#include "ViewCellsManager.h" #include "RenderSimulator.h" #include "Mesh.h" #include "Triangle3.h" #include "ViewCell.h" #include "Environment.h" #include "X3dParser.h" #include "ViewCellBsp.h" #include "KdTree.h" #include "HierarchyManager.h" #include "Exporter.h" #include "VspBspTree.h" #include "ViewCellsParser.h" #include "Beam.h" #include "VssPreprocessor.h" #include "RssPreprocessor.h" #include "BoundingBoxConverter.h" #include "GlRenderer.h" #include "ResourceManager.h" #include "IntersectableWrapper.h" #include "VspTree.h" #include "OspTree.h" #include "BvHierarchy.h" #include "SamplingStrategy.h" #include "SceneGraph.h" #define ABS_CONTRIBUTION_WEIGHT 1.0f // warning: Should not count origin object for sampling because it disturbs heuristics #define SAMPLE_ORIGIN_OBJECTS 0 // matt temp // $$JB HACK #define USE_KD_PVS 0 #define KD_PVS_AREA (5*1e-4f) namespace GtpVisibilityPreprocessor { // HACK const static bool SAMPLE_AFTER_SUBDIVISION = true; const static bool CLAMP_TO_BOX = false; //const static bool CLAMP_TO_BOX = true; int ViewCellsManager::sRenderCostEvaluationType = 0; template class myless { public: //bool operator() (HierarchyNode *v1, HierarchyNode *v2) const bool operator() (T v1, T v2) const { return (v1->GetMergeCost() < v2->GetMergeCost()); } }; ViewCellsManager::ViewCellsManager(ViewCellsTree *viewCellsTree): mRenderer(NULL), mInitialSamples(0), mConstructionSamples(0), mPostProcessSamples(0), mVisualizationSamples(0), mTotalAreaValid(false), mTotalArea(0.0f), mViewCellsFinished(false), mMaxPvsSize(9999999), mMinPvsSize(0), mMaxPvsRatio(1.0), mViewCellPvsIsUpdated(false), mPreprocessor(NULL), mViewCellsTree(viewCellsTree), mUsePredefinedViewCells(false) { mViewSpaceBox.Initialize(); ParseEnvironment(); mViewCellsTree->SetViewCellsManager(this); } void ViewCellsManager::ParseEnvironment() { // visualization stuff Environment::GetSingleton()->GetBoolValue("ViewCells.Visualization.exportRays", mExportRays); Environment::GetSingleton()->GetBoolValue("ViewCells.Visualization.exportGeometry", mExportGeometry); Environment::GetSingleton()->GetFloatValue("ViewCells.maxPvsRatio", mMaxPvsRatio); Environment::GetSingleton()->GetBoolValue("ViewCells.processOnlyValidViewCells", mOnlyValidViewCells); Environment::GetSingleton()->GetIntValue("ViewCells.Construction.samples", mConstructionSamples); Environment::GetSingleton()->GetIntValue("ViewCells.PostProcess.samples", mPostProcessSamples); Environment::GetSingleton()->GetBoolValue("ViewCells.PostProcess.useRaysForMerge", mUseRaysForMerge); Environment::GetSingleton()->GetIntValue("ViewCells.Visualization.samples", mVisualizationSamples); Environment::GetSingleton()->GetIntValue("ViewCells.Construction.samplesPerPass", mSamplesPerPass); Environment::GetSingleton()->GetBoolValue("ViewCells.exportToFile", mExportViewCells); Environment::GetSingleton()->GetIntValue("ViewCells.active", mNumActiveViewCells); Environment::GetSingleton()->GetBoolValue("ViewCells.PostProcess.compress", mCompressViewCells); Environment::GetSingleton()->GetBoolValue("ViewCells.Visualization.useClipPlane", mUseClipPlaneForViz); Environment::GetSingleton()->GetBoolValue("ViewCells.PostProcess.merge", mMergeViewCells); Environment::GetSingleton()->GetBoolValue("ViewCells.evaluateViewCells", mEvaluateViewCells); Environment::GetSingleton()->GetBoolValue("ViewCells.showVisualization", mShowVisualization); Environment::GetSingleton()->GetIntValue("ViewCells.Filter.maxSize", mMaxFilterSize); Environment::GetSingleton()->GetFloatValue("ViewCells.Filter.width", mFilterWidth); Environment::GetSingleton()->GetIntValue("ViewCells.renderCostEvaluationType", sRenderCostEvaluationType); Environment::GetSingleton()->GetBoolValue("ViewCells.exportBboxesForPvs", mExportBboxesForPvs); Environment::GetSingleton()->GetBoolValue("ViewCells.exportPvs", mExportPvs); char buf[100]; Environment::GetSingleton()->GetStringValue("ViewCells.samplingType", buf); // sampling type for view cells construction samples if (strcmp(buf, "object") == 0) { mSamplingType = SamplingStrategy::OBJECT_BASED_DISTRIBUTION; } else if (strcmp(buf, "box") == 0) { mSamplingType = SamplingStrategy::SPATIAL_BOX_BASED_DISTRIBUTION; } else