1 | #include "Plane3.h"
|
---|
2 | #include "Matrix4x4.h"
|
---|
3 | #include "Ray.h"
|
---|
4 |
|
---|
5 |
|
---|
6 | namespace GtpVisibilityPreprocessor {
|
---|
7 |
|
---|
8 |
|
---|
9 | Plane3::Plane3(const Vector3 &a,
|
---|
10 | const Vector3 &b,
|
---|
11 | const Vector3 &c)
|
---|
12 | {
|
---|
13 | Vector3 v1=a-b, v2=c-b;
|
---|
14 | mNormal = Normalize(CrossProd(v2,v1));
|
---|
15 | mD = -DotProd(b, mNormal);
|
---|
16 | }
|
---|
17 |
|
---|
18 | Plane3::Plane3(const Vector3 &normal,
|
---|
19 | const Vector3 &point):
|
---|
20 | mNormal(normal)
|
---|
21 | {
|
---|
22 | mD = -DotProd(normal, point);
|
---|
23 | }
|
---|
24 |
|
---|
25 |
|
---|
26 | bool
|
---|
27 | PlaneIntersection(const Plane3 &a, const Plane3 &b, const Plane3 &c, Vector3 &result)
|
---|
28 | {
|
---|
29 | Vector3
|
---|
30 | sx(a.mNormal.x, b.mNormal.x, c.mNormal.x),
|
---|
31 | sy(a.mNormal.y, b.mNormal.y, c.mNormal.y),
|
---|
32 | sz(a.mNormal.z, b.mNormal.z, c.mNormal.z),
|
---|
33 | sd(a.mD, b.mD, c.mD);
|
---|
34 |
|
---|
35 | Matrix4x4 md(a.mNormal, b.mNormal, c.mNormal), mx, my, mz;
|
---|
36 |
|
---|
37 | mx.SetColumns(sd, sy, sz);
|
---|
38 | my.SetColumns(sx, sd, sz);
|
---|
39 | mz.SetColumns(sx, sy, sd);
|
---|
40 |
|
---|
41 | double det = md.Det3x3();
|
---|
42 |
|
---|
43 | if (abs(det)<TRASH)
|
---|
44 | return false;
|
---|
45 |
|
---|
46 | result.SetValue(mx.Det3x3()/det,
|
---|
47 | my.Det3x3()/det,
|
---|
48 | mz.Det3x3()/det);
|
---|
49 |
|
---|
50 | return true;
|
---|
51 | }
|
---|
52 |
|
---|
53 |
|
---|
54 | bool PlaneIntersection(const Plane3 &p1, const Plane3 &p2)
|
---|
55 | {
|
---|
56 | return
|
---|
57 | p1.mNormal.x != p2.mNormal.x ||
|
---|
58 | p1.mNormal.y != p2.mNormal.y ||
|
---|
59 | p1.mNormal.z != p2.mNormal.z ||
|
---|
60 | p1.mD == p2.mD;
|
---|
61 | }
|
---|
62 |
|
---|
63 |
|
---|
64 | /*
|
---|
65 | If the planes are known to intersect then determine the origin and unit direction vector of a
|
---|
66 | line formed by the intersection of two planes.
|
---|
67 | The direction of that line is just the vector product of the normals of the planes.
|
---|
68 | Finding a point along the intersection line is theoretically easy but numerical precision
|
---|
69 | issues mean that we need to determine which axis it is best to do the calculation in.
|
---|
70 | The point will lie on the axis that was used to determine the intersection.
