#include "Plane3.h" #include "ViewCellBsp.h" #include "Mesh.h" #include "common.h" #include "ViewCell.h" #include "Environment.h" #include "Polygon3.h" #include "Ray.h" #include "AxisAlignedBox3.h" #include "Triangle3.h" #include "Tetrahedron3.h" #include "ViewCellsManager.h" #include "Exporter.h" #include "Plane3.h" #include //-- static members int BspNode::sMailId = 1; /** Evaluates split plane classification with respect to the plane's contribution for a minimum number splits in the tree. */ const float BspTree::sLeastPolySplitsTable[] = {0, 0, 1, 0}; /** Evaluates split plane classification with respect to the plane's contribution for a balanced tree. */ const float BspTree::sBalancedPolysTable[] = {1, -1, 0, 0}; /** Evaluates split plane classification with respect to the plane's contribution for a minimum number of ray splits. */ const float BspTree::sLeastRaySplitsTable[] = {0, 0, 1, 1, 0}; /** Evaluates split plane classification with respect to the plane's contribution for balanced rays. */ const float BspTree::sBalancedRaysTable[] = {1, -1, 0, 0, 0}; int BspTree::sFrontId = 0; int BspTree::sBackId = 0; int BspTree::sFrontAndBackId = 0; /****************************************************************/ /* class BspNode implementation */ /****************************************************************/ BspNode::BspNode(): mParent(NULL), mTreeValid(true), mTimeStamp(0) {} BspNode::BspNode(BspInterior *parent): mParent(parent), mTreeValid(true) {} bool BspNode::IsRoot() const { return mParent == NULL; } BspInterior *BspNode::GetParent() { return mParent; } void BspNode::SetParent(BspInterior *parent) { mParent = parent; } bool BspNode::IsSibling(BspNode *n) const { return ((this != n) && mParent && (mParent->GetFront() == n) || (mParent->GetBack() == n)); } int BspNode::GetDepth() const { int depth = 0; BspNode *p = mParent; while (p) { p = p->mParent; ++ depth; } return depth; } bool BspNode::TreeValid() const { return mTreeValid; } void BspNode::SetTreeValid(const bool v) { mTreeValid = v; } /****************************************************************/ /* class BspInterior implementation */ /****************************************************************/ BspInterior::BspInterior(const Plane3 &plane): mPlane(plane), mFront(NULL), mBack(NULL) {} BspInterior::~BspInterior() { DEL_PTR(mFront); DEL_PTR(mBack); } bool BspInterior::IsLeaf() const { return false; } BspNode *BspInterior::GetBack() { return mBack; } BspNode *BspInterior::GetFront() { return mFront; } Plane3 BspInterior::GetPlane() const { return mPlane; } void BspInterior::ReplaceChildLink(BspNode *oldChild, BspNode *newChild) { if (mBack == oldChild) mBack = newChild; else mFront = newChild; } void BspInterior::SetupChildLinks(BspNode *b, BspNode *f) { mBack = b; mFront = f; } /****************************************************************/ /* class BspLeaf implementation */ /****************************************************************/ BspLeaf::BspLeaf(): mViewCell(NULL), mPvs(NULL) { } BspLeaf::~BspLeaf() { DEL_PTR(mPvs); } BspLeaf::BspLeaf(ViewCell *viewCell): mViewCell(viewCell) { } BspLeaf::BspLeaf(BspInterior *parent): BspNode(parent), mViewCell(NULL), mPvs(NULL) {} BspLeaf::BspLeaf(BspInterior *parent, ViewCell *viewCell): BspNode(parent), mViewCell(viewCell), mPvs(NULL) { } ViewCell *BspLeaf::GetViewCell() const { return mViewCell; } void BspLeaf::SetViewCell(ViewCell *viewCell) { mViewCell = viewCell; } bool BspLeaf::IsLeaf() const { return true; } /*********************************************************************/ /* class BspTree implementation */ /*********************************************************************/ BspTree::BspTree(): mRoot(NULL), mUseAreaForPvs(false), mGenerateViewCells(true), mTimeStamp(1) { Randomize(); // initialise random generator for heuristics mOutOfBoundsCell = GetOrCreateOutOfBoundsCell(); //-- termination criteria for autopartition environment->GetIntValue("BspTree.Termination.maxDepth", mTermMaxDepth); environment->GetIntValue("BspTree.Termination.minPvs", mTermMinPvs); environment->GetIntValue("BspTree.Termination.minPolygons", mTermMinPolys); environment->GetIntValue("BspTree.Termination.minRays", mTermMinRays); environment->GetFloatValue("BspTree.Termination.minProbability", mTermMinProbability); environment->GetFloatValue("BspTree.Termination.maxRayContribution", mTermMaxRayContribution); environment->GetFloatValue("BspTree.Termination.minAccRayLenght", mTermMinAccRayLength); //-- factors for bsp tree split plane heuristics environment->GetFloatValue("BspTree.Factor.verticalSplits", mVerticalSplitsFactor); environment->GetFloatValue("BspTree.Factor.largestPolyArea", mLargestPolyAreaFactor); environment->GetFloatValue("BspTree.Factor.blockedRays", mBlockedRaysFactor); environment->GetFloatValue("BspTree.Factor.leastRaySplits", mLeastRaySplitsFactor); environment->GetFloatValue("BspTree.Factor.balancedRays", mBalancedRaysFactor); environment->GetFloatValue("BspTree.Factor.pvs", mPvsFactor); environment->GetFloatValue("BspTree.Factor.leastSplits" , mLeastSplitsFactor); environment->GetFloatValue("BspTree.Factor.balancedPolys", mBalancedPolysFactor); environment->GetFloatValue("BspTree.Factor.balancedViewCells", mBalancedViewCellsFactor); environment->GetFloatValue("BspTree.Termination.ct_div_ci", mCtDivCi); //-- termination criteria for axis aligned split environment->GetFloatValue("BspTree.Termination.AxisAligned.ct_div_ci", mAxisAlignedCtDivCi); environment->GetFloatValue("BspTree.Termination.maxCostRatio", mMaxCostRatio); environment->GetIntValue("BspTree.Termination.AxisAligned.minPolys", mTermMinPolysForAxisAligned); environment->GetIntValue("BspTree.Termination.AxisAligned.minRays", mTermMinRaysForAxisAligned); environment->GetIntValue("BspTree.Termination.AxisAligned.minObjects", mTermMinObjectsForAxisAligned); //-- partition criteria environment->GetIntValue("BspTree.maxPolyCandidates", mMaxPolyCandidates); environment->GetIntValue("BspTree.maxRayCandidates", mMaxRayCandidates); environment->GetIntValue("BspTree.splitPlaneStrategy", mSplitPlaneStrategy); environment->GetFloatValue("BspTree.AxisAligned.splitBorder", mSplitBorder); environment->GetIntValue("BspTree.maxTests", mMaxTests); environment->GetIntValue("BspTree.Termination.maxViewCells", mMaxViewCells); environment->GetFloatValue("BspTree.Construction.epsilon", mEpsilon); char subdivisionStatsLog[100]; environment->GetStringValue("BspTree.subdivisionStats", subdivisionStatsLog); mSubdivisionStats.open(subdivisionStatsLog); Debug << "BSP max depth: " << mTermMaxDepth << endl; Debug << "BSP min PVS: " << mTermMinPvs << endl; Debug << "BSP min probability: " << mTermMinProbability << endl; Debug << "BSP max polys: " << mTermMinPolys << endl; Debug << "BSP max rays: " << mTermMinRays << endl; Debug << "BSP max polygon candidates: " << mMaxPolyCandidates << endl; Debug << "BSP max plane candidates: " << mMaxRayCandidates << endl; Debug << "Split plane strategy: "; if (mSplitPlaneStrategy & RANDOM_POLYGON) Debug << "random polygon "; if (mSplitPlaneStrategy & AXIS_ALIGNED) Debug << "axis aligned "; if (mSplitPlaneStrategy & LEAST_SPLITS) Debug << "least splits "; if (mSplitPlaneStrategy & BALANCED_POLYS) Debug << "balanced polygons "; if (mSplitPlaneStrategy & BALANCED_VIEW_CELLS) Debug << "balanced view cells "; if (mSplitPlaneStrategy & LARGEST_POLY_AREA) Debug << "largest polygon area "; if (mSplitPlaneStrategy & VERTICAL_AXIS) Debug << "vertical axis "; if (mSplitPlaneStrategy & BLOCKED_RAYS) Debug << "blocked rays "; if (mSplitPlaneStrategy & LEAST_RAY_SPLITS) Debug << "least ray splits "; if (mSplitPlaneStrategy & BALANCED_RAYS) Debug << "balanced rays "; if (mSplitPlaneStrategy & PVS) Debug << "pvs"; Debug << endl; } const BspTreeStatistics &BspTree::GetStatistics() const { return mStat; } int BspTree::SplitPolygons(const Plane3 &plane, PolygonContainer &polys, PolygonContainer &frontPolys, PolygonContainer &backPolys, PolygonContainer &coincident) const { int splits = 0; #ifdef _Debug Debug << "splitting polygons of node " << this << " with plane " << mPlane << endl; #endif PolygonContainer::const_iterator it, it_end = polys.end(); for (it = polys.begin(); it != polys.end(); ++ it) { Polygon3 *poly = *it; //-- classify polygon const int cf = poly->ClassifyPlane(plane, mEpsilon); switch (cf) { case Polygon3::COINCIDENT: coincident.push_back(poly); break; case Polygon3::FRONT_SIDE: frontPolys.push_back(poly); break; case Polygon3::BACK_SIDE: backPolys.push_back(poly); break; case Polygon3::SPLIT: { Polygon3 *front_piece = new Polygon3(poly->mParent); Polygon3 *back_piece = new Polygon3(poly->mParent); //-- split polygon into front and back part poly->Split(plane, *front_piece, *back_piece, mEpsilon); ++ splits; // increase number of splits //-- inherit rays from parent polygon for blocked ray criterium poly->InheritRays(*front_piece, *back_piece); // check if polygons still valid if (front_piece->Valid(mEpsilon)) frontPolys.push_back(front_piece); else DEL_PTR(front_piece); if (back_piece->Valid(mEpsilon)) backPolys.push_back(back_piece); else DEL_PTR(back_piece); #ifdef _DEBUG Debug << "split " << *poly << endl << *front_piece << endl << *back_piece << endl; #endif DEL_PTR(poly); } break; default: Debug << "SHOULD NEVER COME HERE\n"; break; } } return splits; } void BspTreeStatistics::Print(ostream &app) const { app << "===== BspTree statistics ===============\n"; app << setprecision(4); app << "#N_CTIME ( Construction time [s] )\n" << Time() << " \n"; app << "#N_NODES ( Number of nodes )\n" << nodes << "\n"; app << "#N_INTERIORS ( Number of interior nodes )\n" << Interior() << "\n"; app << "#N_LEAVES ( Number of leaves )\n" << Leaves() << "\n"; app << "#N_POLYSPLITS ( Number of polygon splits )\n" << polySplits << "\n"; app << "#AXIS_ALIGNED_SPLITS (number of axis aligned splits)\n" << splits[0] + splits[1] + splits[2] << endl; app << "#N_SPLITS ( Number of splits in axes x y z\n"; for (int i = 0; i < 3; ++ i) app << splits[i] << " "; app << endl; app << "#N_PMAXDEPTHLEAVES ( Percentage of leaves at maximum depth )\n" << maxDepthNodes * 100 / (double)Leaves() << endl; app << "#N_PMINPVSLEAVES ( Percentage of leaves with mininimal PVS )\n" << minPvsNodes * 100 / (double)Leaves() << endl; app << "#N_PMINRAYSLEAVES ( Percentage of leaves with minimal number of rays)\n" << minRaysNodes * 100 / (double)Leaves() << endl; app << "#N_MAXCOSTNODES ( Percentage of leaves with terminated because of max cost ratio )\n" << maxCostNodes * 100 / (double)Leaves() << endl; app << "#N_PMINPROBABILITYLEAVES ( Percentage of leaves with mininum probability )\n" << minProbabilityNodes * 100 / (double)Leaves() << endl; app << "#N_PMAXRAYCONTRIBLEAVES ( Percentage of leaves with maximal ray contribution )\n" << maxRayContribNodes * 100 / (double)Leaves() << endl; app << "#N_PMAXDEPTH ( Maximal reached depth )\n" << maxDepth << endl; app << "#N_PMINDEPTH ( Minimal reached depth )\n" << minDepth << endl; app << "#AVGDEPTH ( average depth )\n" << AvgDepth() << endl; app << "#N_INPUTPOLYGONS (number of input polygons )\n" << polys << endl; app << "#N_INVALIDLEAVES (number of invalid leaves )\n" << invalidLeaves << endl; app << "#N_RAYS (number of rays / leaf)\n" << AvgRays() << endl; //app << "#N_PVS: " << pvs << endl; app << "#N_ROUTPUT_INPUT_POLYGONS ( ratio polygons after subdivision / input polygons )\n" << (polys + polySplits) / (double)polys << endl; app << "===== END OF BspTree statistics ==========\n"; } BspTree::~BspTree() { DEL_PTR(mRoot); // TODO must be deleted if used!! //if (mGenerateViewCells) DEL_PTR(mOutOfBoundsCell); } BspViewCell *BspTree::GetOutOfBoundsCell() { return mOutOfBoundsCell; } BspNode *BspTree::GetRoot() const { return mRoot; } BspViewCell *BspTree::GetOrCreateOutOfBoundsCell() { if (!mOutOfBoundsCell) { mOutOfBoundsCell = new BspViewCell(); mOutOfBoundsCell->SetId(-1); mOutOfBoundsCell->SetValid(false); } return mOutOfBoundsCell; } void BspTree::InsertViewCell(ViewCell *viewCell) { PolygonContainer *polys = new PolygonContainer(); // don't generate new view cell, insert this one mGenerateViewCells = false; // extract polygons that guide the split process mStat.polys += AddMeshToPolygons(viewCell->GetMesh(), *polys, viewCell); mBox.Include(viewCell->GetBox()); // add to BSP aabb InsertPolygons(polys); } void BspTree::InsertPolygons(PolygonContainer *polys) { BspTraversalStack tStack; // traverse existing tree or create new tree if (!mRoot) mRoot = new BspLeaf(); tStack.push(BspTraversalData(mRoot, polys, 0, mOutOfBoundsCell, new BoundedRayContainer(), 0, mUseAreaForPvs ? mBox.SurfaceArea() : mBox.GetVolume(), new BspNodeGeometry())); while (!tStack.empty()) { // filter polygons donw the tree BspTraversalData tData = tStack.top(); tStack.pop(); if (!tData.mNode->IsLeaf()) { BspInterior *interior = dynamic_cast(tData.mNode); //-- filter view cell polygons down the tree until a leaf is reached if (!tData.mPolygons->empty()) { PolygonContainer *frontPolys = new PolygonContainer(); PolygonContainer *backPolys = new PolygonContainer(); PolygonContainer coincident; int splits = 0; // split viewcell polygons with respect to split plane splits += SplitPolygons(interior->GetPlane(), *tData.mPolygons, *frontPolys, *backPolys, coincident); // extract view cells associated with the split polygons ViewCell *frontViewCell = GetOrCreateOutOfBoundsCell(); ViewCell *backViewCell = GetOrCreateOutOfBoundsCell(); BspTraversalData frontData(interior->GetFront(), frontPolys, tData.mDepth + 1, mOutOfBoundsCell, tData.mRays, tData.mPvs, mUseAreaForPvs ? mBox.SurfaceArea() : mBox.GetVolume(), new BspNodeGeometry()); BspTraversalData backData(interior->GetBack(), backPolys, tData.mDepth + 1, mOutOfBoundsCell, tData.mRays, tData.mPvs, mUseAreaForPvs ? mBox.SurfaceArea() : mBox.GetVolume(), new BspNodeGeometry()); if (!mGenerateViewCells) { ExtractViewCells(frontData, backData, coincident, interior->mPlane); } // don't need coincident polygons anymore CLEAR_CONTAINER(coincident); mStat.polySplits += splits; // push the children on the stack tStack.push(frontData); tStack.push(backData); } // cleanup DEL_PTR(tData.mPolygons); DEL_PTR(tData.mRays); } else { // reached leaf => subdivide current viewcell BspNode *subRoot = Subdivide(tStack, tData); } } } int BspTree::AddMeshToPolygons(Mesh *mesh, PolygonContainer &polys, MeshInstance *parent) { FaceContainer::const_iterator fi; // copy the face data to polygons for (fi = mesh->mFaces.begin(); fi != mesh->mFaces.end(); ++ fi) { Polygon3 *poly = new Polygon3((*fi), mesh); if (poly->Valid(mEpsilon)) { poly->mParent = parent; // set parent intersectable polys.push_back(poly); } else DEL_PTR(poly); } return (int)mesh->mFaces.size(); } int BspTree::AddToPolygonSoup(const ViewCellContainer &viewCells, PolygonContainer &polys, int maxObjects) { int limit = (maxObjects > 0) ? Min((int)viewCells.size(), maxObjects) : (int)viewCells.size(); int polysSize = 0; for (int i = 0; i < limit; ++ i) { if (viewCells[i]->GetMesh()) // copy the mesh data to polygons { mBox.Include(viewCells[i]->GetBox()); // add to BSP tree aabb polysSize += AddMeshToPolygons(viewCells[i]->GetMesh(), polys, viewCells[i]); } } return polysSize; } int BspTree::AddToPolygonSoup(const ObjectContainer &objects, PolygonContainer &polys, int maxObjects, bool addToBbox) { int limit = (maxObjects > 0) ? Min((int)objects.size(), maxObjects) : (int)objects.size(); for (int i = 0; i < limit; ++i) { Intersectable *object = objects[i];//*it; Mesh *mesh = NULL; switch (object->Type()) // extract the meshes { case Intersectable::MESH_INSTANCE: mesh = dynamic_cast(object)->GetMesh(); break; case Intersectable::VIEW_CELL: mesh = dynamic_cast(object)->GetMesh(); break; // TODO: handle transformed mesh instances default: Debug << "intersectable type not supported" << endl; break; } if (mesh) // copy the mesh data to polygons { if (addToBbox) { mBox.Include(object->GetBox()); // add to BSP tree aabb } AddMeshToPolygons(mesh, polys, mOutOfBoundsCell); } } return (int)polys.size(); } void BspTree::Construct(const ViewCellContainer &viewCells) { mStat.nodes = 1; mBox.Initialize(); // initialise bsp tree bounding box // copy view cell meshes into one big polygon soup PolygonContainer *polys = new PolygonContainer(); mStat.polys = AddToPolygonSoup(viewCells, *polys); // view cells are given mGenerateViewCells = false; // construct tree from the view cell polygons Construct(polys, new BoundedRayContainer()); } void BspTree::Construct(const ObjectContainer &objects) { mStat.nodes = 1; mBox.Initialize(); // initialise bsp tree bounding box PolygonContainer *polys = new PolygonContainer(); mGenerateViewCells = true; // copy mesh instance polygons into one big polygon soup mStat.polys = AddToPolygonSoup(objects, *polys); // construct tree from polygon soup Construct(polys, new BoundedRayContainer()); } void