if (strcmp(buf, "directional") == 0) { mSamplingType = SamplingStrategy::DIRECTION_BASED_DISTRIBUTION; } else if (strcmp(buf, "object_directional") == 0) { mSamplingType = SamplingStrategy::OBJECT_DIRECTION_BASED_DISTRIBUTION; } else if (strcmp(buf, "reverse_object") == 0) { mSamplingType = SamplingStrategy::REVERSE_OBJECT_BASED_DISTRIBUTION; } /*else if (strcmp(buf, "interior") == 0) { mSamplingType = Preprocessor::OBJECTS_INTERIOR_DISTRIBUTION; }*/ else { Debug << "error! wrong sampling type" << endl; exit(0); } // sampling type for evaluation samples Environment::GetSingleton()->GetStringValue("ViewCells.Evaluation.samplingType", buf); if (strcmp(buf, "object") == 0) { mEvaluationSamplingType = SamplingStrategy::OBJECT_BASED_DISTRIBUTION; } else if (strcmp(buf, "box") == 0) { mEvaluationSamplingType = SamplingStrategy::SPATIAL_BOX_BASED_DISTRIBUTION; } else if (strcmp(buf, "directional") == 0) { mEvaluationSamplingType = SamplingStrategy::DIRECTION_BASED_DISTRIBUTION; } else if (strcmp(buf, "object_directional") == 0) { mEvaluationSamplingType = SamplingStrategy::OBJECT_DIRECTION_BASED_DISTRIBUTION; } else if (strcmp(buf, "reverse_object") == 0) { mEvaluationSamplingType = SamplingStrategy::REVERSE_OBJECT_BASED_DISTRIBUTION; } /*else if (strcmp(buf, "interior") == 0) { mEvaluationSamplingType = SamplingStrategy::OBJECTS_INTERIOR_DISTRIBUTION; }*/ else { mEvaluationSamplingType = -1; Debug << "error! wrong sampling type" << endl; exit(0); } Environment::GetSingleton()->GetStringValue("ViewCells.renderCostEvaluationType", buf); if (strcmp(buf, "perobject") == 0) { sRenderCostEvaluationType = ViewCellsManager::PER_OBJECT; } else if (strcmp(buf, "pertriangle") == 0) { sRenderCostEvaluationType = ViewCellsManager::PER_TRIANGLE; } else { Debug << "error! wrong sampling type" << endl; exit(0); } Environment::GetSingleton()->GetStringValue("ViewCells.Visualization.colorCode", buf); if (strcmp(buf, "PVS") == 0) mColorCode = 1; else if (strcmp(buf, "MergedLeaves") == 0) mColorCode = 2; else if (strcmp(buf, "MergedTreeDiff") == 0) mColorCode = 3; else mColorCode = 0; Debug << "************ View Cells Manager options ***************" << endl; Debug << "color code: " << mColorCode << endl; Debug << "export rays: " << mExportRays << endl; Debug << "export geometry: " << mExportGeometry << endl; Debug << "max pvs ratio: " << mMaxPvsRatio << endl; Debug << "process only valid view cells: " << mOnlyValidViewCells << endl; Debug << "construction samples: " << mConstructionSamples << endl; Debug << "post process samples: " << mPostProcessSamples << endl; Debug << "post process use rays for merge: " << mUseRaysForMerge << endl; Debug << "visualization samples: " << mVisualizationSamples << endl; Debug << "construction samples per pass: " << mSamplesPerPass << endl; Debug << "export to file: " << mExportViewCells << endl; Debug << "active view cells: " << mNumActiveViewCells << endl; Debug << "post process compress: " << mCompressViewCells << endl; Debug << "visualization use clipPlane: " << mUseClipPlaneForViz << endl; Debug << "post process merge: " << mMergeViewCells << endl; Debug << "evaluate view cells: " << mEvaluateViewCells << endl; Debug << "sampling type: " << mSamplingType << endl; Debug << "render cost evaluation type: " << sRenderCostEvaluationType << endl; Debug << "evaluation sampling type: " << mEvaluationSamplingType << endl; Debug << "show visualization: " << mShowVisualization << endl; Debug << "filter width: " << mFilterWidth << endl; Debug << "sample after subdivision: " << SAMPLE_AFTER_SUBDIVISION << endl; Debug << "export bounding boxes: " << mExportBboxesForPvs << endl; Debug << "export pvs for view cells: " << mExportPvs << endl; Debug << endl; } ViewCellsManager::~ViewCellsManager() { // HACK: if view cells tree does not // handle view cells, we have to do it here // question: rather create view cells resource manager? if (!ViewCellsTreeConstructed()) { CLEAR_CONTAINER(mViewCells); } else { DEL_PTR(mViewCellsTree); } } void ViewCellsManager::CollectObjects(const AxisAlignedBox3 &box, ObjectContainer &objects) { GetPreprocessor()->mKdTree->CollectObjects(box, objects); } AxisAlignedBox3 