#include "Plane3.h" #include "ViewCellBsp.h" #include "Mesh.h" #include "common.h" #include "ViewCell.h" #include "Environment.h" #include "Polygon3.h" #include "Ray.h" #include "AxisAlignedBox3.h" #include "Triangle3.h" #include "Tetrahedron3.h" #include "ViewCellsManager.h" #include "Exporter.h" #include "Plane3.h" #include namespace GtpVisibilityPreprocessor { ////////////// //-- static members int BspNode::sMailId = 1; /** Evaluates split plane classification with respect to the plane's contribution for a minimum number splits in the tree. */ const float BspTree::sLeastPolySplitsTable[] = {0, 0, 1, 0}; /** Evaluates split plane classification with respect to the plane's contribution for a balanced tree. */ const float BspTree::sBalancedPolysTable[] = {1, -1, 0, 0}; /** Evaluates split plane classification with respect to the plane's contribution for a minimum number of ray splits. */ const float BspTree::sLeastRaySplitsTable[] = {0, 0, 1, 1, 0}; /** Evaluates split plane classification with respect to the plane's contribution for balanced rays. */ const float BspTree::sBalancedRaysTable[] = {1, -1, 0, 0, 0}; int BspTree::sFrontId = 0; int BspTree::sBackId = 0; int BspTree::sFrontAndBackId = 0; /******************************************************************/ /* class BspNode implementation */ /******************************************************************/ BspNode::BspNode(): mParent(NULL), mTreeValid(true), mTimeStamp(0) {} BspNode::BspNode(BspInterior *parent): mParent(parent), mTreeValid(true) {} bool BspNode::IsSibling(BspNode *n) const { return ((this != n) && mParent && (mParent->GetFront() == n) || (mParent->GetBack() == n)); } int BspNode::GetDepth() const { int depth = 0; BspNode *p = mParent; while (p) { p = p->mParent; ++ depth; } return depth; } bool BspNode::TreeValid() const { return mTreeValid; } void BspNode::SetTreeValid(const bool v) { mTreeValid = v; } /****************************************************************/ /* class BspInterior implementation */ /****************************************************************/ BspInterior::BspInterior(const Plane3 &plane): mPlane(plane), mFront(NULL), mBack(NULL) {} BspInterior::~BspInterior() { DEL_PTR(mFront); DEL_PTR(mBack); } void BspInterior::SetupChildLinks(BspNode *b, BspNode *f) { mBack = b; mFront = f; } /****************************************************************/ /* class BspLeaf implementation */ /****************************************************************/ BspLeaf::BspLeaf(): mViewCell(NULL), mPvs(NULL) { } BspLeaf::~BspLeaf() { DEL_PTR(mPvs); VssRayContainer::const_iterator vit, vit_end = mVssRays.end(); for (vit = mVssRays.begin(); vit != vit_end; ++ vit) { VssRay *ray = *vit; ray->Unref(); if (!ray->IsActive()) delete ray; } } BspLeaf::BspLeaf(ViewCellLeaf *viewCell): mViewCell(viewCell) { } BspLeaf::BspLeaf(BspInterior *parent): BspNode(parent), mViewCell(NULL), mPvs(NULL) {} BspLeaf::BspLeaf(BspInterior *parent, ViewCellLeaf *viewCell): BspNode(parent), mViewCell(viewCell), mPvs(NULL) { } /*********************************************************************/ /* class BspTree implementation */ /*********************************************************************/ BspTree::BspTree(): mRoot(NULL), mUseAreaForPvs(false), mUsePredefinedViewCells(false), mTimeStamp(1), mViewCellsTree(NULL), mOutOfBoundsCellPartOfTree(false), mOutOfBoundsCell(NULL) { Randomize(); // initialise random generator for heuristics mOutOfBoundsCell = GetOrCreateOutOfBoundsCell(); ///////// //-- termination criteria for autopartition Environment::GetSingleton()->GetIntValue("BspTree.Termination.maxDepth", mTermMaxDepth); Environment::GetSingleton()->GetIntValue("BspTree.Termination.minPvs", mTermMinPvs); Environment::GetSingleton()->GetIntValue("BspTree.Termination.minPolygons", mTermMinPolys); Environment::GetSingleton()->GetIntValue("BspTree.Termination.minRays", mTermMinRays); Environment::GetSingleton()->GetFloatValue("BspTree.Termination.minProbability", mTermMinProbability); Environment::GetSingleton()->GetFloatValue("BspTree.Termination.maxRayContribution", mTermMaxRayContribution); Environment::GetSingleton()->GetFloatValue("BspTree.Termination.minAccRayLenght", mTermMinAccRayLength); ///////// //-- factors for bsp tree split plane heuristics Environment::GetSingleton()->GetFloatValue("BspTree.Factor.verticalSplits", mVerticalSplitsFactor); Environment::GetSingleton()->GetFloatValue("BspTree.Factor.largestPolyArea", mLargestPolyAreaFactor); Environment::GetSingleton()->GetFloatValue("BspTree.Factor.blockedRays", mBlockedRaysFactor); Environment::GetSingleton()->GetFloatValue("BspTree.Factor.leastRaySplits", mLeastRaySplitsFactor); Environment::GetSingleton()->GetFloatValue("BspTree.Factor.balancedRays", mBalancedRaysFactor); Environment::GetSingleton()->GetFloatValue("BspTree.Factor.pvs", mPvsFactor); Environment::GetSingleton()->GetFloatValue("BspTree.Factor.leastSplits" , mLeastSplitsFactor); Environment::GetSingleton()->GetFloatValue("BspTree.Factor.balancedPolys", mBalancedPolysFactor); Environment::GetSingleton()->GetFloatValue("BspTree.Factor.balancedViewCells", mBalancedViewCellsFactor); Environment::GetSingleton()->GetFloatValue("BspTree.Termination.ct_div_ci", mCtDivCi); /////////// //-- termination criteria for axis aligned split Environment::GetSingleton()->GetFloatValue("BspTree.Termination.AxisAligned.ct_div_ci", mAxisAlignedCtDivCi); Environment::GetSingleton()->GetFloatValue("BspTree.Termination.maxCostRatio", mMaxCostRatio); Environment::GetSingleton()->GetIntValue("BspTree.Termination.AxisAligned.minPolys", mTermMinPolysForAxisAligned); Environment::GetSingleton()->GetIntValue("BspTree.Termination.AxisAligned.minRays", mTermMinRaysForAxisAligned); Environment::GetSingleton()->GetIntValue("BspTree.Termination.AxisAligned.minObjects", mTermMinObjectsForAxisAligned); ////////////// //-- partition criteria Environment::GetSingleton()->GetIntValue("BspTree.maxPolyCandidates", mMaxPolyCandidates); Environment::GetSingleton()->GetIntValue("BspTree.maxRayCandidates", mMaxRayCandidates); Environment::GetSingleton()->GetIntValue("BspTree.splitPlaneStrategy", mSplitPlaneStrategy); Environment::GetSingleton()->GetFloatValue("BspTree.AxisAligned.splitBorder", mSplitBorder); Environment::GetSingleton()->GetIntValue("BspTree.maxTests", mMaxTests); Environment::GetSingleton()->GetIntValue("BspTree.Termination.maxViewCells", mMaxViewCells); Environment::GetSingleton()->GetFloatValue("BspTree.Construction.epsilon", mEpsilon); char subdivisionStatsLog[100]; Environment::GetSingleton()->GetStringValue("BspTree.subdivisionStats", subdivisionStatsLog); mSubdivisionStats.open(subdivisionStatsLog); /////////////////////7 Debug << "BSP options: " << endl; Debug << "BSP max depth: " << mTermMaxDepth << endl; Debug << "BSP min PVS: " << mTermMinPvs << endl; Debug << "BSP min probability: " << mTermMinProbability << endl; Debug << "BSP max polys: " << mTermMinPolys << endl; Debug << "BSP max rays: " << mTermMinRays << endl; Debug << "BSP max polygon candidates: " << mMaxPolyCandidates << endl; Debug << "BSP max plane candidates: " << mMaxRayCandidates << endl; Debug << "Split plane strategy: "; if (mSplitPlaneStrategy & RANDOM_POLYGON) Debug << "random polygon "; if (mSplitPlaneStrategy & AXIS_ALIGNED) Debug << "axis aligned "; if (mSplitPlaneStrategy & LEAST_SPLITS) Debug << "least splits "; if (mSplitPlaneStrategy & BALANCED_POLYS) Debug << "balanced polygons "; if (mSplitPlaneStrategy & BALANCED_VIEW_CELLS) Debug << "balanced view cells "; if (mSplitPlaneStrategy & LARGEST_POLY_AREA) Debug << "largest polygon area "; if (mSplitPlaneStrategy & VERTICAL_AXIS) Debug << "vertical axis "; if (mSplitPlaneStrategy & BLOCKED_RAYS) Debug << "blocked rays "; if (mSplitPlaneStrategy & LEAST_RAY_SPLITS) Debug << "least ray splits "; if (mSplitPlaneStrategy & BALANCED_RAYS) Debug << "balanced rays "; if (mSplitPlaneStrategy & PVS) Debug << "pvs"; Debug << endl; } bool BspTree::IsOutOfBounds(ViewCell *vc) const { return vc->GetId() == OUT_OF_BOUNDS_ID; } const BspTreeStatistics &BspTree::GetStatistics() const { return mStat; } BspViewCell *BspTree::GetOrCreateOutOfBoundsCell() { if (!mOutOfBoundsCell) { mOutOfBoundsCell = new BspViewCell(); mOutOfBoundsCell->SetId(OUT_OF_BOUNDS_ID); mOutOfBoundsCell->SetValid(false); } return mOutOfBoundsCell; } int BspTree::SplitPolygons(const Plane3 &plane, PolygonContainer &polys, PolygonContainer &frontPolys, PolygonContainer &backPolys, PolygonContainer &coincident) const { int splits = 0; #ifdef _Debug Debug << "splitting polygons of node " << this << " with plane " << mPlane << endl; #endif PolygonContainer::const_iterator it, it_end = polys.end(); for (it = polys.begin(); it != polys.end(); ++ it) { Polygon3 *poly = *it; //-- classify polygon const int cf = poly->ClassifyPlane(plane, mEpsilon); switch (cf) { case Polygon3::COINCIDENT: coincident.push_back(poly); break; case Polygon3::FRONT_SIDE: frontPolys.push_back(poly); break; case Polygon3::BACK_SIDE: backPolys.push_back(poly); break; case Polygon3::SPLIT: { Polygon3 *front_piece = new Polygon3(poly->mParent); Polygon3 *back_piece = new Polygon3(poly->mParent); //-- split polygon into front and back part poly->Split(plane, *front_piece, *back_piece, mEpsilon); ++ splits; // increase number of splits //-- inherit rays from parent polygon for blocked ray criterium poly->InheritRays(*front_piece, *back_piece); // check if polygons still valid if (front_piece->Valid(mEpsilon)) frontPolys.push_back(front_piece); else DEL_PTR(front_piece); if (back_piece->Valid(mEpsilon)) backPolys.push_back(back_piece); else DEL_PTR(back_piece); #ifdef GTP_DEBUG Debug << "split " << *poly << endl << *front_piece << endl << *back_piece << endl; #endif DEL_PTR(poly); } break; default: Debug << "SHOULD NEVER COME HERE\n"; break; } } return splits; } void BspTreeStatistics::Print(ostream &app) const { app << "===== BspTree statistics ===============\n"; app << setprecision(4); app << "#N_CTIME ( Construction time [s] )\n" << Time() << " \n"; app << "#N_NODES ( Number of nodes )\n" << nodes << "\n"; app << "#N_INTERIORS ( Number of interior nodes )\n" << Interior() << "\n"; app << "#N_LEAVES ( Number of leaves )\n" << Leaves() << "\n"; app << "#N_POLYSPLITS ( Number of polygon splits )\n" << polySplits << "\n"; app << "#AXIS_ALIGNED_SPLITS (number of axis aligned splits)\n" << splits[0] + splits[1] + splits[2] << endl; app << "#N_SPLITS ( Number of splits in axes x y z)\n"; for (int i = 0; i < 3; ++ i) app << splits[i] << " "; app << endl; app << "#N_PMAXDEPTHLEAVES ( Percentage of leaves at maximum depth )\n" << maxDepthNodes * 100 / (double)Leaves() << endl; app << "#N_PMINPVSLEAVES ( Percentage of leaves with mininimal PVS )\n" << minPvsNodes * 100 / (double)Leaves() << endl; app << "#N_PMINRAYSLEAVES ( Percentage of leaves with minimal number of rays)\n" << minRaysNodes * 100 / (double)Leaves() << endl; app << "#N_MAXCOSTNODES ( Percentage of leaves with terminated because of max cost ratio )\n" << maxCostNodes * 100 / (double)Leaves() << endl; app << "#N_PMINPROBABILITYLEAVES ( Percentage of leaves with mininum probability )\n" << minProbabilityNodes * 100 / (double)Leaves() << endl; app << "#N_PMAXRAYCONTRIBLEAVES ( Percentage of leaves with maximal ray contribution )\n" << maxRayContribNodes * 100 / (double)Leaves() << endl; app << "#N_PMAXDEPTH ( Maximal reached depth )\n" << maxDepth << endl; app << "#N_PMINDEPTH ( Minimal reached depth )\n" << minDepth << endl; app << "#AVGDEPTH ( average depth )\n" << AvgDepth() << endl; app << "#N_INPUTPOLYGONS (number of input polygons )\n" << polys << endl; app << "#N_INVALIDLEAVES (number of invalid leaves )\n" << invalidLeaves << endl; app << "#N_RAYS (number of rays / leaf)\n" << AvgRays() << endl; //app << "#N_PVS: " << pvs << endl; app << "#N_ROUTPUT_INPUT_POLYGONS ( ratio polygons after subdivision / input polygons )\n" << (polys + polySplits) / (double)polys << endl; app << "===== END OF BspTree statistics ==========\n"; } BspTree::~BspTree() { DEL_PTR(mRoot); if (mOutOfBoundsCellPartOfTree) { // out of bounds cell not part of tree => // delete manually DEL_PTR(mOutOfBoundsCell); } } BspNode *BspTree::GetRoot() const { return mRoot; } void BspTree::SetViewCellsTree(ViewCellsTree *viewCellsTree) { mViewCellsTree = viewCellsTree; } void BspTree::InsertViewCell(ViewCellLeaf *viewCell) { // don't generate new view cell, insert this view cell mUsePredefinedViewCells = true; PolygonContainer *polys = new PolygonContainer(); // extract polygons that guide the split process mStat.polys += AddMeshToPolygons(viewCell->GetMesh(), *polys, viewCell); mBbox.Include(viewCell->GetBox()); // add to BSP aabb InsertPolygons(polys); } void BspTree::InsertPolygons(PolygonContainer *polys) { BspTraversalStack tStack; // traverse existing tree or create new tree if (!mRoot) mRoot = new BspLeaf(); tStack.push(BspTraversalData(mRoot, polys, 0, mOutOfBoundsCell, new BoundedRayContainer(), 0, mUseAreaForPvs ? mBbox.SurfaceArea() : mBbox.GetVolume(), new BspNodeGeometry())); while (!tStack.empty()) { // filter polygons donw the tree BspTraversalData tData = tStack.top(); tStack.pop(); if (!tData.mNode->IsLeaf()) { BspInterior *interior = dynamic_cast(tData.mNode); /////////////////// //-- filter view cell polygons down the tree until a leaf is reached if (!tData.mPolygons->empty()) { PolygonContainer *frontPolys = new PolygonContainer(); PolygonContainer *backPolys = new PolygonContainer(); PolygonContainer coincident; int splits = 0; // split viewcell polygons with respect to split plane splits += SplitPolygons(interior->GetPlane(), *tData.mPolygons, *frontPolys, *backPolys, coincident); // extract view cells associated with the split polygons ViewCellLeaf *frontViewCell = mOutOfBoundsCell; ViewCellLeaf *backViewCell = mOutOfBoundsCell; BspTraversalData frontData(interior->GetFront(), frontPolys, tData.mDepth + 1, mOutOfBoundsCell, tData.mRays, tData.mPvs, mUseAreaForPvs ? mBbox.SurfaceArea() : mBbox.GetVolume(), new BspNodeGeometry()); BspTraversalData backData(interior->GetBack(), backPolys, tData.mDepth + 1, mOutOfBoundsCell, tData.mRays, tData.mPvs, mUseAreaForPvs ? mBbox.SurfaceArea() : mBbox.GetVolume(), new BspNodeGeometry()); if (mUsePredefinedViewCells) { ExtractViewCells(frontData, backData, coincident, interior->mPlane); } // don't need coincident polygons anymore CLEAR_CONTAINER(coincident); mStat.polySplits += splits; // push the children on the stack tStack.push(frontData); tStack.push(backData); } // cleanup DEL_PTR(tData.mPolygons); DEL_PTR(tData.mRays); } else { // reached leaf => subdivide current viewcell BspNode *subRoot = Subdivide(tStack, tData); } } } int BspTree::AddMeshToPolygons(Mesh *mesh, PolygonContainer &polys, MeshInstance *parent) { FaceContainer::const_iterator fi, fi_end = mesh->mFaces.end(); // copy the face data to polygons for (fi = mesh->mFaces.begin(); fi != fi_end; ++ fi) { Polygon3 *poly = new Polygon3((*fi), mesh); if (poly->Valid(mEpsilon)) { poly->mParent = parent; // set parent intersectable polys.push_back(poly); } else { DEL_PTR(poly); } } return (int)mesh->mFaces.size(); } int BspTree::AddToPolygonSoup(const ViewCellContainer &viewCells, PolygonContainer &polys, int maxObjects) { int limit = (maxObjects > 0) ? Min((int)viewCells.size(), maxObjects) : (int)viewCells.size(); int polysSize = 0; for (int i = 0; i < limit; ++ i) { Mesh *mesh = viewCells[i]->GetMesh(); if (mesh) { // copy the mesh into polygons and add to BSP tree aabb mBbox.Include(viewCells[i]->GetBox()); polysSize += AddMeshToPolygons(mesh, polys, viewCells[i]); } } return polysSize; } int BspTree::AddToPolygonSoup(const ObjectContainer &objects, PolygonContainer &polys, int maxObjects, bool addToBbox) { int limit = (maxObjects > 0) ? Min((int)objects.size(), maxObjects) : (int)objects.size(); for (int i = 0; i < limit; ++i) { Intersectable *object = objects[i]; Mesh *mesh = NULL; switch (object->Type()) // extract the meshes { case Intersectable::MESH_INSTANCE: mesh = dynamic_cast(object)->GetMesh(); break; case Intersectable::VIEW_CELL: mesh = dynamic_cast(object)->GetMesh(); break; case Intersectable::TRANSFORMED_MESH_INSTANCE: { TransformedMeshInstance *mi = dynamic_cast(object); if (!mi->GetMesh()) break; mesh = new Mesh(); mi->GetTransformedMesh(*mesh); break; } default: Debug << "intersectable type not supported" << endl; break; } if (!mesh) continue; // copy the mesh data to polygons if (addToBbox) { mBbox.Include(object->GetBox()); // add to BSP tree aabb } AddMeshToPolygons(mesh, polys, mOutOfBoundsCell); // cleanup if (object->Type() == Intersectable::TRANSFORMED_MESH_INSTANCE) { DEL_PTR(mesh); } } return (int)polys.size(); } void BspTree::Construct(const ViewCellContainer &viewCells) { // construct hierarchy over the given view cells mUsePredefinedViewCells = true; mStat.nodes = 1; mBbox.Initialize(); // initialise bsp tree bounding box // copy view cell meshes into one big polygon soup PolygonContainer *polys = new PolygonContainer(); mStat.polys = AddToPolygonSoup(viewCells, *polys); Exporter *expo = Exporter::GetExporter("dummy2.wrl"); expo->ExportPolygons(*polys); delete expo; // construct tree from the view cell polygons Construct(polys, new BoundedRayContainer()); } void BspTree::Construct(const ObjectContainer &objects) { // generate new view cells for this type mUsePredefinedViewCells = false; mStat.nodes = 1; mBbox.Initialize(); // initialise bsp tree bounding box PolygonContainer *polys = new PolygonContainer(); // copy mesh instance polygons into one big polygon soup mStat.polys = AddToPolygonSoup(objects, *polys); // construct tree from polygon soup Construct(polys, new BoundedRayContainer()); } void BspTree::PreprocessPolygons(PolygonContainer &polys) { // preprocess: throw out polygons coincident to the view space box (not needed) PolygonContainer boxPolys; mBbox.ExtractPolys(boxPolys); vector boxPlanes; PolygonContainer::iterator pit, pit_end = boxPolys.end(); // extract planes of box // TODO: can be done more elegantly than here // where we first extract polygons, then compute their planes for (pit = boxPolys.begin(); pit != pit_end; ++ pit) { boxPlanes.push_back((*pit)->GetSupportingPlane()); } pit_end = polys.end(); for (pit = polys.begin(); pit != pit_end; ++ pit) { vector::const_iterator bit, bit_end = boxPlanes.end(); for (bit = boxPlanes.begin(); (bit != bit_end) && (*pit); ++ bit) { const int cf = (*pit)->ClassifyPlane(*bit, mEpsilon); if (cf == Polygon3::COINCIDENT) { DEL_PTR(*pit); //Debug << "coincident!!" << endl; } } } // remove deleted entries for (int i = 0; i < (int)polys.size(); ++ i) { while (!polys[i] && (i < (int)polys.size())) { swap(polys[i], polys.back()); polys.pop_back(); } } CLEAR_CONTAINER(boxPolys); } void BspTree::Construct(const RayContainer &sampleRays, AxisAlignedBox3 *forcedBoundingBox) { // generate new view cells for this contruction type mUsePredefinedViewCells = false; mStat.nodes = 1; if (forcedBoundingBox) { mBbox = *forcedBoundingBox; } else { mBbox.Initialize(); // initialise BSP tree bounding box } PolygonContainer *polys = new PolygonContainer(); BoundedRayContainer *rays = new BoundedRayContainer(); RayContainer::const_iterator rit, rit_end = sampleRays.end(); long startTime = GetTime(); Debug << "**** Extracting polygons from rays ****\n"; std::map facePolyMap; for (rit = sampleRays.begin(); rit != rit_end; ++ rit) { ////////////// //-- extract polygons intersected by the rays Ray *ray = *rit; // get ray-face intersection. Store polygon representing the rays together // with rays intersecting the face. if (!ray->intersections.empty()) { MeshInstance *obj = dynamic_cast(ray->intersections[0].mObject); Mesh *mesh; if (obj->Type() == Intersectable::TRANSFORMED_MESH_INSTANCE) { TransformedMeshInstance *tmobj = dynamic_cast(obj); mesh = new Mesh(); tmobj->GetTransformedMesh(*mesh); } else // MeshInstance { mesh = obj->GetMesh(); } Face *face = mesh->mFaces[ray->intersections[0].mFace]; std::map::iterator it = facePolyMap.find(face); if (it != facePolyMap.end()) { //store rays if needed for heuristics if (mSplitPlaneStrategy & BLOCKED_RAYS) (*it).second->mPiercingRays.push_back(ray); } else { //store rays if needed for heuristics Polygon3 *poly = new Polygon3(face, mesh); poly->mParent = obj; polys->push_back(poly); if (mSplitPlaneStrategy & BLOCKED_RAYS) poly->mPiercingRays.push_back(ray); facePolyMap[face] = poly; } // cleanup if (obj->Type() == Intersectable::TRANSFORMED_MESH_INSTANCE) DEL_PTR(mesh); } } // clear helper structure // note: memory will not be released using clear! facePolyMap.clear(); // compute bounding box if (!forcedBoundingBox) { mBbox.Include(*polys); } //////////// //-- store rays for (rit = sampleRays.begin(); rit != rit_end; ++ rit) { Ray *ray = *rit; ray->SetId(-1); // reset id float minT, maxT; if (mBbox.GetRaySegment(*ray, minT, maxT)) rays->push_back(new BoundedRay(ray, minT, maxT)); } // throw out bad polygons PreprocessPolygons(*polys); mStat.polys = (int)polys->size(); Debug << "**** Finished polygon extraction ****" << endl; Debug << (int)polys->size() << " polys extracted from " << (int)sampleRays.size() << " rays" << endl; Debug << "extraction time: " << TimeDiff(startTime, GetTime())*1e-3 << "s" << endl; Construct(polys, rays); } void BspTree::Construct(const ObjectContainer &objects, const RayContainer &sampleRays, AxisAlignedBox3 *forcedBoundingBox) { // generate new view cells for this construction type mUsePredefinedViewCells = false; mStat.nodes = 1; mBbox.Initialize(); // initialise BSP tree bounding box if (forcedBoundingBox) { mBbox = *forcedBoundingBox; } BoundedRayContainer *rays = new BoundedRayContainer(); PolygonContainer *polys = new PolygonContainer(); // copy mesh instance polygons into one big polygon soup mStat.polys = AddToPolygonSoup(objects, *polys, 0, !forcedBoundingBox); /////// //-- store rays RayContainer::const_iterator rit, rit_end = sampleRays.end(); for (rit = sampleRays.begin(); rit != rit_end; ++ rit) { Ray *ray = *rit; ray->SetId(-1); // reset id float minT, maxT; if (mBbox.GetRaySegment(*ray, minT, maxT)) rays->push_back(new BoundedRay(ray, minT, maxT)); } PreprocessPolygons(*polys); Debug << "tree has " << (int)polys->size() << " polys, " << (int)sampleRays.size() << " rays" << endl; Construct(polys, rays); } void BspTree::Construct(PolygonContainer *polys, BoundedRayContainer *rays) { BspTraversalStack tStack; mRoot = new BspLeaf(); // constrruct root node geometry BspNodeGeometry *geom = new BspNodeGeometry(); ConstructGeometry(mRoot, *geom); BspTraversalData tData(mRoot, polys, 0, mOutOfBoundsCell, rays, ComputePvsSize(*rays), mUseAreaForPvs ? geom->GetArea() : geom->GetVolume(), geom); mTotalCost = tData.mPvs * tData.mProbability / mBbox.GetVolume(); mTotalPvsSize = tData.mPvs; mSubdivisionStats << "#ViewCells\n1\n" << endl << "#RenderCostDecrease\n0\n" << endl << "#TotalRenderCost\n" << mTotalCost << endl << "#AvgRenderCost\n" << mTotalPvsSize << endl; tStack.push(tData); // used for intermediate time measurements and progress long interTime = GetTime(); int nleaves = 500; mStat.Start(); cout << "Constructing bsp tree ...\n"; long startTime = GetTime(); while (!tStack.empty()) { tData = tStack.top(); tStack.pop(); // subdivide leaf node BspNode *r = Subdivide(tStack, tData); if (r == mRoot) Debug << "BSP tree construction time spent at root: " << TimeDiff(startTime, GetTime())*1e-3 << " secs" << endl; if (mStat.Leaves() >= nleaves) { nleaves += 500; cout << "leaves=" << mStat.Leaves() << endl; Debug << "needed " << TimeDiff(interTime, GetTime())*1e-3 << " secs to create 500 leaves" << endl; interTime = GetTime(); } } cout << "finished\n"; mStat.Stop(); } bool BspTree::TerminationCriteriaMet(const BspTraversalData &data) const { return (((int)data.mPolygons->size() <= mTermMinPolys) || ((int)data.mRays->size() <= mTermMinRays) || (data.mPvs <= mTermMinPvs) || (data.mProbability <= mTermMinProbability) || (data.mDepth >= mTermMaxDepth) || (mStat.Leaves() >= mMaxViewCells) || (data.GetAvgRayContribution() > mTermMaxRayContribution)); } BspNode *BspTree::Subdivide(BspTraversalStack &tStack, BspTraversalData &tData) { //////// //-- terminate traversal if (TerminationCriteriaMet(tData)) { BspLeaf *leaf = dynamic_cast(tData.mNode); BspViewCell *viewCell; if (!mUsePredefinedViewCells) { // generate new view cell for each leaf viewCell = new BspViewCell();cout << "g"; } else { // add predefined view cell to leaf viewCell = dynamic_cast(tData.mViewCell); // out of bounds cell can be handled as any other view cell, // responsibility for deleting it has the view cells manager. if (IsOutOfBounds(viewCell)) { mOutOfBoundsCellPartOfTree = true; } } leaf->SetViewCell(viewCell); viewCell->mLeaves.push_back(leaf); //float probability = max(0.0f, tData.mProbability); float probability = tData.mProbability; if (mUseAreaForPvs) viewCell->SetArea(probability); else viewCell->SetVolume(probability); /////////// //-- add pvs contribution of rays if (viewCell != mOutOfBoundsCell) { int conSamp = 0, sampCon = 0; AddToPvs(leaf, *tData.mRays, conSamp, sampCon); mStat.contributingSamples += conSamp; mStat.sampleContributions += sampCon; } if (1) EvaluateLeafStats(tData); //////// //-- clean up // discard polygons CLEAR_CONTAINER(*tData.mPolygons); // discard rays CLEAR_CONTAINER(*tData.mRays); delete tData.mPolygons; delete tData.mRays; delete tData.mGeometry; return leaf; } /////////// //-- continue subdivision PolygonContainer coincident; BspTraversalData tFrontData(NULL, new PolygonContainer(), tData.mDepth + 1, mOutOfBoundsCell, new BoundedRayContainer(), 0, 0, new BspNodeGeometry()); BspTraversalData tBackData(NULL, new PolygonContainer(), tData.mDepth + 1, mOutOfBoundsCell, new BoundedRayContainer(), 0, 0, new BspNodeGeometry()); // create new interior node and two leaf nodes BspInterior *interior = SubdivideNode(tData, tFrontData, tBackData, coincident); if (1) { int pvsData = tData.mPvs; float cData = (float)pvsData * tData.mProbability; float cFront = (float)tFrontData.mPvs * tFrontData.mProbability; float cBack = (float)tBackData.mPvs * tBackData.mProbability; float costDecr = (cFront + cBack - cData) / mBbox.GetVolume(); mTotalCost += costDecr; mTotalPvsSize += tFrontData.mPvs + tBackData.mPvs - pvsData; mSubdivisionStats << "#ViewCells\n" << mStat.Leaves() << endl << "#RenderCostDecrease\n" << -costDecr << endl << "#TotalRenderCost\n" << mTotalCost << endl << "#AvgRenderCost\n" << mTotalPvsSize / mStat.Leaves() << endl; } // extract view cells from coincident polygons // with respect to the orientation of their normal // note: if front or back polygons are empty, // we get the valid in - out classification for the view cell if (mUsePredefinedViewCells) { ExtractViewCells(tFrontData, tBackData, coincident, interior->mPlane); } // don't need coincident polygons anymory CLEAR_CONTAINER(coincident); // push the children on the stack tStack.push(tFrontData); tStack.push(tBackData); //////// //-- cleanup DEL_PTR(tData.mNode); DEL_PTR(tData.mPolygons); DEL_PTR(tData.mRays); DEL_PTR(tData.mGeometry); return interior; } void BspTree::ExtractViewCells(BspTraversalData &frontData, BspTraversalData &backData, const PolygonContainer &coincident, const Plane3 &splitPlane) const { // if not empty, tree is further subdivided => don't have to find view cell bool foundFront = !frontData.mPolygons->empty(); bool foundBack = !frontData.mPolygons->empty(); PolygonContainer::const_iterator it = coincident.begin(), it_end = coincident.end(); ////////// //-- find first view cells in front and back leafs for (; !