BspTree::PreprocessPolygons(PolygonContainer &polys) { // preprocess: throw out polygons coincident to the view space box (not needed) PolygonContainer boxPolys; mBox.ExtractPolys(boxPolys); vector boxPlanes; PolygonContainer::iterator pit, pit_end = boxPolys.end(); // extract planes of box // TODO: can be done more elegantly than first extracting polygons // and take their planes for (pit = boxPolys.begin(); pit != pit_end; ++ pit) { boxPlanes.push_back((*pit)->GetSupportingPlane()); } pit_end = polys.end(); for (pit = polys.begin(); pit != pit_end; ++ pit) { vector::const_iterator bit, bit_end = boxPlanes.end(); for (bit = boxPlanes.begin(); (bit != bit_end) && (*pit); ++ bit) { const int cf = (*pit)->ClassifyPlane(*bit, mEpsilon); if (cf == Polygon3::COINCIDENT) { DEL_PTR(*pit); //Debug << "coincident!!" << endl; } } } // remove deleted entries for (int i = 0; i < (int)polys.size(); ++ i) { while (!polys[i] && (i < (int)polys.size())) { swap(polys[i], polys.back()); polys.pop_back(); } } } void BspTree::Construct(const RayContainer &sampleRays, AxisAlignedBox3 *forcedBoundingBox) { mStat.nodes = 1; mBox.Initialize(); // initialise BSP tree bounding box if (forcedBoundingBox) mBox = *forcedBoundingBox; PolygonContainer *polys = new PolygonContainer(); BoundedRayContainer *rays = new BoundedRayContainer(); RayContainer::const_iterator rit, rit_end = sampleRays.end(); // generate view cells mGenerateViewCells = true; long startTime = GetTime(); Debug << "**** Extracting polygons from rays ****\n"; std::map facePolyMap; //-- extract polygons intersected by the rays for (rit = sampleRays.begin(); rit != rit_end; ++ rit) { Ray *ray = *rit; // get ray-face intersection. Store polygon representing the rays together // with rays intersecting the face. if (!ray->intersections.empty()) { MeshInstance *obj = dynamic_cast(ray->intersections[0].mObject); Face *face = obj->GetMesh()->mFaces[ray->intersections[0].mFace]; std::map::iterator it = facePolyMap.find(face); if (it != facePolyMap.end()) { //store rays if needed for heuristics if (mSplitPlaneStrategy & BLOCKED_RAYS) (*it).second->mPiercingRays.push_back(ray); } else { //store rays if needed for heuristics Polygon3 *poly = new Polygon3(face, obj->GetMesh()); poly->mParent = obj; polys->push_back(poly); if (mSplitPlaneStrategy & BLOCKED_RAYS) poly->mPiercingRays.push_back(ray); facePolyMap[face] = poly; } } } facePolyMap.clear(); // compute bounding box if (!forcedBoundingBox) Polygon3::IncludeInBox(*polys, mBox); //-- store rays for (rit = sampleRays.begin(); rit != rit_end; ++ rit) { Ray *ray = *rit; ray->SetId(-1); // reset id float minT, maxT; if (mBox.GetRaySegment(*ray, minT, maxT)) rays->push_back(new BoundedRay(ray, minT, maxT)); } // throw out bad polygons PreprocessPolygons(*polys); mStat.polys = (int)polys->size(); Debug << "**** Finished polygon extraction ****" << endl; Debug << (int)polys->size() << " polys extracted from " << (int)sampleRays.size() << " rays" << endl; Debug << "extraction time: " << TimeDiff(startTime, GetTime())*1e-3 << "s" << endl; Construct(polys, rays); } void BspTree::Construct(const ObjectContainer &objects, const RayContainer &sampleRays, AxisAlignedBox3 *forcedBoundingBox) { mStat.nodes = 1; mBox.Initialize(); // initialise BSP tree bounding box if (forcedBoundingBox) mBox = *forcedBoundingBox; BoundedRayContainer *rays = new BoundedRayContainer(); PolygonContainer *polys = new PolygonContainer(); mGenerateViewCells = true; // copy mesh instance polygons into one big polygon soup mStat.polys = AddToPolygonSoup(objects, *polys, 0, !forcedBoundingBox); RayContainer::const_iterator rit, rit_end = sampleRays.end(); //-- store rays for (rit = sampleRays.begin(); rit != rit_end; ++ rit) { Ray *ray = *rit; ray->SetId(-1); // reset id float minT, maxT; if (mBox.GetRaySegment(*ray, minT, maxT)) rays->push_back(new BoundedRay(ray, minT, maxT)); } PreprocessPolygons(*polys); Debug << "tree has " << (int)polys->size() << " polys, " << (int)sampleRays.size() << " rays" << endl; Construct(polys, rays); } void BspTree::Construct(PolygonContainer *polys, BoundedRayContainer *rays) { BspTraversalStack tStack; mRoot = new BspLeaf(); // constrruct root node geometry BspNodeGeometry *geom = new BspNodeGeometry(); ConstructGeometry(mRoot, *geom); BspTraversalData tData(mRoot, polys, 0, GetOrCreateOutOfBoundsCell(), rays, ComputePvsSize(*rays), mUseAreaForPvs ? geom->GetArea() : geom->GetVolume(), geom); mTotalCost = tData.mPvs * tData.mProbability / mBox.GetVolume(); mTotalPvsSize = tData.mPvs; mSubdivisionStats << "#ViewCells\n1\n" << endl << "#RenderCostDecrease\n0\n" << endl << "#TotalRenderCost\n" << mTotalCost << endl << "#AvgRenderCost\n" << mTotalPvsSize << endl; tStack.push(tData); // used for intermediate time measurements and progress long interTime = GetTime(); int nleaves = 500; mStat.Start(); cout << "Contructing bsp tree ...\n"; long startTime = GetTime(); while (!tStack.empty()) { tData = tStack.top(); tStack.pop(); // subdivide leaf node BspNode *r = Subdivide(tStack, tData); if (r == mRoot) Debug << "BSP tree construction time spent at root: " << TimeDiff(startTime, GetTime())*1e-3 << " secs" << endl; if (mStat.Leaves() >= nleaves) { nleaves += 500; cout << "leaves=" << mStat.Leaves() << endl; Debug << "needed " << TimeDiff(interTime, GetTime())*1e-3 << " secs to create 500 leaves" << endl; interTime = GetTime(); } } cout << "finished\n"; mStat.Stop(); } bool BspTree::TerminationCriteriaMet(const BspTraversalData &data) const { return (((int)data.mPolygons->size() <= mTermMinPolys) || ((int)data.mRays->size() <= mTermMinRays) || (data.mPvs <= mTermMinPvs) || (data.mProbability <= mTermMinProbability) || (data.mDepth >= mTermMaxDepth) || (mStat.Leaves() >= mMaxViewCells) || (data.GetAvgRayContribution() > mTermMaxRayContribution)); } BspNode *BspTree::Subdivide(BspTraversalStack &tStack, BspTraversalData &tData) { //-- terminate traversal if (TerminationCriteriaMet(tData)) { BspLeaf *leaf = dynamic_cast(tData.mNode); BspViewCell *viewCell; // generate new view cell for each leaf if (mGenerateViewCells) viewCell = new BspViewCell(); else // add view cell to leaf viewCell = dynamic_cast(tData.mViewCell); leaf->SetViewCell(viewCell); viewCell->mLeaf = leaf; if (mUseAreaForPvs) viewCell->SetArea(tData.mProbability); else viewCell->SetVolume(tData.mProbability); //-- add pvs if (viewCell != mOutOfBoundsCell) { int conSamp = 0, sampCon = 0; AddToPvs(leaf, *tData.mRays, conSamp, sampCon); mStat.contributingSamples += conSamp; mStat.sampleContributions += sampCon; } EvaluateLeafStats(tData); //-- clean up // discard polygons CLEAR_CONTAINER(*tData.mPolygons); // discard rays CLEAR_CONTAINER(*tData.mRays); DEL_PTR(tData.mPolygons); DEL_PTR(tData.mRays); DEL_PTR(tData.mGeometry); return leaf; } //-- continue subdivision PolygonContainer coincident; BspTraversalData tFrontData(NULL, new PolygonContainer(), tData.mDepth + 1, mOutOfBoundsCell, new BoundedRayContainer(), 0, 0, new BspNodeGeometry()); BspTraversalData tBackData(NULL, new PolygonContainer(), tData.mDepth + 1, mOutOfBoundsCell, new BoundedRayContainer(), 0, 0, new BspNodeGeometry()); // create new interior node and two leaf nodes BspInterior *interior = SubdivideNode(tData, tFrontData, tBackData, coincident); if (1) { int pvsData = tData.mPvs; float cData = (float)pvsData * tData.mProbability; float cFront = (float)tFrontData.mPvs * tFrontData.mProbability; float cBack = (float)tBackData.mPvs * tBackData.mProbability; float costDecr = (cFront + cBack - cData) / mBox.GetVolume(); mTotalCost += costDecr; mTotalPvsSize += tFrontData.mPvs + tBackData.mPvs - pvsData; mSubdivisionStats << "#ViewCells\n" << mStat.Leaves() << endl << "#RenderCostDecrease\n" << -costDecr << endl << "#TotalRenderCost\n" << mTotalCost << endl << "#AvgRenderCost\n" << mTotalPvsSize / mStat.Leaves() << endl; } // extract view cells from coincident polygons according to plane normal // only if front or back polygons are empty if (!mGenerateViewCells) { ExtractViewCells(tFrontData, tBackData, coincident, interior->mPlane); } // don't need coincident polygons anymory CLEAR_CONTAINER(coincident); // push the children on the stack tStack.push(tFrontData); tStack.push(tBackData); // cleanup DEL_PTR(tData.mNode); DEL_PTR(tData.mPolygons); DEL_PTR(tData.mRays); DEL_PTR(tData.mGeometry); return interior; } void BspTree::ExtractViewCells(BspTraversalData &frontData, BspTraversalData &backData, const PolygonContainer &coincident, const Plane3 &splitPlane) const { // if not empty, tree is further subdivided => don't have to find view cell bool foundFront = !frontData.mPolygons->empty(); bool foundBack = !frontData.mPolygons->empty(); PolygonContainer::const_iterator it = coincident.begin(), it_end = coincident.end(); //-- find first view cells in front and back leafs for (; !