ViewCellsManager::GetViewCellBox(ViewCell *vc) { Mesh *m = vc->GetMesh(); if (m) { m->ComputeBoundingBox(); return m->mBox; } AxisAlignedBox3 box; box.Initialize(); if (!vc->IsLeaf()) { ViewCellInterior *vci = (ViewCellInterior *) vc; ViewCellContainer::iterator it = vci->mChildren.begin(); for (; it != vci->mChildren.end(); ++it) { box.Include(GetViewCellBox(*it)); } } return box; } int ViewCellsManager::CastPassSamples(const int samplesPerPass, const int sampleType, VssRayContainer &passSamples) const { SimpleRayContainer simpleRays; long startTime = GetTime(); // create one third of each type int stype; const int numStrategies = 3; stype = SamplingStrategy::OBJECT_BASED_DISTRIBUTION; mPreprocessor->GenerateRays(samplesPerPass / numStrategies, sampleType, simpleRays); stype = SamplingStrategy::SPATIAL_BOX_BASED_DISTRIBUTION; mPreprocessor->GenerateRays(samplesPerPass / numStrategies, sampleType, simpleRays); if (0) { stype = SamplingStrategy::DIRECTION_BASED_DISTRIBUTION; mPreprocessor->GenerateRays(samplesPerPass / numStrategies, sampleType, simpleRays); } stype = SamplingStrategy::REVERSE_OBJECT_BASED_DISTRIBUTION; mPreprocessor->GenerateRays(samplesPerPass / numStrategies, sampleType, simpleRays); cout << "generated " << samplesPerPass << " samples in " << TimeDiff(startTime, GetTime()) * 1e-3 << " secs" << endl; startTime = GetTime(); // shoot simple ray and add it to importance samples mPreprocessor->CastRays(simpleRays, passSamples, true); cout << "cast " << samplesPerPass << " samples in " << TimeDiff(startTime, GetTime()) * 1e-3 << " secs" << endl; return (int)passSamples.size(); } /// helper function which destroys rays or copies them into the output ray container inline void disposeRays(VssRayContainer &rays, VssRayContainer *outRays) { cout << "disposing samples ... "; long startTime = GetTime(); int n = (int)rays.size(); if (outRays) { VssRayContainer::const_iterator it, it_end = rays.end(); for (it = rays.begin(); it != it_end; ++ it) { outRays->push_back(*it); } } else { VssRayContainer::const_iterator it, it_end = rays.end(); for (it = rays.begin(); it != it_end; ++ it) { if (!(*it)->IsActive()) delete (*it); } } cout << "finished" << endl; Debug << "disposed " << n << " samples in " << TimeDiff(startTime, GetTime()) * 1e-3 << " secs" << endl; } int ViewCellsManager::Construct(Preprocessor *preprocessor, VssRayContainer *outRays) { int numSamples = 0; SimpleRayContainer simpleRays; VssRayContainer initialSamples; // store pointer to preprocessor for further use during construction mPreprocessor = preprocessor; /////////////////////////////////////////////////////// //-- Initial sampling for the construction of the view cell hierarchy. //-- We use uniform sampling / box based sampling. long startTime = GetTime(); cout << "view cell construction: casting " << mInitialSamples << " initial samples ... " << endl; // cast initial samples CastPassSamples(mInitialSamples, mSamplingType, initialSamples); cout << "finished in " << TimeDiff(startTime, GetTime()) * 1e-3 << " secs" << endl; // construct view cells ConstructSubdivision(preprocessor->mObjects, initialSamples); // initial samples count for overall samples ... numSamples += mInitialSamples; // rays can be passed or deleted disposeRays(initialSamples, outRays); cout << "time needed for initial construction: " << TimeDiff(startTime, GetTime()) * 1e-3 << " secs" << endl; Debug << "time needed for initial construction: " << TimeDiff(startTime, GetTime()) * 1e-3 << " secs" << endl; // collect view cells and compute statistics ResetViewCells(); /////////////////// //-- Initial hierarchy construction finished. //-- We can do some stats and visualization if (0) { //-- export initial view cell partition Debug << "\nView cells after initial sampling:\n" << mCurrentViewCellsStats << endl; const string filename("viewcells.wrl"); Exporter *exporter = Exporter::GetExporter(filename.c_str()); if (exporter) { cout << "exporting initial view cells (=leaves) to " << filename.c_str() << " ... "; if (mExportGeometry) { exporter->ExportGeometry(preprocessor->mObjects); } exporter->SetWireframe(); ExportViewCellsForViz(exporter, NULL, GetClipPlane()); delete