(foundFront && foundBack) && (it != it_end); ++ it) { if (DotProd((*it)->GetNormal(), splitPlane.mNormal) > 0) { backData.mViewCell = dynamic_cast((*it)->mParent); foundBack = true; } else { frontData.mViewCell = dynamic_cast((*it)->mParent); foundFront = true; } } } BspInterior *BspTree::SubdivideNode(BspTraversalData &tData, BspTraversalData &frontData, BspTraversalData &backData, PolygonContainer &coincident) { mStat.nodes += 2; BspLeaf *leaf = dynamic_cast(tData.mNode); // select subdivision plane BspInterior *interior = new BspInterior(SelectPlane(leaf, tData)); #ifdef GTP_DEBUG Debug << interior << endl; #endif // subdivide rays into front and back rays SplitRays(interior->mPlane, *tData.mRays, *frontData.mRays, *backData.mRays); // subdivide polygons with plane mStat.polySplits += SplitPolygons(interior->GetPlane(), *tData.mPolygons, *frontData.mPolygons, *backData.mPolygons, coincident); // compute pvs frontData.mPvs = ComputePvsSize(*frontData.mRays); backData.mPvs = ComputePvsSize(*backData.mRays); // split geometry and compute area if (1) { tData.mGeometry->SplitGeometry(*frontData.mGeometry, *backData.mGeometry, interior->mPlane, mBbox, //0.000000000001); mEpsilon); if (mUseAreaForPvs) { frontData.mProbability = frontData.mGeometry->GetArea(); backData.mProbability = backData.mGeometry->GetArea(); } else { frontData.mProbability = frontData.mGeometry->GetVolume(); backData.mProbability = tData.mProbability - frontData.mProbability; } } //-- create front and back leaf BspInterior *parent = leaf->GetParent(); // replace a link from node's parent if (!leaf->IsRoot()) { parent->ReplaceChildLink(leaf, interior); interior->SetParent(parent); } else // new root { mRoot = interior; } // and setup child links interior->SetupChildLinks(new BspLeaf(interior), new BspLeaf(interior)); frontData.mNode = interior->GetFront(); backData.mNode = interior->GetBack(); interior->mTimeStamp = mTimeStamp ++; //DEL_PTR(leaf); return interior; } void BspTree::SortSubdivisionCandidates(const PolygonContainer &polys, const int axis, vector &splitCandidates) const { splitCandidates.clear(); int requestedSize = 2 * (int)polys.size(); // creates a sorted split candidates array splitCandidates.reserve(requestedSize); PolygonContainer::const_iterator it, it_end = polys.end(); AxisAlignedBox3 box; // insert all queries for(it = polys.begin(); it != it_end; ++ it) { box.Initialize(); box.Include(*(*it)); splitCandidates.push_back(SortableEntry(SortableEntry::POLY_MIN, box.Min(axis), *it)); splitCandidates.push_back(SortableEntry(SortableEntry::POLY_MAX, box.Max(axis), *it)); } stable_sort(splitCandidates.begin(), splitCandidates.end()); } float BspTree::BestCostRatio(const PolygonContainer &polys, const AxisAlignedBox3 &box, const int axis, float &position, int &objectsBack, int &objectsFront) const { vector splitCandidates; SortSubdivisionCandidates(polys, axis, splitCandidates); // go through the lists, count the number of objects left and right // and evaluate the following cost funcion: // C = ct_div_ci + (ol + or)/queries int objectsLeft = 0, objectsRight = (int)polys.size(); float minBox = box.Min(axis); float maxBox = box.Max(axis); float boxArea = box.SurfaceArea(); float minBand = minBox + mSplitBorder * (maxBox - minBox); float maxBand = minBox + (1.0f - mSplitBorder) * (maxBox - minBox); float minSum = 1e20f; vector::const_iterator ci, ci_end = splitCandidates.end(); for(ci = splitCandidates.begin(); ci != ci_end; ++ ci) { switch ((*ci).type) { case SortableEntry::POLY_MIN: ++ objectsLeft; break; case SortableEntry::POLY_MAX: -- objectsRight; break; default: break; } if ((*ci).value > minBand && (*ci).value < maxBand) { AxisAlignedBox3 lbox = box; AxisAlignedBox3 rbox = box; lbox.SetMax(axis, (*ci).value); rbox.SetMin(axis, (*ci).value); const float sum = objectsLeft * lbox.SurfaceArea() + objectsRight * rbox.SurfaceArea(); if (sum < minSum) { minSum = sum; position = (*ci).value; objectsBack = objectsLeft; objectsFront = objectsRight; } } } const float oldCost = (float)polys.size(); const float newCost = mAxisAlignedCtDivCi + minSum / boxArea; const float ratio = newCost / oldCost; #ifdef GTP_DEBUG Debug << "====================" << endl; Debug << "costRatio=" << ratio << " pos=" << position<<" t=" << (position - minBox)/(maxBox - minBox) << "\t o=(" << objectsBack << "," << objectsFront << ")" << endl; #endif return ratio; } bool BspTree::SelectAxisAlignedPlane(Plane3 &plane, const PolygonContainer &polys) const { AxisAlignedBox3 box; box.Initialize(); // create bounding box of region box.Include(polys); int objectsBack = 0, objectsFront = 0; int axis = 0; float costRatio = MAX_FLOAT; Vector3 position; //-- area subdivision for (int i = 0; i < 3; ++ i) { float p = 0; float r = BestCostRatio(polys, box, i, p, objectsBack, objectsFront); if (r < costRatio) { costRatio = r; axis = i; position = p; } } if (costRatio >= mMaxCostRatio) return false; Vector3 norm(0,0,0); norm[axis] = 1.0f; plane = Plane3(norm, position); return true; } Plane3 BspTree::SelectPlane(BspLeaf *leaf, BspTraversalData &data) { if ((!mMaxPolyCandidates || data.mPolygons->empty()) && (!mMaxRayCandidates || data.mRays->empty())) { Debug << "Warning: No autopartition polygon candidate available\n"; // return axis aligned split AxisAlignedBox3 box; box.Initialize(); // create bounding box of region box.Include(*data.mPolygons); const int axis = box.Size().DrivingAxis(); const Vector3 position = (box.Min()[axis] + box.Max()[axis]) * 0.5f; Vector3 norm(0,0,0); norm[axis] = 1.0f; return Plane3(norm, position); } if ((mSplitPlaneStrategy & AXIS_ALIGNED) && ((int)data.mPolygons->size() > mTermMinPolysForAxisAligned) && ((int)data.mRays->size() > mTermMinRaysForAxisAligned) && ((mTermMinObjectsForAxisAligned < 0) || (Polygon3::ParentObjectsSize(*data.mPolygons) > mTermMinObjectsForAxisAligned))) { Plane3 plane; if (SelectAxisAlignedPlane(plane, *data.mPolygons)) return plane; } // simplest strategy: just take next polygon if (mSplitPlaneStrategy & RANDOM_POLYGON) { if (!data.mPolygons->empty()) { Polygon3 *nextPoly = (*data.mPolygons)[(int)RandomValue(0, (Real)((int)data.mPolygons->size() - 1))]; return nextPoly->GetSupportingPlane(); } else { const int candidateIdx = (int)RandomValue(0, (Real)((int)data.mRays->size() - 1)); BoundedRay *bRay = (*data.mRays)[candidateIdx]; Ray *ray = bRay->mRay; const Vector3 minPt = ray->Extrap(bRay->mMinT); const Vector3 maxPt = ray->Extrap(bRay->mMaxT); const Vector3 pt = (maxPt + minPt) * 0.5; const Vector3 normal = ray->GetDir(); return Plane3(normal, pt); } return Plane3(); } // use heuristics to find appropriate plane return SelectPlaneHeuristics(leaf, data); } Plane3 BspTree::ChooseCandidatePlane(const BoundedRayContainer &rays) const { const int candidateIdx = (int)RandomValue(0, (Real)((int)rays.size() - 1)); BoundedRay *bRay = rays[candidateIdx]; Ray *ray = bRay->mRay; const Vector3 minPt = ray->Extrap(bRay->mMinT); const Vector3 maxPt = ray->Extrap(bRay->mMaxT); const Vector3 pt = (maxPt + minPt) * 0.5; const Vector3 normal = ray->GetDir(); return Plane3(normal, pt); } Plane3 BspTree::ChooseCandidatePlane2(const BoundedRayContainer &rays) const { Vector3 pt[3]; int idx[3]; int cmaxT = 0; int cminT = 0; bool chooseMin = false; for (int j = 0; j < 3; j ++) { idx[j] = (int)RandomValue(0, Real((int)rays.size() * 2 - 1)); if (idx[j] >= (int)rays.size()) { idx[j] -= (int)rays.size(); chooseMin = (cminT < 2); } else chooseMin = (cmaxT < 2); BoundedRay *bRay = rays[idx[j]]; pt[j] = chooseMin ? bRay->mRay->Extrap(bRay->mMinT) : bRay->mRay->Extrap(bRay->mMaxT); } return Plane3(pt[0], pt[1], pt[2]); } Plane3 BspTree::ChooseCandidatePlane3(const BoundedRayContainer &rays) const { Vector3 pt[3]; int idx1 = (int)RandomValue(0, (Real)((int)rays.size() - 1)); int idx2 = (int)RandomValue(0, (Real)((int)rays.size() - 1)); // check if rays different if (idx1 == idx2) idx2 = (idx2 + 1) % (int)rays.size(); const BoundedRay *ray1 = rays[idx1]; const BoundedRay *ray2 = rays[idx2]; // normal vector of the plane parallel to both lines const Vector3 norm = Normalize(CrossProd(ray1->mRay->GetDir(), ray2->mRay->GetDir())); const Vector3 orig1 = ray1->mRay->Extrap(ray1->mMinT); const Vector3 orig2 = ray2->mRay->Extrap(ray2->mMinT); // vector from line 1 to line 2 const Vector3 vd = orig1 - orig2; // project vector on normal to get distance const float dist = DotProd(vd, norm); // point on plane lies halfway between the two planes const Vector3 planePt = orig1 + norm * dist * 0.5; return Plane3(norm, planePt); } Plane3 BspTree::SelectPlaneHeuristics(BspLeaf *leaf, BspTraversalData &data) { float lowestCost = MAX_FLOAT; Plane3 bestPlane; // intermediate plane Plane3 plane; const int limit = Min((int)data.mPolygons->size(), mMaxPolyCandidates); int maxIdx = (int)data.mPolygons->size(); for (int i = 0; i < limit; ++ i) { // assure that no index is taken twice const int candidateIdx = (int)RandomValue(0, (Real)(-- maxIdx)); Polygon3 *poly = (*data.mPolygons)[candidateIdx]; // swap candidate to the end to avoid testing same plane std::swap((*data.mPolygons)[maxIdx], (*data.mPolygons)[candidateIdx]); //Polygon3 *poly = (*data.mPolygons)[(int)RandomValue(0, (int)polys.size() - 1)]; // evaluate current candidate const float candidateCost = SplitPlaneCost(poly->GetSupportingPlane(), data); if (candidateCost < lowestCost) { bestPlane = poly->GetSupportingPlane(); lowestCost = candidateCost; } } //-- choose candidate planes extracted from rays for (int i = 0; i < mMaxRayCandidates; ++ i) { plane = ChooseCandidatePlane3(*data.mRays); const float candidateCost = SplitPlaneCost(plane, data); if (candidateCost < lowestCost) { bestPlane = plane; lowestCost = candidateCost; } } #ifdef GTP_DEBUG Debug << "plane lowest cost: " << lowestCost << endl; #endif return bestPlane; } float BspTree::SplitPlaneCost(const Plane3 &candidatePlane, const PolygonContainer &polys) const { float val = 0; float sumBalancedPolys = 0; float sumSplits = 0; float sumPolyArea = 0; float sumBalancedViewCells = 0; float sumBlockedRays = 0; float totalBlockedRays = 0; //float totalArea = 0; int totalViewCells = 0; // need three unique ids for each type of view cell // for balanced view cells criterium ViewCell::NewMail(); const int backId = ViewCell::sMailId; ViewCell::NewMail(); const int frontId = ViewCell::sMailId; ViewCell::NewMail(); const int frontAndBackId = ViewCell::sMailId; bool useRand; int limit; // choose test polyongs randomly if over threshold if ((int)polys.size() > mMaxTests) { useRand = true; limit = mMaxTests; } else { useRand = false; limit = (int)polys.size(); } for (int i = 0; i < limit; ++ i) { const int testIdx = useRand ? (int)RandomValue(0, (Real)(limit - 1)) : i; Polygon3 *poly = polys[testIdx]; const int classification = poly->ClassifyPlane(candidatePlane, mEpsilon); if (mSplitPlaneStrategy & BALANCED_POLYS) sumBalancedPolys += sBalancedPolysTable[classification]; if (mSplitPlaneStrategy & LEAST_SPLITS) sumSplits += sLeastPolySplitsTable[classification]; if (mSplitPlaneStrategy & LARGEST_POLY_AREA) { if (classification == Polygon3::COINCIDENT) sumPolyArea += poly->GetArea(); //totalArea += area; } if (mSplitPlaneStrategy & BLOCKED_RAYS) { const float blockedRays = (float)poly->mPiercingRays.size(); if (classification == Polygon3::COINCIDENT) sumBlockedRays += blockedRays; totalBlockedRays += blockedRays; } // assign view cells to back or front according to classificaion if (mSplitPlaneStrategy & BALANCED_VIEW_CELLS) { MeshInstance *viewCell = poly->mParent; // assure that we only count a view cell // once for the front and once for the back side of the plane if (classification == Polygon3::FRONT_SIDE) { if ((viewCell->mMailbox != frontId) && (viewCell->mMailbox != frontAndBackId)) { sumBalancedViewCells += 1.0; if (viewCell->mMailbox != backId) viewCell->mMailbox = frontId; else viewCell->mMailbox = frontAndBackId; ++ totalViewCells; } } else if (classification == Polygon3::BACK_SIDE) { if ((viewCell->mMailbox != backId) && (viewCell->mMailbox != frontAndBackId)) { sumBalancedViewCells -= 1.0; if (viewCell->mMailbox != frontId) viewCell->mMailbox = backId; else viewCell->mMailbox = frontAndBackId; ++ totalViewCells; } } } } const float polysSize = (float)polys.size() + Limits::Small; // all values should be approx. between 0 and 1 so they can be combined // and scaled with the factors according to their importance if (mSplitPlaneStrategy & BALANCED_POLYS) val += mBalancedPolysFactor * fabs(sumBalancedPolys) / polysSize; if (mSplitPlaneStrategy & LEAST_SPLITS) val += mLeastSplitsFactor * sumSplits / polysSize; if (mSplitPlaneStrategy & LARGEST_POLY_AREA) // HACK: polys.size should be total area so scaling is between 0 and 1 val += mLargestPolyAreaFactor * (float)polys.size() / sumPolyArea; if (mSplitPlaneStrategy & BLOCKED_RAYS) if (totalBlockedRays != 0) val += mBlockedRaysFactor * (totalBlockedRays - sumBlockedRays) / totalBlockedRays; if (mSplitPlaneStrategy & BALANCED_VIEW_CELLS) val += mBalancedViewCellsFactor * fabs(sumBalancedViewCells) / ((float)totalViewCells + Limits::Small); return val; } inline void BspTree::GenerateUniqueIdsForPvs() { Intersectable::NewMail(); sBackId = Intersectable::sMailId; Intersectable::NewMail(); sFrontId = Intersectable::sMailId; Intersectable::NewMail(); sFrontAndBackId = Intersectable::sMailId; } float BspTree::SplitPlaneCost(const Plane3 &candidatePlane, const BoundedRayContainer &rays, const int pvs, const float probability, const BspNodeGeometry &cell) const { float val = 0; float sumBalancedRays = 0; float sumRaySplits = 0; int frontPvs = 0; int backPvs = 0; // probability that view point lies in child float pOverall = 0; float pFront = 0; float pBack = 0; const bool pvsUseLen = false; if (mSplitPlaneStrategy & PVS) { // create unique ids for pvs heuristics GenerateUniqueIdsForPvs(); // construct child geometry with regard to the candidate split plane BspNodeGeometry geomFront; BspNodeGeometry geomBack; const bool splitSuccessFull = cell.SplitGeometry(geomFront, geomBack, candidatePlane, mBbox, mEpsilon); if (mUseAreaForPvs) { pFront = geomFront.GetArea(); pBack = geomBack.GetArea(); } else { pFront = geomFront.GetVolume(); pBack = pOverall - pFront; } // give penalty to unbalanced split if (1 && (!splitSuccessFull || (pFront <= 0) || (pBack <= 0) || !geomFront.Valid() || !geomBack.Valid())) { //Debug << "error f: " << pFront << " b: " << pBack << endl; return 99999.9f; } pOverall = probability; } bool useRand; int limit; // choose test polyongs randomly if over threshold if ((int)rays.size() > mMaxTests) { useRand = true; limit = mMaxTests; } else { useRand = false; limit = (int)rays.size(); } for (int i = 0; i < limit; ++ i) { const int testIdx = useRand ? (int)RandomValue(0, (Real)(limit - 1)) : i; BoundedRay *bRay = rays[testIdx]; Ray *ray = bRay->mRay; const float minT = bRay->mMinT; const float maxT = bRay->mMaxT; Vector3 entP, extP; const int cf = ray->ClassifyPlane(candidatePlane, minT, maxT, entP, extP); if (mSplitPlaneStrategy & LEAST_RAY_SPLITS) { sumBalancedRays += sBalancedRaysTable[cf]; } if (mSplitPlaneStrategy & BALANCED_RAYS) { sumRaySplits += sLeastRaySplitsTable[cf]; } if (mSplitPlaneStrategy & PVS) { // in case the ray intersects an object // assure that we only count the object // once for the front and once for the back side of the plane // add the termination object if (!ray->intersections.empty()) AddObjToPvs(ray->intersections[0].mObject, cf, frontPvs, backPvs); // add the source object AddObjToPvs(ray->sourceObject.mObject, cf, frontPvs, backPvs); } } const float raysSize = (float)rays.size() + Limits::Small; if (mSplitPlaneStrategy & LEAST_RAY_SPLITS) val += mLeastRaySplitsFactor * sumRaySplits / raysSize; if (mSplitPlaneStrategy & BALANCED_RAYS) val += mBalancedRaysFactor * fabs(sumBalancedRays) / raysSize; const float denom = pOverall * (float)pvs + Limits::Small; if (mSplitPlaneStrategy & PVS) { val += mPvsFactor * (frontPvs * pFront + (backPvs * pBack)) / denom; } #ifdef GTP_DEBUG Debug << "totalpvs: " << pvs << " ptotal: " << pOverall << " frontpvs: " << frontPvs << " pFront: " << pFront << " backpvs: " << backPvs << " pBack: " << pBack << endl << endl; #endif return val; } void BspTree::AddObjToPvs(Intersectable *obj, const int cf, int &frontPvs, int &backPvs) const { if (!obj) return; // TODO: does this really belong to no pvs? //if (cf == Ray::COINCIDENT) return; // object belongs to both PVS const bool bothSides = (cf == Ray::FRONT_BACK) || (cf == Ray::BACK_FRONT) || (cf == Ray::COINCIDENT); if ((cf == Ray::FRONT) || bothSides) { if ((obj->mMailbox != sFrontId) && (obj->mMailbox != sFrontAndBackId)) { ++ frontPvs; if (obj->mMailbox == sBackId) obj->mMailbox = sFrontAndBackId; else obj->mMailbox = sFrontId; } } if ((cf == Ray::BACK) || bothSides) { if ((obj->mMailbox != sBackId) && (obj->mMailbox != sFrontAndBackId)) { ++ backPvs; if (obj->mMailbox == sFrontId) obj->mMailbox = sFrontAndBackId; else obj->mMailbox = sBackId; } } } float BspTree::SplitPlaneCost(const Plane3 &candidatePlane, BspTraversalData &data) const { float val = 0; if (mSplitPlaneStrategy & VERTICAL_AXIS) { Vector3 tinyAxis(0,0,0); tinyAxis[mBbox.Size().TinyAxis()] = 1.0f; // we put a penalty on the dot product between the "tiny" vertical axis // and the split plane axis val += mVerticalSplitsFactor * fabs(DotProd(candidatePlane.mNormal, tinyAxis)); } // the following criteria loop over all polygons to find the cost value if ((mSplitPlaneStrategy & BALANCED_POLYS) || (mSplitPlaneStrategy & LEAST_SPLITS) || (mSplitPlaneStrategy & LARGEST_POLY_AREA) || (mSplitPlaneStrategy & BALANCED_VIEW_CELLS) || (mSplitPlaneStrategy & BLOCKED_RAYS)) { val += SplitPlaneCost(candidatePlane, *data.mPolygons); } // the following criteria loop over all rays to find the cost value if ((mSplitPlaneStrategy & BALANCED_RAYS) || (mSplitPlaneStrategy & LEAST_RAY_SPLITS) || (mSplitPlaneStrategy & PVS)) { val += SplitPlaneCost(candidatePlane, *data.mRays, data.mPvs, data.mProbability, *data.mGeometry); } // return linear combination of the sums return val; } void BspTree::CollectLeaves(vector &leaves) const { stack nodeStack; nodeStack.push(mRoot); while (!nodeStack.empty()) { BspNode *node = nodeStack.top(); nodeStack.pop(); if (node->IsLeaf()) { BspLeaf *leaf = (BspLeaf *)node; leaves.push_back(leaf); } else { BspInterior *interior = dynamic_cast(node); nodeStack.push(interior->GetBack()); nodeStack.push(interior->GetFront()); } } } AxisAlignedBox3 BspTree::GetBoundingBox() const { return mBbox; } void BspTree::EvaluateLeafStats(const BspTraversalData &data) { // the node became a leaf -> evaluate stats for leafs BspLeaf *leaf = dynamic_cast(data.mNode); // store maximal and minimal depth if (data.mDepth > mStat.maxDepth) mStat.maxDepth = data.mDepth; if (data.mDepth < mStat.minDepth) mStat.minDepth = data.mDepth; // accumulate depth to compute average depth mStat.accumDepth += data.mDepth; // accumulate rays to compute rays / leaf mStat.accumRays += (int)data.mRays->size(); if (data.mDepth >= mTermMaxDepth) ++ mStat.maxDepthNodes; if (data.mPvs < mTermMinPvs) ++ mStat.minPvsNodes; if ((int)data.mRays->size() < mTermMinRays) ++ mStat.minRaysNodes; if (data.GetAvgRayContribution() > mTermMaxRayContribution) ++ mStat.maxRayContribNodes; if (data.mProbability <= mTermMinProbability) ++ mStat.minProbabilityNodes; #ifdef GTP_DEBUG Debug << "BSP stats: " << "Depth: " << data.mDepth << " (max: " << mTermMaxDepth << "), " << "PVS: " << data.mPvs << " (min: " << mTermMinPvs << "), " << "Probability: " << data.mProbability << " (min: " << mTermMinProbability << "), " << "#polygons: " << (int)data.mPolygons->size() << " (max: " << mTermMinPolys << "), " << "#rays: " << (int)data.mRays->size() << " (max: " << mTermMinRays << "), " << "#pvs: " << leaf->GetViewCell()->GetPvs().EvalPvsCost() << "=, " << "#avg ray contrib (pvs): " << (float)data.mPvs / (float)data.mRays->size() << endl; #endif } int BspTree::_CastRay(Ray &ray) { int hits = 0; stack tStack; float maxt, mint; if (!mBbox.GetRaySegment(ray, mint, maxt)) return 0; ViewCell::NewMail(); Vector3 entp = ray.Extrap(mint); Vector3 extp = ray.Extrap(maxt); BspNode *node = mRoot; BspNode *farChild = NULL; while (1) { if (!node->IsLeaf()) { BspInterior *in = dynamic_cast(node); Plane3 splitPlane = in->GetPlane(); const int entSide = splitPlane.Side(entp); const int extSide = splitPlane.Side(extp); if (entSide < 0) { node = in->GetBack(); if(extSide <= 0) // plane does not split ray => no far child continue; farChild = in->GetFront(); // plane splits ray } else if (entSide > 0) { node = in->GetFront(); if (extSide >= 0) // plane does not split ray => no far child continue; farChild = in->GetBack(); // plane splits ray } else // ray and plane are coincident { // WHAT TO DO IN THIS CASE ? //break; node = in->GetFront(); continue; } // push data for far child tStack.push(BspRayTraversalData(farChild, extp, maxt)); // find intersection of ray segment with plane float t; extp = splitPlane.FindIntersection(ray.GetLoc(), extp, &t); maxt *= t; } else // reached leaf => intersection with view cell { BspLeaf *leaf = dynamic_cast(node); if (!leaf->mViewCell->Mailed()) { //ray.bspIntersections.push_back(Ray::BspIntersection(maxt, leaf)); leaf->mViewCell->Mail(); ++ hits; } //-- fetch the next far child from the stack if (tStack.empty()) break; entp = extp; mint = maxt; // NOTE: need this? if (ray.GetType() == Ray::LINE_SEGMENT && mint > 1.0f) break; BspRayTraversalData &s = tStack.top(); node = s.mNode; extp = s.mExitPoint; maxt = s.mMaxT; tStack.pop(); } } return hits; } int BspTree::CastLineSegment(const Vector3 &origin, const Vector3 &termination, ViewCellContainer &viewcells) { int hits = 0; stack tStack; float mint = 0.0f, maxt = 1.0f; //ViewCell::NewMail(); Vector3 entp = origin; Vector3 extp = termination; BspNode *node = mRoot; BspNode *farChild = NULL; const float thresh = 1 ? 1e-6f : 0.0f; while (1) { if (!node->IsLeaf()) { BspInterior *in = dynamic_cast(node); Plane3 splitPlane = in->GetPlane(); const int entSide = splitPlane.Side(entp, thresh); const int extSide = splitPlane.Side(extp, thresh); if (entSide < 0) { node = in->GetBack(); // plane does not split ray => no far child if (extSide <= 0) continue; farChild = in->GetFront(); // plane splits ray } else if (entSide > 0) { node = in->GetFront(); if (extSide >= 0) // plane does not split ray => no far child continue; farChild = in->GetBack(); // plane splits ray } else // one of the ray end points is on the plane { // NOTE: what to do if ray is coincident with plane? if (extSide < 0) node = in->GetBack(); else //if (extSide > 0) node = in->GetFront(); //else break; // coincident => count no intersections continue; // no far child } // push data for far child tStack.push(BspRayTraversalData(farChild, extp, maxt)); // find intersection of ray segment with plane float t; extp = splitPlane.FindIntersection(origin, extp, &t); maxt *= t; } else { // reached leaf => intersection with view cell BspLeaf *leaf = dynamic_cast(node); if (!leaf->mViewCell->Mailed()) { viewcells.push_back(leaf->mViewCell); leaf->mViewCell->Mail(); ++ hits; } //-- fetch the next far child from the stack if (tStack.empty()) break; entp = extp; mint = maxt; // NOTE: need this? BspRayTraversalData &s = tStack.top(); node = s.mNode; extp = s.mExitPoint; maxt = s.mMaxT; tStack.pop(); } } return hits; } void BspTree::CollectViewCells(ViewCellContainer &viewCells) const { stack nodeStack; nodeStack.push(mRoot); ViewCell::NewMail(); while (!nodeStack.empty()) { BspNode *node = nodeStack.top(); nodeStack.pop(); if (node->IsLeaf()) { ViewCellLeaf *viewCell = dynamic_cast(node)->mViewCell; if (!viewCell->Mailed()) { viewCell->Mail(); viewCells.push_back(viewCell); } } else { BspInterior *interior = dynamic_cast(node); nodeStack.push(interior->GetFront()); nodeStack.push(interior->GetBack()); } } } BspTreeStatistics &BspTree::GetStat() { return mStat; } float BspTree::AccumulatedRayLength(BoundedRayContainer &rays) const { float len = 0; BoundedRayContainer::const_iterator it, it_end = rays.end(); for (it = rays.begin(); it != it_end; ++ it) { len += SqrDistance((*it)->mRay->Extrap((*it)->mMinT), (*it)->mRay->Extrap((*it)->mMaxT)); } return len; } int BspTree::SplitRays(const Plane3 &plane, BoundedRayContainer &rays, BoundedRayContainer &frontRays, BoundedRayContainer &backRays) { int splits = 0; while (!rays.empty()) { BoundedRay *bRay = rays.back(); Ray *ray = bRay->mRay; float minT = bRay->mMinT; float maxT = bRay->mMaxT; rays.pop_back(); Vector3 entP, extP; const int cf = ray->ClassifyPlane(plane, minT, maxT, entP, extP); // set id to ray classification ray->SetId(cf); switch (cf) { case Ray::COINCIDENT: // TODO: should really discard ray? frontRays.push_back(bRay); break; case Ray::BACK: backRays.push_back(bRay); break; case Ray::FRONT: frontRays.push_back(bRay); break; case Ray::FRONT_BACK: { // find intersection of ray segment with plane const float t = plane.FindT(ray->GetLoc(), extP); const float newT = t * maxT; frontRays.push_back(new BoundedRay(ray, minT, newT)); backRays.push_back(new BoundedRay(ray, newT, maxT)); DEL_PTR(bRay); } break; case Ray::BACK_FRONT: { // find intersection of ray segment with plane const float t = plane.FindT(ray->GetLoc(), extP); const float newT = t * bRay->mMaxT; backRays.push_back(new BoundedRay(ray, minT, newT)); frontRays.push_back(new BoundedRay(ray, newT, maxT)); DEL_PTR(bRay); ++ splits; } break; default: Debug << "Should not come here 4" << endl; break; } } return splits; } void BspTree::ExtractHalfSpaces(BspNode *n, vector &halfSpaces) const { BspNode *lastNode; do { lastNode = n; // want to get planes defining geometry of this node => don't take // split plane of node itself n = n->GetParent(); if (n) { BspInterior *interior = dynamic_cast(n); Plane3 halfSpace = dynamic_cast(interior)->GetPlane(); if (interior->GetBack() != lastNode) halfSpace.ReverseOrientation(); halfSpaces.push_back(halfSpace); } } while (n); } void BspTree::ConstructGeometry(ViewCell *vc, BspNodeGeometry &vcGeom) const { // if false, cannot construct geometry for interior leaf if (!mViewCellsTree) return; ViewCellContainer leaves; mViewCellsTree->CollectLeaves(vc, leaves); ViewCellContainer::const_iterator it, it_end = leaves.end(); for (it = leaves.begin(); it != it_end; ++ it) { // per definition out of bounds cell has zero volume if (IsOutOfBounds(*it)) continue; BspViewCell *bspVc = dynamic_cast(*it); vector::const_iterator bit, bit_end = bspVc->mLeaves.end(); for (bit = bspVc->mLeaves.begin(); bit != bit_end; ++ bit) { BspLeaf *l = *bit; ConstructGeometry(l, vcGeom); } } } void BspTree::ConstructGeometry(BspNode *n, BspNodeGeometry &geom) const { vector halfSpaces; ExtractHalfSpaces(n, halfSpaces); PolygonContainer candidatePolys; vector candidatePlanes; vector::const_iterator pit, pit_end = halfSpaces.end(); // bounded planes are added to the polygons for (pit = halfSpaces.begin(); pit != pit_end; ++ pit) { Polygon3 *p = GetBoundingBox().CrossSection(*pit); if (p->Valid(mEpsilon)) { candidatePolys.push_back(p); candidatePlanes.push_back(*pit); } } // add faces of bounding box (also could be faces of the cell) for (int i = 0; i < 6; ++ i) { VertexContainer vertices; for (int j = 0; j < 4; ++ j) vertices.push_back(mBbox.GetFace(i).mVertices[j]); Polygon3 *poly = new Polygon3(vertices); candidatePolys.push_back(poly); candidatePlanes.push_back(poly->GetSupportingPlane()); } for (int i = 0; i < (int)candidatePolys.size(); ++ i) { // polygon is split by all other planes for (int j = 0; (j < (int)halfSpaces.size()) && candidatePolys[i]; ++ j) { if (i == j) // polygon and plane are coincident continue; VertexContainer splitPts; Polygon3 *frontPoly, *backPoly; const int cf = candidatePolys[i]->ClassifyPlane(halfSpaces[j], mEpsilon); switch (cf) { case Polygon3::SPLIT: frontPoly = new Polygon3(); backPoly = new Polygon3(); candidatePolys[i]->Split(halfSpaces[j], *frontPoly, *backPoly, mEpsilon); DEL_PTR(candidatePolys[i]); if (backPoly->Valid(mEpsilon)) candidatePolys[i] = backPoly; else DEL_PTR(backPoly); // outside, don't need this DEL_PTR(frontPoly); break; // polygon outside of halfspace case Polygon3::FRONT_SIDE: DEL_PTR(candidatePolys[i]); break; // just take polygon as it is case Polygon3::BACK_SIDE: case Polygon3::COINCIDENT: default: break; } } if (candidatePolys[i]) { geom.Add(candidatePolys[i], candidatePlanes[i]); } } } void BspTree::SetViewCellsManager(ViewCellsManager *vcm) { mViewCellsManager = vcm; } typedef pair bspNodePair; int BspTree::FindNeighbors(BspNode *n, vector &neighbors, const bool onlyUnmailed) const { stack nodeStack; BspNodeGeometry nodeGeom; ConstructGeometry(n, nodeGeom); // split planes from the root to this node // needed to verify that we found neighbor leaf // TODO: really needed? vector halfSpaces; ExtractHalfSpaces(n, halfSpaces); BspNodeGeometry *rgeom = new BspNodeGeometry(); ConstructGeometry(mRoot, *rgeom); nodeStack.push(bspNodePair(mRoot, rgeom)); while (!nodeStack.empty()) { BspNode *node = nodeStack.top().first; BspNodeGeometry *geom = nodeStack.top().second; nodeStack.pop(); if (node->IsLeaf()) { // test if this leaf is in valid view space if (node->TreeValid() && (node != n) && (!onlyUnmailed || !node->Mailed())) { bool isAdjacent = true; if (1) { // test all planes of current node if still adjacent for (int i = 0; (i < halfSpaces.size()) && isAdjacent; ++ i) { const int cf = Polygon3::ClassifyPlane(geom->GetPolys(), halfSpaces[i], mEpsilon); if (cf == Polygon3::FRONT_SIDE) { isAdjacent = false; } } } else { // TODO: why is this wrong?? // test all planes of current node if still adjacent for (int i = 0; (i < nodeGeom.Size()) && isAdjacent; ++ i) { Polygon3 *poly = nodeGeom.GetPolys()[i]; const int cf = Polygon3::ClassifyPlane(geom->GetPolys(), poly->GetSupportingPlane(), mEpsilon); if (cf == Polygon3::FRONT_SIDE) { isAdjacent = false; } } } // neighbor was found if (isAdjacent) { neighbors.push_back(dynamic_cast(node)); } } } else { BspInterior *interior = dynamic_cast(node); const int cf = Polygon3::ClassifyPlane(nodeGeom.GetPolys(), interior->GetPlane(), mEpsilon); BspNode *front = interior->GetFront(); BspNode *back = interior->GetBack(); BspNodeGeometry *fGeom = new BspNodeGeometry(); BspNodeGeometry *bGeom = new BspNodeGeometry(); geom->SplitGeometry(*fGeom, *bGeom, interior->GetPlane(), mBbox, //0.0000001f); mEpsilon); if (cf == Polygon3::BACK_SIDE) { nodeStack.push(bspNodePair(interior->GetBack(), bGeom)); DEL_PTR(fGeom); } else { if (cf == Polygon3::FRONT_SIDE) { nodeStack.push(bspNodePair(interior->GetFront(), fGeom)); DEL_PTR(bGeom); } else { // random decision nodeStack.push(bspNodePair(front, fGeom)); nodeStack.push(bspNodePair(back, bGeom)); } } } DEL_PTR(geom); } return (int)neighbors.size(); } BspLeaf *BspTree::GetRandomLeaf(const bool onlyUnmailed) { stack nodeStack; nodeStack.push(mRoot); int mask = rand(); while (!nodeStack.empty()) { BspNode *node = nodeStack.top(); nodeStack.pop(); if (node->IsLeaf()) { if ( (!onlyUnmailed || !node->Mailed()) ) return dynamic_cast(node); } else { BspInterior *interior = dynamic_cast(node); // random decision if (mask & 1) nodeStack.push(interior->GetBack()); else nodeStack.push(interior->GetFront()); mask = mask >> 1; } } return NULL; } void BspTree::AddToPvs(BspLeaf *leaf, const BoundedRayContainer &rays, int &sampleContributions, int &contributingSamples) { sampleContributions = 0; contributingSamples = 0; BoundedRayContainer::const_iterator it, it_end = rays.end(); ViewCellLeaf *vc = leaf->GetViewCell(); // add contributions from samples to the PVS for (it = rays.begin(); it != it_end; ++ it) { int contribution = 0; Ray *ray = (*it)->mRay; float relContribution; if (!ray->intersections.empty()) contribution += vc->GetPvs().AddSample(ray->intersections[0].mObject, 1.0f); //relContribution); if (ray->sourceObject.mObject) contribution += vc->GetPvs().AddSample(ray->sourceObject.mObject, 1.0f); //relContribution); if (contribution) { sampleContributions += contribution; ++ contributingSamples; } //if (ray->mFlags & Ray::STORE_BSP_INTERSECTIONS) // ray->bspIntersections.push_back(Ray::BspIntersection((*it)->mMinT, this)); } } int BspTree::ComputePvsSize(const BoundedRayContainer &rays) const { int pvsSize = 0; BoundedRayContainer::const_iterator rit, rit_end = rays.end(); Intersectable::NewMail(); for (rit = rays.begin(); rit != rays.end(); ++ rit) { Ray *ray = (*rit)->mRay; if (!ray->intersections.empty()) { if (!ray->intersections[0].mObject->Mailed()) { ray->intersections[0].mObject->Mail(); ++ pvsSize; } } if (ray->sourceObject.mObject) { if (!ray->sourceObject.mObject->Mailed()) { ray->sourceObject.mObject->Mail(); ++ pvsSize; } } } return pvsSize; } float BspTree::GetEpsilon() const { return mEpsilon; } int BspTree::CollectMergeCandidates(const vector leaves, vector &candidates) { BspLeaf::NewMail(); vector::const_iterator it, it_end = leaves.end(); int numCandidates = 0; // find merge candidates and push them into queue for (it = leaves.begin(); it != it_end; ++ it) { BspLeaf *leaf = *it; // the same leaves must not be part of two merge candidates leaf->Mail(); vector neighbors; FindNeighbors(leaf, neighbors, true); vector::const_iterator nit, nit_end = neighbors.end(); // TODO: test if at least one ray goes from one leaf to the other for (nit = neighbors.begin(); nit != nit_end; ++ nit) { if ((*nit)->GetViewCell() != leaf->GetViewCell()) { MergeCandidate mc(leaf->GetViewCell(), (*nit)->GetViewCell()); candidates.push_back(mc); ++ numCandidates; if ((numCandidates % 1000) == 0) { cout << "collected " << numCandidates << " merge candidates" << endl; } } } } Debug << "merge queue: " << (int)candidates.size() << endl; Debug << "leaves in queue: " << numCandidates << endl; return (int)leaves.size(); } int BspTree::CollectMergeCandidates(const VssRayContainer &rays, vector &candidates) { ViewCell::NewMail(); long startTime = GetTime(); map > neighborMap; ViewCellContainer::const_iterator iit; int numLeaves = 0; BspLeaf::NewMail(); for (int i = 0; i < (int)rays.size(); ++ i) { VssRay *ray = rays[i]; // traverse leaves stored in the rays and compare and // merge consecutive leaves (i.e., the neighbors in the tree) if (ray->mViewCells.size() < 2) continue; iit = ray->mViewCells.begin(); BspViewCell *bspVc = dynamic_cast(*(iit ++)); BspLeaf *leaf = bspVc->mLeaves[0]; // traverse intersections // consecutive leaves are neighbors => add them to queue for (; iit != ray->mViewCells.end(); ++ iit) { // next pair BspLeaf *prevLeaf = leaf; bspVc = dynamic_cast(*iit); leaf = bspVc->mLeaves[0]; // view space not valid or same view cell if (!leaf->TreeValid() || !prevLeaf->TreeValid() || (leaf->GetViewCell() == prevLeaf->GetViewCell())) continue; vector &neighbors = neighborMap[leaf]; bool found = false; // both leaves inserted in queue already => // look if double pair already exists if (leaf->Mailed() && prevLeaf->Mailed()) { vector::const_iterator it, it_end = neighbors.end(); for (it = neighbors.begin(); !found && (it != it_end); ++ it) if (*it == prevLeaf) found = true; // already in queue } if (!found) { // this pair is not in map yet // => insert into the neighbor map and the queue neighbors.push_back(prevLeaf); neighborMap[prevLeaf].push_back(leaf); leaf->Mail(); prevLeaf->Mail(); MergeCandidate mc(leaf->GetViewCell(), prevLeaf->GetViewCell()); candidates.push_back(mc); if (((int)candidates.size() % 1000) == 0) { cout << "collected " << (int)candidates.size() << " merge candidates" << endl; } } } } Debug << "neighbormap size: " << (int)neighborMap.size() << endl; Debug << "merge queue: " << (int)candidates.size() << endl; Debug << "leaves in queue: " << numLeaves << endl; #if 0 ////////// //-- collect the leaves which haven't been found by ray casting cout << "finding additional merge candidates using geometry" << endl; vector leaves; CollectLeaves(leaves, true); Debug << "found " << (int)leaves.size() << " new leaves" << endl << endl; CollectMergeCandidates(leaves, candidates); #endif return numLeaves; } /***************************************************************/ /* BspNodeGeometry Implementation */ /***************************************************************/ BspNodeGeometry::BspNodeGeometry(const BspNodeGeometry &rhs) { mPolys.reserve(rhs.mPolys.size()); mPlanes.reserve(rhs.mPolys.size()); PolygonContainer::const_iterator it, it_end = rhs.mPolys.end(); int i = 0; for (it = rhs.mPolys.begin(); it != it_end; ++ it, ++i) { Polygon3 *poly = *it; Add(new Polygon3(*poly), rhs.mPlanes[i]); } } BspNodeGeometry& BspNodeGeometry::operator=(const BspNodeGeometry& g) { if (this == &g) return *this; CLEAR_CONTAINER(mPolys); mPolys.reserve(g.mPolys.size()); mPlanes.reserve(g.mPolys.size()); PolygonContainer::const_iterator it, it_end = g.mPolys.end(); int i = 0; for (it = g.mPolys.begin(); it != it_end; ++ it, ++ i) { Polygon3 *poly = *it; Add(new Polygon3(*poly), g.mPlanes[i]); } return *this; } BspNodeGeometry::BspNodeGeometry(const PolygonContainer &polys) { mPolys = polys; mPlanes.reserve(polys.size()); PolygonContainer::const_iterator it, it_end = polys.end(); for (it = polys.begin(); it != it_end; ++ it) { Polygon3 *poly = *it; mPlanes.push_back(poly->GetSupportingPlane()); } } BspNodeGeometry::~BspNodeGeometry() { CLEAR_CONTAINER(mPolys); } int BspNodeGeometry::Size() const { return (int)mPolys.size(); } const PolygonContainer &BspNodeGeometry::GetPolys() { return mPolys; } void BspNodeGeometry::Add(Polygon3 *p, const Plane3 &plane) { mPolys.push_back(p); mPlanes.push_back(plane); } float BspNodeGeometry::GetArea() const { return Polygon3::GetArea(mPolys); } float BspNodeGeometry::GetVolume() const { //-- compute volume using tetrahedralization of the geometry // and adding the volume of the single tetrahedrons float volume = 0; const float f = 1.0f / 6.0f; PolygonContainer::const_iterator pit, pit_end = mPolys.end(); // note: can take arbitrary point, e.g., the origin. However, // we rather take the center of mass to prevents precision errors const Vector3 center = CenterOfMass(); for (pit = mPolys.begin(); pit != pit_end; ++ pit) { Polygon3 *poly = *pit; const Vector3 v0 = poly->mVertices[0] - center; for (int i = 1; i < (int)poly->mVertices.size() - 1; ++ i) { const Vector3 v1 = poly->mVertices[i] - center; const Vector3 v2 = poly->mVertices[i + 1] - center; // more robust version using abs and the center of mass volume += fabs (f * (DotProd(v0, CrossProd(v1, v2)))); } } return volume; } void BspNodeGeometry::GetBoundingBox(AxisAlignedBox3 &box) const { box.Initialize(); box.Include(mPolys); } int BspNodeGeometry::Side(const Plane3 &plane, const float eps) const { PolygonContainer::const_iterator it, it_end = mPolys.end(); bool onFrontSide = false; bool onBackSide = false; for (it = mPolys.begin(); it != it_end; ++ it) { const int side = (*it)->Side(plane, eps); if (side == -1) onBackSide = true; else if (side == 1) onFrontSide = true; if ((side == 0) || (onBackSide && onFrontSide)) return 0; } if (onFrontSide) return 1; return -1; } int BspNodeGeometry::ComputeIntersection(const AxisAlignedBox3 &box) const { // 1: box does not intersect geometry // 0: box intersects geometry // -1: box contains geometry AxisAlignedBox3 boundingBox; GetBoundingBox(boundingBox); // no intersections with bounding box if (!Overlap(box, boundingBox)) { return 1; } // box cotains bounding box of geometry >=> contains geometry if (box.Includes(boundingBox)) return -1; int result = 0; // test geometry planes for intersections vector::const_iterator it, it_end = mPlanes.end(); for (it = mPlanes.begin(); it != it_end; ++ it) { const int side = box.Side(*it); // box does not intersects geometry if (side == 1) { return 1; } //if (side == 0) result = 0; } return result; } Vector3 BspNodeGeometry::CenterOfMass() const { int n = 0; Vector3 center(0,0,0); PolygonContainer::const_iterator pit, pit_end = mPolys.end(); for (pit = mPolys.begin(); pit != pit_end; ++ pit) { Polygon3 *poly = *pit; VertexContainer::const_iterator vit, vit_end = poly->mVertices.end(); for(vit = poly->mVertices.begin(); vit != vit_end; ++ vit) { center += *vit; ++ n; } } //Debug << "center: " << center << " new " << center / (float)n << endl; return center / (float)n; } bool BspNodeGeometry::Valid() const { // geometry is degenerated if (mPolys.size() < 4) return false; return true; } void IncludeNodeGeomInMesh(const BspNodeGeometry &geom, Mesh &mesh) { // add single polygons to mesh PolygonContainer::const_iterator it, it_end = geom.mPolys.end(); for (it = geom.mPolys.begin(); it != geom.mPolys.end(); ++ it) { Polygon3 *poly = (*it); IncludePolyInMesh(*poly, mesh); } } bool BspNodeGeometry::SplitGeometry(BspNodeGeometry &front, BspNodeGeometry &back, const Plane3 &splitPlane, const AxisAlignedBox3 &box, const float epsilon) const { //-- trivial cases if (0) { const int cf = Side(splitPlane, epsilon); if (cf == -1) { back = *this; return false; } else if (cf == 1) { front = *this; return false; } } // get cross section of new polygon Polygon3 *planePoly = box.CrossSection(splitPlane); // split polygon with all other polygons planePoly = SplitPolygon(planePoly, epsilon); bool splitsGeom = (planePoly != NULL); //-- new polygon splits all other polygons for (int i = 0; i < (int)mPolys.size()/* && planePoly*/; ++ i) { /// don't use epsilon here to get exact split planes const int cf = mPolys[i]->ClassifyPlane(splitPlane, epsilon); switch (cf) { case Polygon3::SPLIT: { Polygon3 *poly = new Polygon3(mPolys[i]->mVertices); Polygon3 *frontPoly = new Polygon3(); Polygon3 *backPoly = new Polygon3(); poly->Split(splitPlane, *frontPoly, *backPoly, epsilon); DEL_PTR(poly); if (frontPoly->Valid(epsilon)) { front.Add(frontPoly, mPlanes[i]); } else { //Debug << "no f! " << endl; DEL_PTR(frontPoly); } if (backPoly->Valid(epsilon)) { back.Add(backPoly, mPlanes[i]); } else { //Debug << "no b! " << endl; DEL_PTR(backPoly); } } break; case Polygon3::BACK_SIDE: back.Add(new Polygon3(mPolys[i]->mVertices), mPlanes[i]); break; case Polygon3::FRONT_SIDE: front.Add(new Polygon3(mPolys[i]->mVertices), mPlanes[i]); break; // only put into back container (split should have no effect ...) case Polygon3::COINCIDENT: //Debug << "error should not come here" << endl; splitsGeom = false; if (DotProd(mPlanes[i].mNormal, splitPlane.mNormal > 0)) back.Add(new Polygon3(mPolys[i]->mVertices), mPlanes[i]); else front.Add(new Polygon3(mPolys[i]->mVertices), mPlanes[i]); break; default: break; } } //-- finally add the new polygon to the child node geometries if (planePoly) { // add polygon with reverse orientation to front cell Plane3 reversePlane(splitPlane); reversePlane.ReverseOrientation(); // add polygon with normal pointing into positive half space to back cell back.Add(planePoly, splitPlane); //back.mPolys.push_back(planePoly); Polygon3 *reversePoly = planePoly->CreateReversePolygon(); front.Add(reversePoly, reversePlane); //Debug << "poly normal : " << reversePoly->GetSupportingPlane().mNormal << " split plane normal " << reversePlane.mNormal << endl; } return splitsGeom; } Polygon3 *BspNodeGeometry::SplitPolygon(Polygon3 *planePoly, const float epsilon) const { if (!planePoly->Valid(epsilon)) { //Debug << "not valid!!" << endl; DEL_PTR(planePoly); } // polygon is split by all other planes for (int i = 0; (i < (int)mPolys.size()) && planePoly; ++ i) { //Plane3 plane = mPolys[i]->GetSupportingPlane(); Plane3 plane = mPlanes[i]; /// don't use epsilon here to get exact split planes const int cf = planePoly->ClassifyPlane(plane, epsilon); // split new polygon with all previous planes switch (cf) { case Polygon3::SPLIT: { Polygon3 *frontPoly = new Polygon3(); Polygon3 *backPoly = new Polygon3(); planePoly->Split(plane, *frontPoly, *backPoly, epsilon); // don't need anymore DEL_PTR(planePoly); DEL_PTR(frontPoly); // back polygon is belonging to geometry if (backPoly->Valid(epsilon)) planePoly = backPoly; else DEL_PTR(backPoly); } break; case Polygon3::FRONT_SIDE: DEL_PTR(planePoly); break; // polygon is taken as it is case Polygon3::BACK_SIDE: case Polygon3::COINCIDENT: default: break; } } return planePoly; } ViewCell *BspTree::GetViewCell(const Vector3 &point) { if (mRoot == NULL) return NULL; stack nodeStack; nodeStack.push(mRoot); ViewCellLeaf *viewcell = NULL; while (!nodeStack.empty()) { BspNode *node = nodeStack.top(); nodeStack.pop(); if (node->IsLeaf()) { viewcell = dynamic_cast(node)->mViewCell; break; } else { BspInterior *interior = dynamic_cast(node); // random decision if (interior->GetPlane().Side(point) < 0) { nodeStack.push(interior->GetBack()); } else { nodeStack.push(interior->GetFront()); } } } return viewcell; } bool BspTree::Export(OUT_STREAM &stream) { ExportNode(mRoot, stream); return true; } void BspTree::ExportNode(BspNode *node, OUT_STREAM &stream) { if (node->IsLeaf()) { BspLeaf *leaf = dynamic_cast(node); ViewCell *viewCell = mViewCellsTree->GetActiveViewCell(leaf->GetViewCell()); const int id = viewCell->GetId(); stream << "" << endl; } else { BspInterior *interior = dynamic_cast(node); Plane3 plane = interior->GetPlane(); stream << "" << endl; ExportNode(interior->GetBack(), stream); ExportNode(interior->GetFront(), stream); stream << "" << endl; } } }