(foundFront && foundBack) && (it != it_end); ++ it) { if (DotProd((*it)->GetNormal(), splitPlane.mNormal) > 0) { backData.mViewCell = dynamic_cast((*it)->mParent); foundBack = true; } else { frontData.mViewCell = dynamic_cast((*it)->mParent); foundFront = true; } } } BspInterior *BspTree::SubdivideNode(BspTraversalData &tData, BspTraversalData &frontData, BspTraversalData &backData, PolygonContainer &coincident) { mStat.nodes += 2; BspLeaf *leaf = dynamic_cast(tData.mNode); // select subdivision plane BspInterior *interior = new BspInterior(SelectPlane(leaf, tData)); #ifdef _DEBUG Debug << interior << endl; #endif // subdivide rays into front and back rays SplitRays(interior->mPlane, *tData.mRays, *frontData.mRays, *backData.mRays); // subdivide polygons with plane mStat.polySplits += SplitPolygons(interior->GetPlane(), *tData.mPolygons, *frontData.mPolygons, *backData.mPolygons, coincident); // compute pvs frontData.mPvs = ComputePvsSize(*frontData.mRays); backData.mPvs = ComputePvsSize(*backData.mRays); // split geometry and compute area if (1) { tData.mGeometry->SplitGeometry(*frontData.mGeometry, *backData.mGeometry, interior->mPlane, mBox, //0.000000000001); mEpsilon); if (mUseAreaForPvs) { frontData.mProbability = frontData.mGeometry->GetArea(); backData.mProbability = backData.mGeometry->GetArea(); } else { frontData.mProbability = frontData.mGeometry->GetVolume(); backData.mProbability = tData.mProbability - frontData.mProbability; } } //-- create front and back leaf BspInterior *parent = leaf->GetParent(); // replace a link from node's parent if (!leaf->IsRoot()) { parent->ReplaceChildLink(leaf, interior); interior->SetParent(parent); } else // new root { mRoot = interior; } // and setup child links interior->SetupChildLinks(new BspLeaf(interior), new BspLeaf(interior)); frontData.mNode = interior->GetFront(); backData.mNode = interior->GetBack(); interior->mTimeStamp = mTimeStamp ++; //DEL_PTR(leaf); return interior; } void BspTree::SortSplitCandidates(const PolygonContainer &polys, const int axis, vector &splitCandidates) const { splitCandidates.clear(); int requestedSize = 2 * (int)polys.size(); // creates a sorted split candidates array splitCandidates.reserve(requestedSize); PolygonContainer::const_iterator it, it_end = polys.end(); AxisAlignedBox3 box; // insert all queries for(it = polys.begin(); it != it_end; ++ it) { box.Initialize(); box.Include(*(*it)); splitCandidates.push_back(SortableEntry(SortableEntry::POLY_MIN, box.Min(axis), *it)); splitCandidates.push_back(SortableEntry(SortableEntry::POLY_MAX, box.Max(axis), *it)); } stable_sort(splitCandidates.begin(), splitCandidates.end()); } float BspTree::BestCostRatio(const PolygonContainer &polys, const AxisAlignedBox3 &box, const int axis, float &position, int &objectsBack, int &objectsFront) const { vector splitCandidates; SortSplitCandidates(polys, axis, splitCandidates); // go through the lists, count the number of objects left and right // and evaluate the following cost funcion: // C = ct_div_ci + (ol + or)/queries int objectsLeft = 0, objectsRight = (int)polys.size(); float minBox = box.Min(axis); float maxBox = box.Max(axis); float boxArea = box.SurfaceArea(); float minBand = minBox + mSplitBorder * (maxBox - minBox); float maxBand = minBox + (1.0f - mSplitBorder) * (maxBox - minBox); float minSum = 1e20f; vector::const_iterator ci, ci_end = splitCandidates.end(); for(ci = splitCandidates.begin(); ci != ci_end; ++ ci) { switch ((*ci).type) { case SortableEntry::POLY_MIN: ++ objectsLeft; break; case SortableEntry::POLY_MAX: -- objectsRight; break; default: break; } if ((*ci).value > minBand && (*ci).value < maxBand) { AxisAlignedBox3 lbox = box; AxisAlignedBox3 rbox = box; lbox.SetMax(axis, (*ci).value); rbox.SetMin(axis, (*ci).value); const float sum = objectsLeft * lbox.SurfaceArea() + objectsRight * rbox.SurfaceArea(); if (sum < minSum) { minSum = sum; position = (*ci).value; objectsBack = objectsLeft; objectsFront = objectsRight; } } } const float oldCost = (float)polys.size(); const float newCost = mAxisAlignedCtDivCi + minSum / boxArea; const float ratio = newCost / oldCost; #if 0 Debug << "====================" << endl; Debug << "costRatio=" << ratio << " pos=" << position<<" t=" << (position - minBox)/(maxBox - minBox) << "\t o=(" << objectsBack << "," << objectsFront << ")" << endl; #endif return ratio; } bool BspTree::SelectAxisAlignedPlane(Plane3 &plane, const PolygonContainer &polys) const { AxisAlignedBox3 box; box.Initialize(); // create bounding box of region Polygon3::IncludeInBox(polys, box); int objectsBack = 0, objectsFront = 0; int axis = 0; float costRatio = MAX_FLOAT; Vector3 position; //-- area subdivision for (int i = 0; i < 3; ++ i) { float p = 0; float r = BestCostRatio(polys, box, i, p, objectsBack, objectsFront); if (r < costRatio) { costRatio = r; axis = i; position = p; } } if (costRatio >= mMaxCostRatio) return false; Vector3 norm(0,0,0); norm[axis] = 1.0f; plane = Plane3(norm, position); return true; } Plane3 BspTree::SelectPlane(BspLeaf *leaf, BspTraversalData &data) { if ((!mMaxPolyCandidates || data.mPolygons->empty()) && (!mMaxRayCandidates || data.mRays->empty())) { Debug << "Warning: No autopartition polygon candidate available\n"; // return axis aligned split AxisAlignedBox3 box; box.Initialize(); // create bounding box of region Polygon3::IncludeInBox(*data.mPolygons, box); const int axis = box.Size().DrivingAxis(); const Vector3 position = (box.Min()[axis] + box.Max()[axis]) * 0.5f; Vector3 norm(0,0,0); norm[axis] = 1.0f; return Plane3(norm, position); } if ((mSplitPlaneStrategy & AXIS_ALIGNED) && ((int)data.mPolygons->size() > mTermMinPolysForAxisAligned) && ((int)data.mRays->size() > mTermMinRaysForAxisAligned) && ((mTermMinObjectsForAxisAligned < 0) || (Polygon3::ParentObjectsSize(*data.mPolygons) > mTermMinObjectsForAxisAligned))) { Plane3 plane; if (SelectAxisAlignedPlane(plane, *data.mPolygons)) return plane; } // simplest strategy: just take next polygon if (mSplitPlaneStrategy & RANDOM_POLYGON) { if (!data.mPolygons->empty()) { Polygon3 *nextPoly = (*data.mPolygons)[(int)RandomValue(0, (Real)((int)data.mPolygons->size() - 1))]; return nextPoly->GetSupportingPlane(); } else { const int candidateIdx = (int)RandomValue(0, (Real)((int)data.mRays->size() - 1)); BoundedRay *bRay = (*data.mRays)[candidateIdx]; Ray *ray = bRay->mRay; const Vector3 minPt = ray->Extrap(bRay->mMinT); const Vector3 maxPt = ray->Extrap(bRay->mMaxT); const Vector3 pt = (maxPt + minPt) * 0.5; const Vector3 normal = ray->GetDir(); return Plane3(normal, pt); } return Plane3(); } // use heuristics to find appropriate plane return SelectPlaneHeuristics(leaf, data); } Plane3 BspTree::ChooseCandidatePlane(const BoundedRayContainer &rays) const { const int candidateIdx = (int)RandomValue(0, (Real)((int)rays.size() - 1)); BoundedRay *bRay = rays[candidateIdx]; Ray *ray = bRay->mRay; const Vector3 minPt = ray->Extrap(bRay->mMinT); const Vector3 maxPt = ray->Extrap(bRay->mMaxT); const Vector3 pt = (maxPt + minPt) * 0.5; const Vector3 normal = ray->GetDir(); return Plane3(normal, pt); } Plane3 BspTree::ChooseCandidatePlane2(const BoundedRayContainer &rays) const { Vector3 pt[3]; int idx[3]; int cmaxT = 0; int cminT = 0; bool chooseMin = false; for (int j = 0; j < 3; j ++) { idx[j] = (int)RandomValue(0, Real((int)rays.size() * 2 - 1)); if (idx[j] >= (int)rays.size()) { idx[j] -= (int)rays.size(); chooseMin = (cminT < 2); } else chooseMin = (cmaxT < 2); BoundedRay *bRay = rays[idx[j]]; pt[j] = chooseMin ? bRay->mRay->Extrap(bRay->mMinT) : bRay->mRay->Extrap(bRay->mMaxT); } return Plane3(pt[0], pt[1], pt[2]); } Plane3 BspTree::ChooseCandidatePlane3(const BoundedRayContainer &rays) const { Vector3 pt[3]; int idx1 = (int)RandomValue(0, (Real)((int)rays.size() - 1)); int idx2 = (int)RandomValue(0, (Real)((int)rays.size() - 1)); // check if rays different if (idx1 == idx2) idx2 = (idx2 + 1) % (int)rays.size(); const BoundedRay *ray1 = rays[idx1]; const BoundedRay *ray2 = rays[idx2]; // normal vector of the plane