exporter; cout << "finished" << endl; } } ////////////////////// //-- Cast some more sampling after initial construction. //-- The additional rays can be used to gain //-- some more information before the bottom-up merge //-- note: guided rays could be used for this task // time spent after construction of the initial partition startTime = GetTime(); const int n = mConstructionSamples; //+initialSamples; // should we use directional samples? bool dirSamples = (mSamplingType == SamplingStrategy::DIRECTION_BASED_DISTRIBUTION); while (numSamples < n) { cout << "casting " << mSamplesPerPass << " samples of " << n << " ... "; Debug << "casting " << mSamplesPerPass << " samples of " << n << " ... "; VssRayContainer constructionSamples; const int samplingType = mSamplingType; //dirSamples ? Preprocessor::DIRECTION_BASED_DISTRIBUTION : Preprocessor::SPATIAL_BOX_BASED_DISTRIBUTION; if (0) dirSamples = !dirSamples; // toggle sampling method // cast new samples numSamples += CastPassSamples(mSamplesPerPass, samplingType, constructionSamples); cout << "finished" << endl; cout << "computing sample contribution for " << (int)constructionSamples.size() << " samples ... "; // computes sample contribution of cast rays TODO: leak? if (SAMPLE_AFTER_SUBDIVISION) ComputeSampleContributions(constructionSamples, true, false); cout << "finished" << endl; disposeRays(constructionSamples, outRays); cout << "total samples: " << numSamples << endl; } if (0) { /////////////// //-- Get stats after the additional sampling step //-- and before the bottom-up merge step EvaluateViewCellsStats(); Debug << "\noriginal view cell partition before post process:\n" << mCurrentViewCellsStats << endl; mRenderer->RenderScene(); SimulationStatistics ss; dynamic_cast(mRenderer)->GetStatistics(ss); Debug << ss << endl; } //////////////////// //-- post processing of the initial construction //-- We can bottom-up merge the view cells in this step //-- We can additionally cast some post processing sample rays. //-- These rays can be used to store the view cells with the rays VssRayContainer postProcessSamples; cout << "casting " << mPostProcessSamples << " post processing samples ... "; CastPassSamples(mPostProcessSamples, mSamplingType, postProcessSamples); cout << "finished" << endl; cout << "starting post processing and visualization" << endl; // store view cells with rays for post processing? const bool storeViewCells = true; if (SAMPLE_AFTER_SUBDIVISION) ComputeSampleContributions(postProcessSamples, true, storeViewCells); PostProcess(preprocessor->mObjects, postProcessSamples); const float secs = TimeDiff(startTime, GetTime()) * 1e-3f; cout << "post processing (=merge) finished in " << secs << " secs" << endl; Debug << "post processing time: " << secs << endl; disposeRays(postProcessSamples, outRays); //////////////// //-- Evaluation of the resulting view cell partition. //-- We cast a number of new samples and measure the render cost if (mEvaluateViewCells) { EvalViewCellPartition(); } // write view cells to disc if (1 && mExportViewCells) { char filename[100]; Environment::GetSingleton()->GetStringValue("ViewCells.filename", filename); ExportViewCells(filename, mExportPvs, mPreprocessor->mObjects); } ///////////////// //-- Finally, we do some visualization if (mShowVisualization) { /////////////// //-- visualization rays, e.g., to show some samples in the scene VssRayContainer visSamples; int numSamples = CastPassSamples(mVisualizationSamples, mSamplingType, visSamples); if (SAMPLE_AFTER_SUBDIVISION) ComputeSampleContributions(visSamples, true, storeViewCells); // various visualizations Visualize(preprocessor->mObjects, visSamples); disposeRays(visSamples, outRays); } // recalculate view cells EvaluateViewCellsStats(); return numSamples; } AxisAlignedPlane *ViewCellsManager::GetClipPlane() { return mUseClipPlaneForViz ? &mClipPlaneForViz : NULL; } void ViewCellsManager::EvalViewCellHistogram(const string filename, const int nViewCells) { std::ofstream outstream; outstream.open(filename.c_str()); ViewCellContainer viewCells; mViewCellsTree->CollectBestViewCellSet(viewCells, nViewCells); float