } } AxisAlignedBox3 OspTree::GetBoundingBox(KdNode *node) const { if (!node->mParent) return mBoundingBox; if (!node->IsLeaf()) { return (dynamic_cast(node))->mBox; } KdInterior *parent = dynamic_cast(node->mParent); AxisAlignedBox3 box(parent->mBox); if (parent->mFront == node) box.SetMin(parent->mAxis, parent->mPosition); else box.SetMax(parent->mAxis, parent->mPosition); return box; } void OspTree::CollectViewCells(KdLeaf *leaf, ViewCellContainer &viewCells) { ObjectContainer::const_iterator oit, oit_end = leaf->mObjects.end(); ViewCell::NewMail(); // loop through all object and collect view cell pvs of this node for (oit = leaf->mObjects.begin(); oit != oit_end; ++ oit) { Intersectable *obj = *oit; ViewCellPvsMap::const_iterator vit, vit_end = obj->mViewCellPvs.mEntries.end(); for (vit = obj->mViewCellPvs.mEntries.begin(); vit != vit_end; ++ vit) { ViewCell *vc = (*vit).first; if (!vc->Mailed()) { vc->Mail(); viewCells.push_back(vc); } } } } void OspTree::CollectDirtyCandidates(OspSubdivisionCandidate *sc, vector &dirtyList) { OspTraversalData &tData = sc->mParentData; KdLeaf *node = tData.mNode; ViewCell::NewMail(); ViewCellContainer viewCells; ViewCellContainer tmpViewCells; RayInfoContainer::const_iterator rit, rit_end = tData.mRays->end(); // find all view cells associated with the rays, add them to view cells for (rit = tData.mRays->begin(); rit != rit_end; ++ rit) { VssRay *ray = (*rit).mRay; mVspTree->GetViewCells(*ray, tmpViewCells); ViewCellContainer::const_iterator vit, vit_end = tmpViewCells.end(); for (vit = tmpViewCells.begin(); vit != vit_end; ++ vit) { VspViewCell *vc = dynamic_cast(*vit); if (!vc->Mailed()) { vc->Mail(); viewCells.push_back(vc); } } } // split candidates holding this view cells // are thrown into dirty list ViewCellContainer::const_iterator vit, vit_end = viewCells.end(); for (vit = viewCells.begin(); vit != vit_end; ++ vit) { VspViewCell *vc = dynamic_cast(*vit); VspLeaf *leaf = vc->mLeaf; dirtyList.push_back(leaf->GetSubdivisionCandidate()); } } KdNode *OspTree::GetRoot() const { return mRoot; } KdLeaf *OspTree::GetLeaf(const Vector3 &pt, KdNode *node) const { // start from root of tree if (node == NULL) { node = mRoot; } stack nodeStack; nodeStack.push(node); KdLeaf *leaf = NULL; while (!nodeStack.empty()) { KdNode *node = nodeStack.top(); nodeStack.pop(); if (node->IsLeaf()) { leaf = dynamic_cast(node); } else { // find point KdInterior *interior = dynamic_cast(node); if (interior->mPosition > pt[interior->mAxis]) { nodeStack.push(interior->mBack); } else { nodeStack.push(interior->mFront); } } } return leaf; } void OspTree::PreprocessRays(KdLeaf *root, const VssRayContainer &sampleRays, RayInfoContainer &rays) { VssRayContainer::const_iterator rit, rit_end = sampleRays.end(); RayInfoContainer clippedRays; long startTime = GetTime(); cout << "storing rays ... "; Intersectable::NewMail(); //-- store rays and objects for (rit = sampleRays.begin(); rit != rit_end; ++ rit) { VssRay *ray = *rit; float minT, maxT; static Ray hray; hray.Init(*ray); // TODO: not very efficient to implictly cast between rays types if (GetBoundingBox().GetRaySegment(hray, minT, maxT)) { float len = ray->Length(); if (!len) len = Limits::Small; clippedRays.push_back(RayInfo(ray, minT / len, maxT / len)); // HACK: reset nodes for the case we have used object kd tree for // tree building. ray->mOriginNode = NULL; ray->mTerminationNode = NULL; } } FilterRays(root, clippedRays, rays); cout << "finished in " << TimeDiff(startTime, GetTime()) * 1e-3 << " secs" << endl; } int OspTree::SplitRays(const AxisAlignedPlane &plane, RayInfoContainer &rays, RayInfoContainer &frontRays, RayInfoContainer &backRays) const { int splits = 0; RayInfoContainer::const_iterator rit, rit_end = rays.end(); for (rit = rays.begin(); rit != rit_end; ++ rit) { RayInfo bRay = *rit; VssRay *ray = bRay.mRay; float t; // get classification and receive new t //-- test if start point behind or in front of plane const int side = bRay.ComputeRayIntersection(plane.mAxis, plane.mPosition, t); if (side == 0) { ++ splits; if (ray->HasPosDir(plane.mAxis)) { backRays.push_back(RayInfo(ray, bRay.GetMinT(), t)); frontRays.push_back(RayInfo(ray, t, bRay.GetMaxT())); } else { frontRays.push_back(RayInfo(ray, bRay.GetMinT(), t)); backRays.push_back(RayInfo(ray, t, bRay.GetMaxT())); } } else if (side == 1) { frontRays.push_back(bRay); } else { backRays.push_back(bRay); } } return splits; } int OspTree::FilterRays(KdLeaf *leaf, const RayInfoContainer &rays, RayInfoContainer &filteredRays) { RayInfoContainer::const_iterator rit, rit_end = rays.end(); for (rit = rays.begin(); rit != rit_end; ++ rit) { VssRay *ray = (*rit).mRay; // test if intersection point with one of the objects is inside this node const bool originInside = EndPointInsideNode(leaf, *ray, false); const bool terminationInside = EndPointInsideNode(leaf, *ray, true); if (originInside || terminationInside) { filteredRays.push_back(ray); } } return 0; } int OspTree::CheckViewCellsPvs(KdLeaf *leaf, const RayInfoContainer &rays) const { RayInfoContainer::const_iterator rit, rit_end = rays.end(); Intersectable::NewMail(); ObjectContainer touchedObjects; for (rit = rays.begin(); rit < rit_end; ++ rit) { VssRay *ray = (*rit).mRay; if (ray->mTerminationObject) { Intersectable *obj = ray->mTerminationObject; if (!obj->Mailed()) { obj->Mail(); touchedObjects.push_back(obj); } } if (ray->mOriginObject) { Intersectable *obj = ray->mOriginObject; if (!obj->Mailed()) { obj->Mail(); touchedObjects.push_back(obj); } } } Debug << "touched view cells: " << (int)touchedObjects.size() << endl; ObjectContainer::const_iterator it, it_end = touchedObjects.end(); for (it = touchedObjects.begin(); it != it_end; ++ it) { Debug << "\nobj: " << (*it) << " vc pvs size: " << (*it)->mViewCellPvs.GetSize() << endl << endl; ViewCellPvsMap::const_iterator mit, mit_end = (*it)->mViewCellPvs.mEntries.end(); for (mit = (*it)->mViewCellPvs.mEntries.begin(); mit != mit_end; ++ mit) { Debug << "new sumpdf: " << (*mit).second.mSumPdf << endl; } } return 0; } KdIntersectable *OspTree::GetOrCreateKdIntersectable(KdNode *node) { // search nodes std::map:: const_iterator it = mKdIntersectables.find(node); if (it != mKdIntersectables.end()) { return (*it).second; } // not in map => create new entry KdIntersectable *kdObj = new KdIntersectable(node); mKdIntersectables[node] = kdObj; return kdObj; } /* void OspTree::AddViewCellVolume(ViewCell *vc, const int cf, float &frontVol, float &backVol, float &totalVol) const { //const float renderCost = mViewCellsManager->SimpleRay &raynderCost(obj); const float vol = vc->GetVolume(); // view cell not found yet => new if (!vc->Mailed() && !vc->Mailed(1) && !vc->Mailed(2)) { totalVol += vol; } if (cf >= 0) // front volume { if (!vc->Mailed() && !vc->Mailed(2)) { frontVol += vol; // already in back volume => in both volumes if (vc->Mailed(1)) vc->Mail(2); else vc->Mail(); } } if (cf <= 0) // back volume { if (!vc->Mailed(1) && !vc->Mailed(2)) { backVol += vol; // already in front volume => in both volume if (vc->Mailed()) vc->Mail(2); else vc->Mail(1); } } } */ void OspTree::MailViewCell(ViewCell *vc, const int cf) const { if (vc->Mailed(2)) // already classified return; if (cf >= 0) // front volume { // already in back volume => in both volumes if (vc->Mailed(1)) { vc->Mail(2); } else { vc->Mail(); } } if (cf <= 0) // back volume { // already in front volume => in both volume if (vc->Mailed()) { vc->Mail(2); } else { vc->Mail(1); } } } void OspTree::AddViewCellVolumeContri(ViewCell *vc, float &frontVol, float &backVol, float &frontAndBackVol) const { if (vc->Mailed()) { frontVol += vc->GetVolume(); } else if (vc->Mailed(1)) { backVol += vc->GetVolume(); } else if (vc->Mailed(2)) { frontAndBackVol += vc->GetVolume(); } } float OspTree::EvalViewCellsVolume(KdLeaf *leaf, const RayInfoContainer &rays) const { float vol = 0; ViewCell::NewMail(); RayInfoContainer::const_iterator rit, rit_end = rays.end(); for (rit = rays.begin(); rit != rays.end(); ++ rit) { VssRay *ray = (*rit).mRay; ViewCellContainer viewCells; mVspTree->GetViewCells(*ray, viewCells); ViewCellContainer::const_iterator vit, vit_end = viewCells.end(); for (vit = viewCells.begin(); vit != vit_end; ++ vit) { ViewCell *vc = *vit; if (!vc->Mailed()) { vc->Mail(); vol += vc->GetVolume(); } } } return vol; } bool OspTree::AddViewCellToObjectPvs(Intersectable *obj, ViewCell *vc, float &contribution, bool onlyMailed) const { contribution = 0; // todo MailablePvsData *vdata = obj->mViewCellPvs.Find(vc); if (!vdata) { vdata = obj->mViewCellPvs.AddSample2(vc, 1); } else if (!onlyMailed || !vdata->Mailed()) { obj->mViewCellPvs.AddSample(vc, 1); } vdata->Mail(); return true; } void OspTree::CollectTouchedViewCells(const RayInfoContainer &rays, ViewCellContainer &touchedViewCells) const { ViewCell::NewMail(); RayInfoContainer::const_iterator rit, rit_end = rays.end(); for (rit = rays.begin(); rit != rit_end; ++ rit) { VssRay *ray = (*rit).mRay; ViewCellContainer viewCells; mVspTree->GetViewCells(*ray, viewCells); ViewCellContainer::const_iterator vit, vit_end = viewCells.end(); // traverse through view cells and classify them according // to them being seen from to back / front / front and back node for (vit = viewCells.begin(); vit != vit_end; ++ vit) { ViewCell *vc = *vit; if (!vc->Mailed()) { vc->Mail(); touchedViewCells.push_back(vc); } } } } int OspTree::UpdateViewCellsPvs(KdLeaf *leaf, const RayInfoContainer &rays) const { MailablePvsData::NewMail(); ViewCellContainer touchedViewCells; CollectTouchedViewCells(rays, touchedViewCells); ObjectContainer::const_iterator oit, oit_end = leaf->mObjects.end(); for (oit = leaf->mObjects.begin(); oit < oit_end; ++ oit) { Intersectable *obj = *oit; ViewCellContainer::const_iterator vit, vit_end = touchedViewCells.end(); // traverse through view cells and classify them according // to them being seen from to back / front / front and back node for (vit = touchedViewCells.begin(); vit != vit_end; ++ vit) { ViewCell *vc = *vit; float contri; AddViewCellToObjectPvs(obj, vc, contri, true); } } return 0; } int OspTree::RemoveParentViewCellsPvs(KdLeaf *leaf, const RayInfoContainer &rays ) const { MailablePvsData::NewMail(); ViewCellContainer touchedViewCells; CollectTouchedViewCells(rays, touchedViewCells); ObjectContainer::const_iterator oit, oit_end = leaf->mObjects.end(); for (oit = leaf->mObjects.begin(); oit != oit_end; ++ oit) { Intersectable *obj = *oit; // traverse