parallel to both lines const Vector3 norm = Normalize(CrossProd(ray1->mRay->GetDir(), ray2->mRay->GetDir())); const Vector3 orig1 = ray1->mRay->Extrap(ray1->mMinT); const Vector3 orig2 = ray2->mRay->Extrap(ray2->mMinT); // vector from line 1 to line 2 const Vector3 vd = orig1 - orig2; // project vector on normal to get distance const float dist = DotProd(vd, norm); // point on plane lies halfway between the two planes const Vector3 planePt = orig1 + norm * dist * 0.5; return Plane3(norm, planePt); } Plane3 BspTree::SelectPlaneHeuristics(BspLeaf *leaf, BspTraversalData &data) { float lowestCost = MAX_FLOAT; Plane3 bestPlane; // intermediate plane Plane3 plane; const int limit = Min((int)data.mPolygons->size(), mMaxPolyCandidates); int maxIdx = (int)data.mPolygons->size(); for (int i = 0; i < limit; ++ i) { // assure that no index is taken twice const int candidateIdx = (int)RandomValue(0, (Real)(-- maxIdx)); Polygon3 *poly = (*data.mPolygons)[candidateIdx]; // swap candidate to the end to avoid testing same plane std::swap((*data.mPolygons)[maxIdx], (*data.mPolygons)[candidateIdx]); //Polygon3 *poly = (*data.mPolygons)[(int)RandomValue(0, (int)polys.size() - 1)]; // evaluate current candidate const float candidateCost = SplitPlaneCost(poly->GetSupportingPlane(), data); if (candidateCost < lowestCost) { bestPlane = poly->GetSupportingPlane(); lowestCost = candidateCost; } } //-- choose candidate planes extracted from rays for (int i = 0; i < mMaxRayCandidates; ++ i) { plane = ChooseCandidatePlane3(*data.mRays); const float candidateCost = SplitPlaneCost(plane, data); if (candidateCost < lowestCost) { bestPlane = plane; lowestCost = candidateCost; } } #ifdef _DEBUG Debug << "plane lowest cost: " << lowestCost << endl; #endif return bestPlane; } float BspTree::SplitPlaneCost(const Plane3 &candidatePlane, const PolygonContainer &polys) const { float val = 0; float sumBalancedPolys = 0; float sumSplits = 0; float sumPolyArea = 0; float sumBalancedViewCells = 0; float sumBlockedRays = 0; float totalBlockedRays = 0; //float totalArea = 0; int totalViewCells = 0; // need three unique ids for each type of view cell // for balanced view cells criterium ViewCell::NewMail(); const int backId = ViewCell::sMailId; ViewCell::NewMail(); const int frontId = ViewCell::sMailId; ViewCell::NewMail(); const int frontAndBackId = ViewCell::sMailId; bool useRand; int limit; // choose test polyongs randomly if over threshold if ((int)polys.size() > mMaxTests) { useRand = true; limit = mMaxTests; } else { useRand = false; limit = (int)polys.size(); } for (int i = 0; i < limit; ++ i) { const int testIdx = useRand ? (int)RandomValue(0, (Real)(limit - 1)) : i; Polygon3 *poly = polys[testIdx]; const int classification = poly->ClassifyPlane(candidatePlane, mEpsilon); if (mSplitPlaneStrategy & BALANCED_POLYS) sumBalancedPolys += sBalancedPolysTable[classification]; if (mSplitPlaneStrategy & LEAST_SPLITS) sumSplits += sLeastPolySplitsTable[classification]; if (mSplitPlaneStrategy & LARGEST_POLY_AREA) { if (classification == Polygon3::COINCIDENT) sumPolyArea += poly->GetArea(); //totalArea += area; } if (mSplitPlaneStrategy & BLOCKED_RAYS) { const float blockedRays = (float)poly->mPiercingRays.size(); if (classification == Polygon3::COINCIDENT) sumBlockedRays += blockedRays; totalBlockedRays += blockedRays; } // assign view cells to back or front according to classificaion if (mSplitPlaneStrategy & BALANCED_VIEW_CELLS) { MeshInstance *viewCell = poly->mParent; // assure that we only count a view cell // once for the front and once for the back side of the plane if (classification == Polygon3::FRONT_SIDE) { if ((viewCell->mMailbox != frontId) && (viewCell->mMailbox != frontAndBackId)) { sumBalancedViewCells += 1.0; if (viewCell->mMailbox != backId) viewCell->mMailbox = frontId; else viewCell->mMailbox = frontAndBackId; ++ totalViewCells; } } else if (classification == Polygon3::BACK_SIDE) { if ((viewCell->mMailbox != backId) && (viewCell->mMailbox != frontAndBackId)) { sumBalancedViewCells -= 1.0; if (viewCell->mMailbox != frontId) viewCell->mMailbox = backId; else viewCell->mMailbox = frontAndBackId; ++ totalViewCells; } } } } const float polysSize = (float)polys.size() + Limits::Small; // all values should be approx. between 0 and 1 so they can be combined // and scaled with the factors according to their importance if (mSplitPlaneStrategy & BALANCED_POLYS) val += mBalancedPolysFactor * fabs(sumBalancedPolys) / polysSize; if (mSplitPlaneStrategy & LEAST_SPLITS) val += mLeastSplitsFactor * sumSplits / polysSize; if (mSplitPlaneStrategy & LARGEST_POLY_AREA) // HACK: polys.size should be total area so scaling is between 0 and 1 val += mLargestPolyAreaFactor * (float)polys.size() / sumPolyArea; if (mSplitPlaneStrategy & BLOCKED_RAYS) if (totalBlockedRays != 0) val += mBlockedRaysFactor * (totalBlockedRays - sumBlockedRays) / totalBlockedRays; if (mSplitPlaneStrategy & BALANCED_VIEW_CELLS) val += mBalancedViewCellsFactor * fabs(sumBalancedViewCells) / ((float)totalViewCells + Limits::Small); return val; } inline void BspTree::GenerateUniqueIdsForPvs() { ViewCell::NewMail(); sBackId = ViewCell::sMailId; ViewCell::NewMail(); sFrontId = ViewCell::sMailId; ViewCell::NewMail(); sFrontAndBackId = ViewCell::sMailId; } float BspTree::SplitPlaneCost(const Plane3 &candidatePlane, const BoundedRayContainer &rays, const int pvs, const float probability, const BspNodeGeometry &cell) const { float val = 0; float sumBalancedRays = 0; float sumRaySplits = 0; int frontPvs = 0; int backPvs = 0; // probability that view point lies in child float pOverall = 0; float pFront = 0; float pBack = 0; const bool pvsUseLen = false; if (mSplitPlaneStrategy & PVS) { // create unique ids for pvs heuristics GenerateUniqueIdsForPvs(); // construct child geometry with regard to the candidate split plane BspNodeGeometry frontCell; BspNodeGeometry backCell; cell.SplitGeometry(frontCell, backCell, candidatePlane, mBox, mEpsilon); if (mUseAreaForPvs) { pFront = frontCell.GetArea(); pBack = backCell.GetArea(); } else { pFront = frontCell.GetVolume(); pBack = pOverall - pFront; } pOverall = probability; } bool useRand; int limit; // choose test polyongs randomly if over threshold if ((int)rays.size() > mMaxTests) { useRand = true; limit = mMaxTests; } else { useRand = false; limit = (int)rays.size(); } for (int i = 0; i < limit; ++ i) { const int testIdx = useRand ? (int)RandomValue(0, (Real)(limit - 1)) : i; BoundedRay *bRay = rays[testIdx]; Ray *ray = bRay->mRay; const float minT = bRay->mMinT; const float maxT = bRay->mMaxT; Vector3 entP, extP; const int cf = ray->ClassifyPlane(candidatePlane, minT, maxT, entP, extP); if (mSplitPlaneStrategy & LEAST_RAY_SPLITS) { sumBalancedRays += sBalancedRaysTable[cf]; } if (mSplitPlaneStrategy & BALANCED_RAYS) { sumRaySplits += sLeastRaySplitsTable[cf]; } if (mSplitPlaneStrategy & PVS) { // in case the ray intersects an object // assure that we only count the object // once for the front and once for the back side of the plane // add the termination object if (!ray->intersections.empty()) AddObjToPvs(ray->intersections[0].mObject, cf, frontPvs, backPvs); // add the source object AddObjToPvs(ray->sourceObject.mObject, cf, frontPvs, backPvs); } } const float raysSize = (float)rays.size() + Limits::Small; if (mSplitPlaneStrategy & LEAST_RAY_SPLITS) val += mLeastRaySplitsFactor * sumRaySplits / raysSize; if (mSplitPlaneStrategy & BALANCED_RAYS) val += mBalancedRaysFactor * fabs(sumBalancedRays) / raysSize; const float denom = pOverall * (float)pvs * 2.0f + Limits::Small; if (mSplitPlaneStrategy & PVS) { val += mPvsFactor * (frontPvs * pFront + (backPvs * pBack)) / denom; // give penalty to unbalanced split if (0) if (((pFront * 0.2 + Limits::Small) > pBack) || (pFront < (pBack * 0.2 + Limits::Small))) val += 0.5; } #ifdef _DEBUG Debug << "totalpvs: " << pvs << " ptotal: " << pOverall << " frontpvs: " << frontPvs << " pFront: " << pFront << " backpvs: " << backPvs << " pBack: " << pBack << endl << endl; #endif return val; } void BspTree::AddObjToPvs(Intersectable *obj, const int cf, int &frontPvs, int &backPvs) const { if (!obj) return; // TODO: does this really belong to no pvs? //if (cf == Ray::COINCIDENT) return; // object belongs to both PVS const bool bothSides = (cf == Ray::FRONT_BACK) || (cf == Ray::BACK_FRONT) || (cf == Ray::COINCIDENT); if ((cf == Ray::FRONT) || bothSides) { if ((obj->mMailbox != sFrontId) && (obj->mMailbox != sFrontAndBackId)) { ++ frontPvs; if (obj->mMailbox == sBackId) obj->mMailbox = sFrontAndBackId; else obj->mMailbox = sFrontId; } } if ((cf == Ray::BACK) || bothSides) { if ((obj->mMailbox != sBackId) && (obj->mMailbox != sFrontAndBackId)) { ++ backPvs; if (obj->mMailbox == sFrontId) obj->mMailbox = sFrontAndBackId; else obj->mMailbox = sBackId; } } } float BspTree::SplitPlaneCost(const Plane3 &candidatePlane, BspTraversalData &data) const { float val = 0; if (mSplitPlaneStrategy & VERTICAL_AXIS) { Vector3 tinyAxis(0,0,0); tinyAxis[mBox.Size().TinyAxis()] = 1.0f; // we put a penalty on the dot product between the "tiny" vertical axis // and the split plane axis val += mVerticalSplitsFactor * fabs(DotProd(candidatePlane.mNormal, tinyAxis)); } // the following criteria loop over all polygons to find the cost value if ((mSplitPlaneStrategy & BALANCED_POLYS) || (mSplitPlaneStrategy & LEAST_SPLITS) || (mSplitPlaneStrategy & LARGEST_POLY_AREA) || (mSplitPlaneStrategy & BALANCED_VIEW_CELLS) || (mSplitPlaneStrategy & BLOCKED_RAYS)) { val += SplitPlaneCost(candidatePlane, *data.mPolygons); } // the following criteria loop over all rays to find the cost value if ((mSplitPlaneStrategy & BALANCED_RAYS) || (mSplitPlaneStrategy & LEAST_RAY_SPLITS) || (mSplitPlaneStrategy & PVS)) { val += SplitPlaneCost(candidatePlane, *data.mRays, data.mPvs, data.mProbability, *data.mGeometry); } // return linear combination of the sums return val; } void BspTree::CollectLeaves(vector &leaves) const { stack nodeStack; nodeStack.push(mRoot); while (!nodeStack.empty()) { BspNode *node = nodeStack.top(); nodeStack.pop(); if (node->IsLeaf()) { BspLeaf *leaf = (BspLeaf *)node; leaves.push_back(leaf); } else { BspInterior *interior = dynamic_cast(node); nodeStack.push(interior->GetBack()); nodeStack.push(interior->GetFront()); } } } AxisAlignedBox3 BspTree::GetBoundingBox() const { return mBox; } void BspTree::EvaluateLeafStats(const BspTraversalData &data) { // the node became a leaf -> evaluate stats for leafs BspLeaf *leaf = dynamic_cast(data.mNode); // store maximal and minimal depth if (data.mDepth > mStat.maxDepth) mStat.maxDepth = data.mDepth; if (data.mDepth < mStat.minDepth) mStat.minDepth = data.mDepth; // accumulate depth to compute average depth mStat.accumDepth += data.mDepth; // accumulate rays to compute rays / leaf mStat.accumRays += (int)data.mRays->size(); if (data.mDepth >= mTermMaxDepth) ++ mStat.maxDepthNodes; if (data.mPvs < mTermMinPvs) ++ mStat.minPvsNodes; if ((int)data.mRays->size() < mTermMinRays) ++ mStat.minRaysNodes; if (data.GetAvgRayContribution() > mTermMaxRayContribution) ++ mStat.maxRayContribNodes; if (data.mProbability <= mTermMinProbability) ++ mStat.minProbabilityNodes; #ifdef _DEBUG Debug << "BSP stats: " << "Depth: " << data.mDepth << " (max: " << mTermMaxDepth << "), " << "PVS: " << data.mPvs << " (min: " << mTermMinPvs << "), " << "Probability: " << data.mProbability << " (min: " << mTermMinProbability << "), " << "#polygons: " << (int)data.mPolygons->size() << " (max: " << mTermMinPolys << "), " << "#rays: " << (int)data.mRays->size() << " (max: " << mTermMinRays << "), " << "#pvs: " << leaf->GetViewCell()->GetPvs().GetSize() << "=, " << "#avg ray contrib (pvs): " << (float)data.mPvs / (float)data.mRays->size() << endl; #endif } int BspTree::_CastRay(Ray &ray) { int hits = 0; stack tStack; float maxt, mint; if (!mBox.GetRaySegment(ray, mint, maxt)) return 0; ViewCell::NewMail(); Vector3 entp = ray.Extrap(mint); Vector3 extp = ray.Extrap(maxt); BspNode *node = mRoot; BspNode *farChild = NULL; while (1) { if (!node->IsLeaf()) { BspInterior *in = dynamic_cast(node); Plane3 splitPlane = in->GetPlane(); const int entSide = splitPlane.Side(entp); const int extSide = splitPlane.Side(extp); if (entSide < 0) { node = in->GetBack(); if(extSide <= 0) // plane does not split ray => no far child continue; farChild = in->GetFront(); // plane splits ray } else if (entSide > 0) { node = in->GetFront(); if (extSide >= 0) // plane does not split ray => no far child continue; farChild = in->GetBack(); // plane splits ray } else // ray and plane are coincident { // WHAT TO DO IN THIS CASE ? //break; node = in->GetFront(); continue; } // push data for far child tStack.push(BspRayTraversalData(farChild, extp, maxt)); // find intersection of ray segment with plane float t; extp = splitPlane.FindIntersection(ray.GetLoc(), extp, &t); maxt *= t; } else // reached leaf => intersection with view cell { BspLeaf *leaf = dynamic_cast(node); if (!leaf->mViewCell->Mailed()) { //ray.bspIntersections.push_back(Ray::BspIntersection(maxt, leaf)); leaf->mViewCell->Mail(); ++ hits; } //-- fetch the next far child from the stack if (tStack.empty()) break; entp = extp; mint = maxt; // NOTE: need this? if (ray.GetType() == Ray::LINE_SEGMENT && mint > 1.0f) break; BspRayTraversalData &s = tStack.top(); node = s.mNode; extp = s.mExitPoint; maxt = s.mMaxT; tStack.pop(); } } return hits; } int BspTree::CastLineSegment(const Vector3 &origin, const Vector3 &termination, vector &viewcells) { int hits = 0; stack tStack; float mint = 0.0f, maxt = 1.0f; Intersectable::NewMail(); ViewCell::NewMail(); Vector3 entp = origin; Vector3 extp = termination; BspNode *node = mRoot; BspNode *farChild = NULL; const float thresh = 1 ? 1e-6f : 0.0f; while (1) { if (!node->IsLeaf()) { BspInterior *in = dynamic_cast(node); Plane3 splitPlane = in->GetPlane(); const int entSide = splitPlane.Side(entp, thresh); const int extSide = splitPlane.Side(extp, thresh); if (entSide < 0) { node = in->GetBack(); if(extSide <= 0) // plane does not split ray => no far child continue; farChild = in->GetFront(); // plane splits ray } else if (entSide > 0) { node = in->GetFront(); if (extSide >= 0) // plane does not split ray => no far child continue; farChild = in->GetBack(); // plane splits ray } else // ray and plane are coincident { // NOTE: what to do if ray is coincident with plane? if (extSide < 0) node = in->GetBack(); else node = in->GetFront(); continue; // no far child } // push data for far child tStack.push(BspRayTraversalData(farChild, extp, maxt)); // find intersection of ray segment with plane float t; extp = splitPlane.FindIntersection(origin, extp, &t); maxt *= t; } else { // reached leaf => intersection with view cell BspLeaf *leaf = dynamic_cast(node); if (!leaf->mViewCell->Mailed()) { viewcells.push_back(leaf->mViewCell); leaf->mViewCell->Mail(); hits++; } //-- fetch the next far child from the stack if (tStack.empty()) break; entp = extp; mint = maxt; // NOTE: need this? BspRayTraversalData &s = tStack.top(); node = s.mNode; extp = s.mExitPoint; maxt = s.mMaxT; tStack.pop(); } } return hits; } void BspTree::CollectViewCells(ViewCellContainer &viewCells) const { stack nodeStack; nodeStack.push(mRoot); ViewCell::NewMail(); while (!nodeStack.empty()) { BspNode *node = nodeStack.top(); nodeStack.pop(); if (node->IsLeaf()) { ViewCell *viewCell = dynamic_cast(node)->mViewCell; if (!viewCell->Mailed()) { viewCell->Mail(); viewCells.push_back(viewCell); } } else { BspInterior *interior = dynamic_cast(node); nodeStack.push(interior->GetFront()); nodeStack.push(interior->GetBack()); } } } BspTreeStatistics &BspTree::GetStat() { return mStat; } float BspTree::AccumulatedRayLength(BoundedRayContainer &rays) const { float len = 0; BoundedRayContainer::const_iterator it, it_end = rays.end(); for (it = rays.begin(); it != it_end; ++ it) { len += SqrDistance((*it)->mRay->Extrap((*it)->mMinT), (*it)->mRay->Extrap((*it)->mMaxT)); } return len; } int BspTree::SplitRays(const Plane3 &plane, BoundedRayContainer &rays, BoundedRayContainer &frontRays, BoundedRayContainer &backRays) { int splits = 0; while (!rays.empty()) { BoundedRay *bRay = rays.back(); Ray *ray = bRay->mRay; float minT = bRay->mMinT; float maxT = bRay->mMaxT; rays.pop_back(); Vector3 entP, extP; const int cf = ray->ClassifyPlane(plane, minT, maxT, entP, extP); // set id to ray classification ray->SetId(cf); switch (cf) { case Ray::COINCIDENT: // TODO: should really discard ray? frontRays.push_back(bRay); //DEL_PTR(bRay); break; case Ray::BACK: backRays.push_back(bRay); break; case Ray::FRONT: frontRays.push_back(bRay); break; case Ray::FRONT_BACK: { // find intersection of ray segment with plane const float t = plane.FindT(ray->GetLoc(), extP); const float newT = t * maxT; frontRays.push_back(new BoundedRay(ray, minT, newT)); backRays.push_back(new