maxRenderCost, minRenderCost; // sort by render cost sort(viewCells.begin(), viewCells.end(), ViewCell::SmallerRenderCost); minRenderCost = viewCells.front()->GetRenderCost(); maxRenderCost = viewCells.back()->GetRenderCost(); Debug << "histogram min rc: " << minRenderCost << " max rc: " << maxRenderCost << endl; int histoIntervals; Environment::GetSingleton()->GetIntValue("Preprocessor.histogram.intervals", histoIntervals); const int intervals = min(histoIntervals, (int)viewCells.size()); int histoMaxVal; Environment::GetSingleton()->GetIntValue("Preprocessor.histogram.maxValue", histoMaxVal); maxRenderCost = max((float)histoMaxVal, maxRenderCost); const float range = maxRenderCost - minRenderCost; const float stepSize = range / (float)intervals; float currentRenderCost = minRenderCost;//(int)ceil(minRenderCost); const float totalRenderCost = mViewCellsTree->GetRoot()->GetRenderCost(); const float totalVol = GetViewSpaceBox().GetVolume(); //const float totalVol = mViewCellsTree->GetRoot()->GetVolume(); int j = 0; int i = 0; ViewCellContainer::const_iterator it = viewCells.begin(), it_end = viewCells.end(); // count for integral float volSum = 0; int smallerCostSum = 0; // note can skip computations for view cells already evaluated and delete them from vector ... while (1) { // count for histogram value float volDif = 0; int smallerCostDif = 0; while ((i < (int)viewCells.size()) && (viewCells[i]->GetRenderCost() < currentRenderCost)) { volSum += viewCells[i]->GetVolume(); volDif += viewCells[i]->GetVolume(); ++ i; ++ smallerCostSum; ++ smallerCostDif; } if ((i >= (int)viewCells.size()) || (currentRenderCost >= maxRenderCost)) break; const float rcRatio = currentRenderCost / maxRenderCost; const float volRatioSum = volSum / totalVol; const float volRatioDif = volDif / totalVol; outstream << "#Pass\n" << j ++ << endl; outstream << "#RenderCostRatio\n" << rcRatio << endl; outstream << "#WeightedCost\n" << currentRenderCost / totalVol << endl; outstream << "#ViewCellsDif\n" << smallerCostDif << endl; outstream << "#ViewCellsSum\n" << smallerCostSum << endl; outstream << "#VolumeDif\n" << volRatioDif << endl << endl; outstream << "#VolumeSum\n" << volRatioSum << endl << endl; // increase current render cost currentRenderCost += stepSize; } outstream.close(); } ViewCellsManager *ViewCellsManager::LoadViewCells(const string &filename, ObjectContainer *objects, bool finalizeViewCells, BoundingBoxConverter *bconverter) { ViewCellsParser parser; ViewCellsManager *vm = NULL; const long startTime = GetTime(); bool success = parser.ParseViewCellsFile(filename, &vm, objects, bconverter); cout<<"viewcells parsed "<ResetViewCells(); //hack vm->mViewCells.clear(); ViewCellContainer leaves; vm->mViewCellsTree->CollectLeaves(vm->mViewCellsTree->GetRoot(), leaves); ViewCellContainer::const_iterator it, it_end = leaves.end(); for (it = leaves.begin(); it != it_end; ++ it) { vm->mViewCells.push_back(*it); } vm->mViewCellsFinished = true; vm->mMaxPvsSize = (int)objects->size(); if (finalizeViewCells) { // create the meshes and compute volumes vm->FinalizeViewCells(true); // vm->mViewCellsTree->AssignRandomColors(); } Debug << (int)vm->mViewCells.size() << " view cells loaded in " << TimeDiff(startTime, GetTime()) * 1e-3 << " secs" << endl; } else { Debug << "Error: loading view cells failed!" << endl; DEL_PTR(vm); } return vm; } bool VspBspViewCellsManager::ExportViewCells(const string filename, const bool exportPvs, const ObjectContainer &objects) { if (!ViewCellsConstructed() || !ViewCellsTreeConstructed()) { return false; } cout << "exporting view cells to xml ... "; OUT_STREAM stream(filename.c_str()); // for output we need unique ids for each view cell CreateUniqueViewCellIds(); stream << ""<" << endl; if (exportPvs) { //-- export bounding boxes stream << "" << endl; #if USE_KD_PVS KdIntersectableMap::const_iterator kit, kit_end = GetPreprocessor()->mKdTree->mKdIntersectables.end(); int id = 0; for (kit = GetPreprocessor()->mKdTree->mKdIntersectables.begin(); kit != kit_end; ++ kit, ++ id) { Intersectable *obj = (*kit).second; const AxisAlignedBox3 box = obj->GetBox(); obj->SetId(id); stream << "" << endl; } #else ObjectContainer::const_iterator