through view cells and classify them according // to them being seen from to back / front / front and back node ViewCellContainer::const_iterator vit, vit_end = touchedViewCells.end(); for (vit = touchedViewCells.begin(); vit != vit_end; ++ vit) { ViewCell *vc = *vit; MailablePvsData *vdata = obj->mViewCellPvs.Find(vc); if (vdata && !vdata->Mailed()) { vdata->Mail(); obj->mViewCellPvs.RemoveSample(vc, 1); } } } return 0; } float OspTree::EvalRenderCost(const VssRayContainer &myrays) { float rc = 0; float prop = mVspTree->GetBoundingBox().GetVolume(); KdLeafContainer leaves; CollectLeaves(leaves); ViewCellContainer vcleaves; mVspTree->CollectViewCells(vcleaves, false); ViewCellContainer::const_iterator vit, vit_end = vcleaves.end(); for (vit = vcleaves.begin(); vit != vit_end; ++ vit) { ViewCell *vc = *vit; vc->GetPvs().Clear(); } KdLeafContainer::const_iterator kit, kit_end = leaves.end(); MailablePvsData::NewMail(); for (kit = leaves.begin(); kit != kit_end; ++ kit) { KdLeaf *leaf = *kit; float newCost = 0; float vol = 0; ViewCell::NewMail(); VssRayContainer::const_iterator rit, rit_end = leaf->mVssRays.end(); ViewCellContainer touchedViewCells; for (rit = leaf->mVssRays.begin(); rit != rit_end; ++ rit) { VssRay *ray = *rit; // test if intersection point with one of the objects is inside this node const bool originInside = EndPointInsideNode(leaf, *ray, false); const bool terminationInside = EndPointInsideNode(leaf, *ray, true); if (originInside || terminationInside) { ViewCellContainer viewCells; mVspTree->GetViewCells(*ray, viewCells); ViewCellContainer::const_iterator vit, vit_end = viewCells.end(); for (vit = viewCells.begin(); vit != vit_end; ++ vit) { ViewCell *vc = *vit; // if not previously mailed if (!vc->Mailed()) { vc->Mail(); touchedViewCells.push_back(vc); } } } } ObjectContainer::const_iterator oit, oit_end = leaf->mObjects.end(); for (oit = leaf->mObjects.begin(); oit != oit_end; ++ oit) { Intersectable *obj = *oit; ViewCellContainer::const_iterator vit, vit_end = touchedViewCells.end(); for (vit = touchedViewCells.begin(); vit != vit_end; ++ vit) { ViewCell *vc = *vit; PvsData *vdata = vc->GetPvs().Find(obj); if (!vdata) { vc->GetPvs().AddSample(obj, 1); newCost += vc->GetVolume(); } /* MailablePvsData *vdata = obj->mViewCellPvs.Find(vc); if (!vdata || !vdata->Mailed()) { newCost += vc->GetVolume(); if (!vdata) vdata = obj->mViewCellPvs.AddSample2(vc, 1); vdata->Mail(); }*/ } } rc += newCost; } return rc / prop; } float OspTree::EvalLeafCost(const OspTraversalData &tData) { KdLeaf *leaf = tData.mNode; float rc = 0; //float prop = mVspTree->GetBoundingBox().GetVolume(); //float vol = 0; //ViewCell::NewMail(); RayInfoContainer::const_iterator rit, rit_end = tData.mRays->end(); ViewCellContainer touchedViewCells; for (rit = tData.mRays->begin(); rit != rit_end; ++ rit) { VssRay *ray = (*rit).mRay; // test if intersection point with one of the objects is inside this node ViewCellContainer viewCells; mVspTree->GetViewCells(*ray, viewCells); ViewCellContainer::const_iterator vit, vit_end = viewCells.end(); for (vit = viewCells.begin(); vit != vit_end; ++ vit) { ViewCell *vc = *vit; // if not previously mailed if (!vc->Mailed()) { vc->Mail(); touchedViewCells.push_back(vc); } } } // clear pvs of involved view cells ViewCellContainer::const_iterator vit, vit_end = touchedViewCells.end(); for (vit = touchedViewCells.begin(); vit != vit_end; ++ vit) { ViewCell *vc = *vit; vc->GetPvs().Clear(); } ObjectContainer::const_iterator