BoundedRay(ray, newT, maxT)); DEL_PTR(bRay); } break; case Ray::BACK_FRONT: { // find intersection of ray segment with plane const float t = plane.FindT(ray->GetLoc(), extP); const float newT = t * bRay->mMaxT; backRays.push_back(new BoundedRay(ray, minT, newT)); frontRays.push_back(new BoundedRay(ray, newT, maxT)); DEL_PTR(bRay); ++ splits; } break; default: Debug << "Should not come here 4" << endl; break; } } return splits; } void BspTree::ExtractHalfSpaces(BspNode *n, vector &halfSpaces) const { BspNode *lastNode; do { lastNode = n; // want to get planes defining geometry of this node => don't take // split plane of node itself n = n->GetParent(); if (n) { BspInterior *interior = dynamic_cast(n); Plane3 halfSpace = dynamic_cast(interior)->GetPlane(); if (interior->GetFront() != lastNode) halfSpace.ReverseOrientation(); halfSpaces.push_back(halfSpace); } } while (n); } void BspTree::ConstructGeometry(ViewCell *vc, BspNodeGeometry &vcGeom) const { ViewCellContainer leaves; mViewCellsTree->CollectLeaves(vc, leaves); ViewCellContainer::const_iterator it, it_end = leaves.end(); for (it = leaves.begin(); it != it_end; ++ it) { BspLeaf *l = dynamic_cast(*it)->mLeaf; ConstructGeometry(l, vcGeom); } } void BspTree::SetViewCellsManager(ViewCellsManager *vcm) { mViewCellsManager = vcm; } void BspTree::ConstructGeometry(BspNode *n, BspNodeGeometry &geom) const { vector halfSpaces; ExtractHalfSpaces(n, halfSpaces); PolygonContainer candidates; // bounded planes are added to the polygons (reverse polygons // as they have to be outfacing for (int i = 0; i < (int)halfSpaces.size(); ++ i) { Polygon3 *p = GetBoundingBox().CrossSection(halfSpaces[i]); if (p->Valid(mEpsilon)) { candidates.push_back(p->CreateReversePolygon()); DEL_PTR(p); } } // add faces of bounding box (also could be faces of the cell) for (int i = 0; i < 6; ++ i) { VertexContainer vertices; for (int j = 0; j < 4; ++ j) vertices.push_back(mBox.GetFace(i).mVertices[j]); candidates.push_back(new Polygon3(vertices)); } for (int i = 0; i < (int)candidates.size(); ++ i) { // polygon is split by all other planes for (int j = 0; (j < (int)halfSpaces.size()) && candidates[i]; ++ j) { if (i == j) // polygon and plane are coincident continue; VertexContainer splitPts; Polygon3 *frontPoly, *backPoly; const int cf = candidates[i]-> ClassifyPlane(halfSpaces[j], mEpsilon); switch (cf) { case Polygon3::SPLIT: frontPoly = new Polygon3(); backPoly = new Polygon3(); candidates[i]->Split(halfSpaces[j], *frontPoly, *backPoly, mEpsilon); DEL_PTR(candidates[i]); if (frontPoly->Valid(mEpsilon)) candidates[i] = frontPoly; else DEL_PTR(frontPoly); DEL_PTR(backPoly); break; case Polygon3::BACK_SIDE: DEL_PTR(candidates[i]); break; // just take polygon as it is case Polygon3::FRONT_SIDE: case Polygon3::COINCIDENT: default: break; } } if (candidates[i]) geom.mPolys.push_back(candidates[i]); } } typedef pair bspNodePair; int BspTree::FindNeighbors(BspNode *n, vector &neighbors, const bool onlyUnmailed) const { stack nodeStack; BspNodeGeometry nodeGeom; ConstructGeometry(n, nodeGeom); // split planes from the root to this node // needed to verify that we found neighbor leaf // TODO: really needed? vector halfSpaces; ExtractHalfSpaces(n, halfSpaces); BspNodeGeometry *rgeom = new BspNodeGeometry(); ConstructGeometry(mRoot, *rgeom); nodeStack.push(bspNodePair(mRoot, rgeom)); while (!nodeStack.empty()) { BspNode *node = nodeStack.top().first; BspNodeGeometry *geom = nodeStack.top().second; nodeStack.pop(); if (node->IsLeaf()) { // test if this leaf is in valid view space if (node->TreeValid() && (node != n) && (!onlyUnmailed || !node->Mailed())) { bool isAdjacent = true; if (1) { // test all planes of current node if still adjacent for (int i = 0; (i < halfSpaces.size()) && isAdjacent; ++ i) { const int cf = Polygon3::ClassifyPlane(geom->mPolys, halfSpaces[i], mEpsilon); if (cf == Polygon3::BACK_SIDE) { isAdjacent = false; } } } else { // TODO: why is this wrong?? // test all planes of current node if still adjacent for (int i = 0; (i < (int)nodeGeom.mPolys.size()) && isAdjacent; ++ i) { Polygon3 *poly = nodeGeom.mPolys[i]; const int cf = Polygon3::ClassifyPlane(geom->mPolys, poly->GetSupportingPlane(), mEpsilon); if (cf == Polygon3::BACK_SIDE) { isAdjacent = false; } } } // neighbor was found if (isAdjacent) { neighbors.push_back(dynamic_cast(node)); } } } else { BspInterior *interior = dynamic_cast(node); const int cf = Polygon3::ClassifyPlane(nodeGeom.mPolys, interior->GetPlane(), mEpsilon); BspNode *front = interior->GetFront(); BspNode *back = interior->GetBack(); BspNodeGeometry *fGeom = new BspNodeGeometry(); BspNodeGeometry *bGeom = new BspNodeGeometry(); geom->SplitGeometry(*fGeom, *bGeom, interior->GetPlane(), mBox, mEpsilon); if (cf == Polygon3::FRONT_SIDE) { nodeStack.push(bspNodePair(interior->GetFront(), fGeom)); DEL_PTR(bGeom); } else { if (cf == Polygon3::BACK_SIDE) { nodeStack.push(bspNodePair(interior->GetBack(), bGeom)); DEL_PTR(fGeom); } else { // random decision nodeStack.push(bspNodePair(front, fGeom)); nodeStack.push(bspNodePair(back, bGeom)); } } } DEL_PTR(geom); } return (int)neighbors.size(); } BspLeaf *BspTree::GetRandomLeaf(const Plane3 &halfspace) { stack nodeStack; nodeStack.push(mRoot); int mask = rand(); while (!nodeStack.empty()) { BspNode *node = nodeStack.top(); nodeStack.pop(); if (node->IsLeaf()) { return dynamic_cast(node); } else { BspInterior *interior = dynamic_cast(node); BspNode *next; BspNodeGeometry geom; // todo: not very efficient: constructs full cell everytime ConstructGeometry(interior, geom); const int cf = Polygon3::ClassifyPlane(geom.mPolys, halfspace, mEpsilon); if (cf == Polygon3::BACK_SIDE) next = interior->GetFront(); else if (cf == Polygon3::FRONT_SIDE) next = interior->GetFront(); else { // random decision if (mask & 1) next = interior->GetBack(); else next = interior->GetFront(); mask = mask >> 1; } nodeStack.push(next); } } return NULL; } BspLeaf *BspTree::GetRandomLeaf(const bool onlyUnmailed) { stack nodeStack; nodeStack.push(mRoot); int mask = rand(); while (!nodeStack.empty()) { BspNode *node = nodeStack.top(); nodeStack.pop(); if (node->IsLeaf()) { if ( (!onlyUnmailed || !node->Mailed()) ) return dynamic_cast(node); } else { BspInterior *interior = dynamic_cast(node); // random decision if (mask & 1) nodeStack.push(interior->GetBack()); else nodeStack.push(interior->GetFront()); mask = mask >> 1; } } return NULL; } void BspTree::AddToPvs(BspLeaf *leaf, const BoundedRayContainer &rays, int &sampleContributions, int &contributingSamples) { sampleContributions = 0; contributingSamples = 0; BoundedRayContainer::const_iterator it, it_end = rays.end(); ViewCell *vc = leaf->GetViewCell(); // add contributions from samples to the PVS for (it = rays.begin(); it != it_end; ++ it) { int contribution = 0; Ray *ray = (*it)->mRay; float relContribution; if (!ray->intersections.empty()) contribution += vc->GetPvs().AddSample(ray->intersections[0].mObject, 1.0f, relContribution); if (ray->sourceObject.mObject) contribution += vc->GetPvs().AddSample(ray->sourceObject.mObject, 1.0f, relContribution); if (contribution) { sampleContributions += contribution; ++ contributingSamples; } //if (ray->mFlags & Ray::STORE_BSP_INTERSECTIONS) // ray->bspIntersections.push_back(Ray::BspIntersection((*it)->mMinT, this)); } } int BspTree::ComputePvsSize(const BoundedRayContainer &rays) const { int pvsSize = 0; BoundedRayContainer::const_iterator rit, rit_end = rays.end(); Intersectable::NewMail(); for (rit = rays.begin(); rit != rays.end(); ++ rit) { Ray *ray = (*rit)->mRay; if (!ray->intersections.empty()) { if (!ray->intersections[0].mObject->Mailed()) { ray->intersections[0].mObject->Mail(); ++ pvsSize; } } if (ray->sourceObject.mObject) { if (!ray->sourceObject.mObject->Mailed()) { ray->sourceObject.mObject->Mail(); ++ pvsSize; } } } return pvsSize; } float BspTree::GetEpsilon() const { return mEpsilon; } int BspTree::CollectMergeCandidates(const vector leaves, vector &candidates) { BspLeaf::NewMail(); vector::const_iterator it, it_end = leaves.end(); int numCandidates = 0; // find merge candidates and push them into queue for (it = leaves.begin(); it != it_end; ++ it) { BspLeaf *leaf = *it; // the same leaves must not be part of two merge candidates leaf->Mail(); vector neighbors; FindNeighbors(leaf, neighbors, true); vector::const_iterator nit, nit_end = neighbors.end(); // TODO: test if at least one ray goes from one leaf to the other for (nit = neighbors.begin(); nit != nit_end; ++ nit) { if ((*nit)->GetViewCell() != leaf->GetViewCell()) { MergeCandidate mc(leaf->GetViewCell(), (*nit)->GetViewCell()); candidates.push_back(mc); ++ numCandidates; if ((numCandidates % 1000) == 0) { cout << "collected " << numCandidates << " merge candidates" << endl; } } } } Debug << "merge queue: " << (int)candidates.size() << endl; Debug << "leaves in queue: " << numCandidates << endl; return (int)leaves.size(); } int BspTree::CollectMergeCandidates(const VssRayContainer &rays, vector &candidates) { ViewCell::NewMail(); long startTime = GetTime(); map > neighborMap; ViewCellContainer::const_iterator iit; int numLeaves = 0; BspLeaf::NewMail(); for (int i = 0; i < (int)rays.size(); ++ i) { VssRay *ray = rays[i]; // traverse leaves stored in the rays and compare and // merge consecutive leaves (i.e., the neighbors in the tree) if (ray->mViewCells.size() < 2) continue; iit = ray->mViewCells.begin(); BspViewCell *bspVc = dynamic_cast(*(iit ++)); BspLeaf *leaf = bspVc->mLeaf; // traverse intersections // consecutive leaves are neighbors => add them to queue for (; iit != ray->mViewCells.end(); ++ iit) { // next pair BspLeaf *prevLeaf = leaf; bspVc = dynamic_cast(*iit); leaf = bspVc->mLeaf; // view space not valid or same view cell if (!leaf->TreeValid() || !prevLeaf->TreeValid() || (leaf->GetViewCell() == prevLeaf->GetViewCell())) continue; vector &neighbors = neighborMap[leaf]; bool found = false; // both leaves inserted in queue already => // look if double pair already exists if (leaf->Mailed() && prevLeaf->Mailed()) { vector::const_iterator it, it_end = neighbors.end(); for (it = neighbors.begin(); !found && (it != it_end); ++ it) if (*it == prevLeaf) found = true; // already in queue } if (!found) { // this pair is not in map yet // => insert into the neighbor map and the queue neighbors.push_back(prevLeaf); neighborMap[prevLeaf].push_back(leaf); leaf->Mail(); prevLeaf->Mail(); MergeCandidate mc(leaf->GetViewCell(), prevLeaf->GetViewCell()); candidates.push_back(mc); if (((int)candidates.size() % 1000) == 0) { cout << "collected " << (int)candidates.size() << " merge candidates" << endl; } } } } Debug << "neighbormap size: " << (int)neighborMap.size() << endl; Debug << "merge queue: " << (int)candidates.size() << endl; Debug << "leaves in queue: " << numLeaves << endl; //-- collect the leaves which haven't been found by ray casting #if 0 cout << "finding additional merge candidates using geometry" << endl; vector leaves; CollectLeaves(leaves, true); Debug << "found " << (int)leaves.size() << " new leaves" << endl << endl; CollectMergeCandidates(leaves, candidates); #endif return numLeaves; } /***************************************************************/ /* BspNodeGeometry Implementation */ /***************************************************************/ BspNodeGeometry::BspNodeGeometry(const BspNodeGeometry &rhs) { mPolys.reserve(rhs.mPolys.size()); PolygonContainer::const_iterator it, it_end = rhs.mPolys.end(); for (it = rhs.mPolys.begin(); it != it_end; ++ it) { Polygon3 *poly = *it; mPolys.push_back(new Polygon3(*poly)); } } BspNodeGeometry::~BspNodeGeometry() { CLEAR_CONTAINER(mPolys); } float BspNodeGeometry::GetArea() const { return Polygon3::GetArea(mPolys); } float BspNodeGeometry::GetVolume() const { //-- compute volume using tetrahedralization of the geometry // and adding the volume of the single tetrahedrons float volume = 0; const float f = 1.0f / 6.0f; PolygonContainer::const_iterator pit, pit_end = mPolys.end(); // note: can take arbitrary point, e.g., the origin. However, // we rather take the center of mass to prevents precision errors const Vector3 center = CenterOfMass(); for (pit = mPolys.begin(); pit != pit_end; ++ pit) { Polygon3 *poly = *pit; const Vector3 v0 = poly->mVertices[0] - center; for (int i = 1; i < (int)poly->mVertices.size() - 1; ++ i) { const Vector3 v1 = poly->mVertices[i] - center; const Vector3 v2 = poly->mVertices[i + 1] - center; volume += f * (DotProd(v0, CrossProd(v1, v2))); } } return volume; } Vector3 BspNodeGeometry::CenterOfMass() const { int n = 0; Vector3 center(0,0,0); PolygonContainer::const_iterator pit, pit_end = mPolys.end(); for (pit = mPolys.begin(); pit != pit_end; ++ pit) { Polygon3 *poly = *pit; VertexContainer::const_iterator vit, vit_end = poly->mVertices.end(); for(vit = poly->mVertices.begin(); vit != vit_end; ++ vit) { center += *vit; ++ n; } } return center / (float)n; } void BspNodeGeometry::AddToMesh(Mesh &mesh) { PolygonContainer::const_iterator it, it_end = mPolys.end(); for (it = mPolys.begin(); it != mPolys.end(); ++ it) { (*it)->AddToMesh(mesh); } } void BspNodeGeometry::SplitGeometry(BspNodeGeometry &front, BspNodeGeometry &back, const Plane3 &splitPlane, const AxisAlignedBox3 &box, const float epsilon) const { // get cross section of new polygon Polygon3 *planePoly = box.CrossSection(splitPlane); // split polygon with all other polygons planePoly = SplitPolygon(planePoly, epsilon); //-- new polygon splits all other polygons for (int i = 0; i < (int)mPolys.size(); ++ i) { /// don't use epsilon here to get exact split planes const int cf = mPolys[i]->ClassifyPlane(splitPlane, Limits::Small); switch (cf) { case Polygon3::SPLIT: { Polygon3 *poly = new Polygon3(mPolys[i]->mVertices); Polygon3 *frontPoly = new Polygon3(); Polygon3 *backPoly = new Polygon3(); poly->Split(splitPlane, *frontPoly, *backPoly, epsilon); DEL_PTR(poly); if (frontPoly->Valid(epsilon)) front.mPolys.push_back(frontPoly); else DEL_PTR(frontPoly); if (backPoly->Valid(epsilon)) back.mPolys.push_back(backPoly); else DEL_PTR(backPoly); } break; case Polygon3::BACK_SIDE: back.mPolys.push_back(new Polygon3(mPolys[i]->mVertices)); break; case Polygon3::FRONT_SIDE: front.mPolys.push_back(new Polygon3(mPolys[i]->mVertices)); break; case Polygon3::COINCIDENT: //front.mPolys.push_back(CreateReversePolygon(mPolys[i])); back.mPolys.push_back(new Polygon3(mPolys[i]->mVertices)); break; default: break; } } //-- finally add the new polygon to the child node geometries if (planePoly) { // add polygon with normal pointing into positive half space to back cell back.mPolys.push_back(planePoly); // add polygon with reverse orientation to front cell front.mPolys.push_back(planePoly->CreateReversePolygon()); } } Polygon3 *BspNodeGeometry::SplitPolygon(Polygon3 *planePoly, const float epsilon) const { if (!planePoly->Valid(epsilon)) DEL_PTR(planePoly); // polygon is split by all other planes for (int i = 0; (i < (int)mPolys.size()) && planePoly; ++ i) { Plane3 plane = mPolys[i]->GetSupportingPlane(); /// don't use epsilon here to get exact split planes const int cf = planePoly->ClassifyPlane(plane, Limits::Small); // split new polygon with all previous planes switch (cf) { case Polygon3::SPLIT: { Polygon3 *frontPoly = new Polygon3(); Polygon3 *backPoly = new Polygon3(); planePoly->Split(plane, *frontPoly, *backPoly, epsilon); // don't need anymore DEL_PTR(planePoly); DEL_PTR(frontPoly); // back polygon is belonging to geometry if (backPoly->Valid(epsilon)) planePoly = backPoly; else DEL_PTR(backPoly); } break; case Polygon3::FRONT_SIDE: DEL_PTR(planePoly); break; // polygon is taken as it is case Polygon3::BACK_SIDE: case Polygon3::COINCIDENT: default: break; } } return planePoly; } ViewCell * BspTree::GetViewCell(const Vector3 &point) { if (mRoot == NULL) return NULL; stack nodeStack; nodeStack.push(mRoot); ViewCell *viewcell = NULL; while (!nodeStack.empty()) { BspNode *node = nodeStack.top(); nodeStack.pop(); if (node->IsLeaf()) { viewcell = dynamic_cast(node)->mViewCell; break; } else { BspInterior *interior = dynamic_cast(node); // random decision if (interior->GetPlane().Side(point) < 0) nodeStack.push(interior->GetBack()); else nodeStack.push(interior->GetFront()); } } return viewcell; } void BspNodeGeometry::IncludeInBox(AxisAlignedBox3 &box) { Polygon3::IncludeInBox(mPolys, box); } bool BspTree::Export(ofstream &stream) { ExportNode(mRoot, stream); return true; } void BspTree::ExportNode(BspNode *node, ofstream &stream) { if (node->IsLeaf()) { BspLeaf *leaf = dynamic_cast(node); int id = -1; if (leaf->GetViewCell() != mOutOfBoundsCell) id = leaf->GetViewCell()->GetId(); stream << "" << endl; } else { BspInterior *interior = dynamic_cast(node); Plane3 plane = interior->GetPlane(); stream << "" << endl; ExportNode(interior->GetBack(), stream); ExportNode(interior->GetFront(), stream); stream << "" << endl; } }