oit, oit_end = objects.end(); for (oit = objects.begin(); oit != oit_end; ++ oit) { const AxisAlignedBox3 box = (*oit)->GetBox(); //////////// //-- the bounding boxes stream << "GetId() << "\"" << " min=\"" << box.Min().x << " " << box.Min().y << " " << box.Min().z << "\"" << " max=\"" << box.Max().x << " " << box.Max().y << " " << box.Max().z << "\" />" << endl; } #endif stream << "" << endl; } ///////////// //-- export the view cells and the pvs const int numViewCells = mCurrentViewCellsStats.viewCells; stream << "" << endl; mViewCellsTree->Export(stream, exportPvs); stream << "" << endl; ////////// //-- export the view space hierarchy stream << "" << endl; mVspBspTree->Export(stream); stream << "" << endl; stream << "" << endl; stream.close(); cout << "finished" << endl; return true; } void ViewCellsManager::EvalViewCellHistogramForPvsSize(const string filename, const int nViewCells) { std::ofstream outstream; outstream.open(filename.c_str()); ViewCellContainer viewCells; mViewCellsTree->CollectBestViewCellSet(viewCells, nViewCells); float maxPvs, maxVal, minVal; // sort by pvs size sort(viewCells.begin(), viewCells.end(), ViewCell::SmallerPvs); maxPvs = mViewCellsTree->GetPvsCost(viewCells.back()); minVal = 0; // hack: normalize pvs size int histoMaxVal; Environment::GetSingleton()->GetIntValue("Preprocessor.histogram.maxValue", histoMaxVal); maxVal = max((float)histoMaxVal, maxPvs); Debug << "histogram minpvssize: " << minVal << " maxpvssize: " << maxVal << " real maxpvs " << maxPvs << endl; int histoIntervals; Environment::GetSingleton()->GetIntValue("Preprocessor.histogram.intervals", histoIntervals); const int intervals = min(histoIntervals, (int)viewCells.size()); const float range = maxVal - minVal; int stepSize = (int)(range / intervals); // set step size to avoid endless loop if (!stepSize) stepSize = 1; Debug << "stepsize: " << stepSize << endl; const float totalRenderCost = mViewCellsTree->GetRoot()->GetRenderCost(); const float totalVol = GetViewSpaceBox().GetVolume(); float currentPvs = minVal; int i = 0; int j = 0; float volSum = 0; int smallerSum = 0; ViewCellContainer::const_iterator it = viewCells.begin(), it_end = viewCells.end(); for (int j = 0; j < intervals; ++ j) { float volDif = 0; int smallerDif = 0; while ((i < (int)viewCells.size()) && (mViewCellsTree->GetPvsCost(viewCells[i]) < currentPvs)) { volDif += viewCells[i]->GetVolume(); volSum += viewCells[i]->GetVolume(); ++ i; ++ smallerDif; ++ smallerSum; } if (0 && (i < (int)viewCells.size())) Debug << "new pvs cost increase: " << mViewCellsTree->GetPvsCost(viewCells[i]) << " " << currentPvs << endl; const float volRatioDif = volDif / totalVol; const float volRatioSum = volSum / totalVol; outstream << "#Pass\n" << j << endl; outstream << "#Pvs\n" << currentPvs << endl; outstream << "#ViewCellsDif\n" << smallerDif << endl; outstream << "#ViewCellsSum\n" << smallerSum << endl; outstream << "#VolumeDif\n" << volRatioDif << endl << endl; outstream << "#VolumeSum\n" << volRatioSum << endl << endl; //-- increase current pvs size to define next interval currentPvs += stepSize; } outstream.close(); } bool ViewCellsManager::GetExportPvs() const { return mExportPvs; } bool ViewCellsManager::AddSampleToPvs(Intersectable *obj, const Vector3 &hitPoint, ViewCell *vc, const float pdf, float &contribution) const { if (!obj) return false; // potentially visible objects return vc->AddPvsSample(obj, pdf, contribution); } void ViewCellsManager::ResetPvs() { if (ViewCellsTreeConstructed()) { mViewCellsTree->ResetPvs(); } else { cout << "view cells tree not constructed" << endl; } } void ViewCellsManager::ExportStats(const string &fileName) { mViewCellsTree->ExportStats(fileName); } void ViewCellsManager::EvalViewCellPartition() { int samplesPerPass; int numSamples; int castSamples = 0; char str[64]; int oldSamples = 0; int samplesForStats; Environment::GetSingleton()->GetIntValue("ViewCells.Evaluation.samplesPerPass", samplesPerPass); Environment::GetSingleton()->GetIntValue("ViewCells.Evaluation.samplesForStats", samplesForStats); Environment::GetSingleton()->GetIntValue("ViewCells.Evaluation.samples", numSamples); char