|
---|
71 | */
|
---|
72 | SimpleRay GetPlaneIntersection(const Plane3 &plane1, const Plane3 &plane2)
|
---|
73 | {
|
---|
74 | Vector3 point, dir;
|
---|
75 | dir = CrossProd(plane1.mNormal, plane2.mNormal);
|
---|
76 |
|
---|
77 | float abs;
|
---|
78 | const int index = dir.DrivingAxis();
|
---|
79 |
|
---|
80 | switch (index)
|
---|
81 | {
|
---|
82 | case 0:
|
---|
83 | point[0] = 0.0f;
|
---|
84 | point[1] = (plane1.mNormal[2] * plane2.mD - plane2.mNormal[2] * plane1.mD) / dir[0] ;
|
---|
85 | point[2] = (plane2.mNormal[1] * plane1.mD - plane1.mNormal[1] * plane2.mD) / dir[0] ;
|
---|
86 | break;
|
---|
87 | case 1:
|
---|
88 | point[0] = (plane2.mNormal[2] * plane1.mD - plane1.mNormal[2] * plane2.mD) / dir[1] ;
|
---|
89 | point[1] = 0.0f ;
|
---|
90 | point[2] = (plane1.mNormal[0] * plane2.mD - plane2.mNormal[0] * plane1.mD) / dir[1] ;
|
---|
91 | break;
|
---|
92 | case 2:
|
---|
93 | point[0] = (plane1.mNormal[1] * plane2.mD - plane2.mNormal[1] * plane1.mD) / dir[2] ;
|
---|
94 | point[1] = (plane2.mNormal[0] * plane1.mD - plane1.mNormal[0] * plane2.mD) / dir[2] ;
|
---|
95 | point[2] = 0.0f ;
|
---|
96 | break;
|
---|
97 | }
|
---|
98 |
|
---|
99 | Normalize(dir);
|
---|
100 |
|
---|
101 | return SimpleRay(point, dir);
|
---|
102 | }
|
---|
103 |
|
---|
104 |
|
---|
105 | Vector3 Plane3::FindIntersection(const Vector3 &a,
|
---|
106 | const Vector3 &b,
|
---|
107 | float *t,
|
---|
108 | bool *coplanar) const
|
---|
109 | {
|
---|
110 | const Vector3 v = b - a; // line from A to B
|
---|
111 | float dv = DotProd(v, mNormal);
|
---|
112 |
|
---|
113 | if (signum(dv) == 0)
|
---|
114 | {
|
---|
115 | if (coplanar)
|
---|
116 | {
|
---|
117 | (*coplanar) = true;
|
---|
118 | }
|
---|
119 |
|
---|
120 | if (t)
|
---|
121 | {
|
---|
122 | (*t) = 0;
|
---|
123 | }
|
---|
124 |
|
---|
125 | return a;
|
---|
126 | }
|
---|
127 |
|
---|
128 | if (coplanar)
|
---|
129 | {
|
---|
130 | (*coplanar) = false;
|
---|
131 | }
|
---|
132 |
|
---|
133 | float u = - Distance(a) / dv; // TODO: could be done more efficiently
|
---|
134 |
|
---|
135 | if (t)
|
---|
136 | {
|
---|
137 | (*t) = u;
|
---|
138 | }
|
---|
139 |
|
---|
140 | return a + u * v;
|
---|
141 | }
|
---|
142 |
|
---|
143 |
|
---|
144 | int Plane3::Side(const Vector3 &v, const float threshold) const
|
---|
145 | {
|
---|
146 | return signum(Distance(v), threshold);
|
---|
147 | }
|
---|
148 |
|
---|
149 |
|
---|
150 | float Plane3::FindT(const Vector3 &a, const Vector3 &b) const
|
---|
151 | {
|
---|
152 | const Vector3 v = b - a; // line from A to B
|
---|
153 | const float dv = DotProd(v, mNormal);
|
---|
154 |
|
---|
155 | // does not intersect or coincident
|
---|
156 | if (signum(dv) == 0)
|
---|
157 | return 0;
|
---|
158 |
|
---|
159 | return - Distance(a) / dv; // TODO: could be done more efficiently
|
---|
160 | }
|
---|
161 |
|
---|
162 |
|
---|
163 | float Plane3::FindT(const SimpleRay &a) const
|
---|
164 | {
|
---|
165 | const Vector3 v = a.mDirection; // line from A to B
|
---|
166 | const float dv = DotProd(v, mNormal);
|
---|
167 |
|
---|
168 | // does not intersect or coincident
|
---|
169 | if (signum(dv) == 0)
|
---|
170 | return 0;
|
---|
171 |
|
---|
172 | return - Distance(a.mOrigin) / dv; // TODO: could be done more efficiently
|
---|
173 | }
|
---|
174 |
|
---|
175 | } |
---|