oit, oit_end = leaf->mObjects.end(); for (oit = leaf->mObjects.begin(); oit != oit_end; ++ oit) { Intersectable *obj = *oit; for (vit = touchedViewCells.begin(); vit != vit_end; ++ vit) { ViewCell *vc = *vit; PvsData *vdata = vc->GetPvs().Find(obj); if (!vdata) { vc->GetPvs().AddSample(obj, 1); rc += vc->GetVolume(); //prop += vc->GetVolume(); } } } return rc; } bool OspTree::Export(OUT_STREAM &stream) { ExportNode(mRoot, stream); return true; } void OspTree::ExportNode(KdNode *node, OUT_STREAM &stream) { if (node->IsLeaf()) { KdLeaf *leaf = dynamic_cast(node); stream << "" << endl; } else { KdInterior *interior = dynamic_cast(node); stream << "mPosition << " " << interior->mAxis << "\">" << endl; ExportNode(interior->mBack, stream); ExportNode(interior->mFront, stream); stream << "" << endl; } } struct KdObjectsTraversalData { KdNode *node; ObjectContainer *objects; }; void OspTree::InsertObjects(KdNode *node, const ObjectContainer &objects) { stack tStack; while (!tStack.empty()) { KdObjectsTraversalData tData = tStack.top(); tStack.pop(); KdNode *node = tData.node; if (node->IsLeaf()) { KdLeaf *leaf = dynamic_cast(node); ObjectContainer::const_iterator oit, oit_end = tData.objects->end(); for (oit = tData.objects->begin(); oit != oit_end; ++ oit) { leaf->mObjects.push_back(*oit); } } else // interior { KdObjectsTraversalData frontData, backData; KdInterior *interior = dynamic_cast(node); frontData.objects = new ObjectContainer(); backData.objects = new ObjectContainer(); ObjectContainer::const_iterator oit, oit_end = tData.objects->end(); for (oit = tData.objects->begin(); oit != oit_end; ++ oit) { Intersectable *object = *oit; // determine the side of this ray with respect to the plane const AxisAlignedBox3 box = object->GetBox(); if (box.Max(interior->mAxis) >= interior->mPosition) { frontData.objects->push_back(object); } if (box.Min(interior->mAxis) < interior->mPosition) { backData.objects->push_back(object); } } tStack.push(backData); tStack.push(frontData); } DEL_PTR(tData.objects); } } SubdivisionCandidate * OspTree::PrepareConstruction(const VssRayContainer &sampleRays, const ObjectContainer &objects, RayInfoContainer &rays) { // store pointer to this tree OspSubdivisionCandidate::sOspTree = this; mOspStats.nodes = 1; // compute bounding box from objects ComputeBoundingBox(objects); mTermMinProbability *= mBoundingBox.GetVolume(); mGlobalCostMisses = 0; //-- create new root KdLeaf *kdleaf = new KdLeaf(NULL, 0); kdleaf->mObjects = objects; mRoot = kdleaf; // get clipped rays PreprocessRays(kdleaf, sampleRays, rays); // probabilty is voume of all "seen" view cells #if 1 const float prop = EvalViewCellsVolume(kdleaf, rays); #else const float prop = GetBoundingBox().GetVolume(); #endif //-- add first candidate for object space partition // create osp traversal data OspTraversalData oData(kdleaf, 0, &rays, 0, prop, mBoundingBox); //-- first split candidate OspSubdivisionCandidate *oSubdivisionCandidate = new OspSubdivisionCandidate(oData); UpdateViewCellsPvs(kdleaf, rays); EvalSubdivisionCandidate(*oSubdivisionCandidate); mTotalCost = (float)objects.size() * prop / mVspTree->GetBoundingBox().GetVolume(); EvalSubdivisionStats(*oSubdivisionCandidate); return oSubdivisionCandidate; } bool OspTree::AddLeafToPvs(KdLeaf *leaf, ViewCell *vc, const float pdf, float &contribution) { // add kd intersecable to pvs KdIntersectable *kdObj = GetOrCreateKdIntersectable(leaf); return vc->AddPvsSample(kdObj, pdf, contribution); } }