statsPrefix[100]; Environment::GetSingleton()->GetStringValue("ViewCells.Evaluation.statsPrefix", statsPrefix); Debug << "view cell evaluation samples per pass: " << samplesPerPass << endl; Debug << "view cell evaluation samples: " << numSamples << endl; Debug << "view cell stats prefix: " << statsPrefix << endl; // should directional sampling be used? bool dirSamples = (mEvaluationSamplingType == SamplingStrategy::DIRECTION_BASED_DISTRIBUTION); cout << "reseting pvs ... "; const bool startFromZero = true; // reset pvs and start over from zero if (startFromZero) { mViewCellsTree->ResetPvs(); } else // start from current sampless { // statistics before casting more samples cout << "compute new statistics ... "; sprintf(str, "-%09d-eval.log", castSamples); string fName = string(statsPrefix) + string(str); mViewCellsTree->ExportStats(fName); cout << "finished" << endl; } cout << "finished" << endl; cout << "Evaluating view cell partition ... " << endl; while (castSamples < numSamples) { /////////////// //-- we have to use uniform sampling strategy for construction rays VssRayContainer evaluationSamples; const int samplingType = mEvaluationSamplingType; long startTime = GetTime(); cout << "casting " << samplesPerPass << " samples ... "; Debug << "casting " << samplesPerPass << " samples ... "; CastPassSamples(samplesPerPass, samplingType, evaluationSamples); castSamples += samplesPerPass; Real timeDiff = TimeDiff(startTime, GetTime()); cout << "finished in " << timeDiff * 1e-3f << " secs" << endl; cout << "computing sample contributions of " << (int)evaluationSamples.size() << " samples ... "; Debug << "finished in " << timeDiff * 1e-3f << " secs" << endl; Debug << "computing sample contributions of " << (int)evaluationSamples.size() << " samples ... "; startTime = GetTime(); ComputeSampleContributions(evaluationSamples, true, false); timeDiff = TimeDiff(startTime, GetTime()); cout << "finished in " << timeDiff * 1e-3 << " secs" << endl; Debug << "finished in " << timeDiff * 1e-3 << " secs" << endl; if ((castSamples >= samplesForStats + oldSamples) || (castSamples >= numSamples)) { oldSamples += samplesForStats; /////////// //-- output stats sprintf(str, "-%09d-eval.log", castSamples); string fileName = string(statsPrefix) + string(str); /////////////// //-- propagate pvs or pvs size information startTime = GetTime(); ObjectPvs pvs; cout << "updating pvs for evaluation ... " << endl; UpdatePvsForEvaluation(mViewCellsTree->GetRoot(), pvs); timeDiff = TimeDiff(startTime, GetTime()); cout << "finished updating the pvs in " << timeDiff * 1e-3 << " secs" << endl; Debug << "pvs evaluated in " << timeDiff * 1e-3 << " secs" << endl; startTime = GetTime(); cout << "compute new statistics ... " << endl; ExportStats(fileName); timeDiff = TimeDiff(startTime, GetTime()); cout << "finished in " << timeDiff * 1e-3 << " secs" << endl; Debug << "statistis computed in " << timeDiff * 1e-3 << " secs" << endl; } disposeRays(evaluationSamples, NULL); } //////////// //-- histogram const int numLeaves = mViewCellsTree->GetNumInitialViewCells(mViewCellsTree->GetRoot()); bool useHisto; int histoStepSize; Environment::GetSingleton()->GetBoolValue("ViewCells.Evaluation.histogram", useHisto); Environment::GetSingleton()->GetIntValue("ViewCells.Evaluation.histoStepSize", histoStepSize); if (useHisto) { // evaluate view cells in a histogram char s[64]; for (int pass = histoStepSize; pass <= numLeaves; pass += histoStepSize) { string filename; cout << "computing histogram for " << pass << " view cells" << endl; #if 0 //-- evaluate histogram for render cost sprintf(s, "-%09d-histo.log", pass); filename = string(statsPrefix) + string(s); EvalViewCellHistogram(filename, pass); #endif ////////////////////////////////////////// //-- evaluate histogram for pvs size cout << "computing pvs histogram for " << pass << " view cells" << endl; sprintf(s, "-%09d-histo-pvs.log", pass); filename = string(statsPrefix) + string(s); EvalViewCellHistogramForPvsSize(filename, pass); } } } inline float EvalMergeCost(ViewCell *root, ViewCell *candidate) { return root->GetPvs().GetPvsHomogenity(candidate->GetPvs()); } /// Returns index of the best view cells of the neighborhood static int GetBestViewCellIdx(ViewCell *root, const ViewCellContainer &neighborhood) { int bestViewCellIdx = 0; float mergeCost = Limits::Infinity; int i = 0; ViewCellContainer::const_iterator vit, vit_end = neighborhood.end(); for (vit = neighborhood.begin(); vit != vit_end; ++ vit, ++ i) { const float mc = EvalMergeCost(root, *vit); if (mc < mergeCost) { mergeCost = mc; bestViewCellIdx = i; } } return bestViewCellIdx; } void ViewCellsManager::SetMaxFilterSize(const int size) { mMaxFilterSize = size; } float ViewCellsManager::EvalRenderCost(Intersectable *obj) //const { switch (sRenderCostEvaluationType) { case PER_OBJECT: return 1.0f; case PER_TRIANGLE: { return (float)obj->NumberOfFaces(); } default: cout << "default" << endl; return 1.0f; } // should not come here return 0.0f; } ViewCell *ViewCellsManager::ConstructLocalMergeTree(ViewCell *currentViewCell, const ViewCellContainer &viewCells) { ViewCell *root = currentViewCell; ViewCellContainer neighborhood = viewCells; ViewCellContainer::const_iterator it, it_end = neighborhood.end(); const int n = min(mMaxFilterSize, (int)neighborhood.size()); ///////////////// //-- use priority queue to merge leaf pairs for (int nMergedViewCells = 0; nMergedViewCells < n; ++ nMergedViewCells) { const int bestViewCellIdx = GetBestViewCellIdx(root, neighborhood); ViewCell *bestViewCell = neighborhood[bestViewCellIdx]; // remove from vector swap(neighborhood[bestViewCellIdx], neighborhood.back()); neighborhood.pop_back(); if (!bestViewCell || !root) cout << "warning!!" << endl; // create new root of the hierarchy root = MergeViewCells(root, bestViewCell); } return root; } struct SortableViewCellEntry { SortableViewCellEntry() {} SortableViewCellEntry(const float v, ViewCell *cell):mValue(v), mViewCell(cell) {} float mValue; ViewCell *mViewCell; friend bool operator<(const SortableViewCellEntry &a, const SortableViewCellEntry &b) { return a.mValue < b.mValue; } }; ViewCell * ViewCellsManager::ConstructLocalMergeTree2(ViewCell *currentViewCell, const ViewCellContainer &viewCells) { vector neighborhood(viewCells.size()); int i, j; for (i = 0, j = 0; i < viewCells.size(); i++) { if (viewCells[i] != currentViewCell) neighborhood[j++] = SortableViewCellEntry( EvalMergeCost(currentViewCell, viewCells[i]), viewCells[i]); } neighborhood.resize(j); sort(neighborhood.begin(), neighborhood.end()); ViewCell *root = currentViewCell; vector::const_iterator it, it_end = neighborhood.end(); const int n = min(mMaxFilterSize, (int)neighborhood.size()); //-- use priority queue to merge leaf pairs //cout << "neighborhood: " << neighborhood.size() << endl; for (int nMergedViewCells = 0; nMergedViewCells < n; ++ nMergedViewCells) { ViewCell *bestViewCell = neighborhood[nMergedViewCells].mViewCell; //cout <SetMergeCost(-1.0f); } return root; } void ViewCellsManager::DeleteLocalMergeTree(ViewCell *vc ) const { if (!vc->IsLeaf() && vc->GetMergeCost() < 0.0f) { ViewCellInterior *vci = (ViewCellInterior *) vc; ViewCellContainer::const_iterator it, it_end = vci->mChildren.end(); for (it = vci->mChildren.begin(); it != it_end; ++ it) DeleteLocalMergeTree(*it); vci->mChildren.clear(); delete vci; } } bool ViewCellsManager::CheckValidity(ViewCell *vc, int minPvsSize, int maxPvsSize) const { if ((vc->GetPvs().EvalPvsCost() > maxPvsSize) || (vc->GetPvs().EvalPvsCost() < minPvsSize)) { return false; } return true; } int ViewCellsManager::ComputeBoxIntersections(const AxisAlignedBox3 &box, ViewCellContainer &viewCells) const { return 0; }; AxisAlignedBox3 ViewCellsManager::GetFilterBBox(const Vector3 &viewPoint, const float width) const { float w = Magnitude(mViewSpaceBox.Size())*width; Vector3 min = viewPoint - w * 0.5f; Vector3 max = viewPoint + w * 0.5f; return AxisAlignedBox3(min, max); } void ViewCellsManager::GetPrVS(const Vector3 &viewPoint, PrVs &prvs, const float filterWidth) { ViewCell *currentViewCell = GetViewCell(viewPoint); if (mMaxFilterSize < 1) { prvs.mViewCell = currentViewCell; return; } const AxisAlignedBox3 box = GetFilterBBox(viewPoint, filterWidth); if (currentViewCell) { ViewCellContainer viewCells; ComputeBoxIntersections(box, viewCells); ViewCell *root = ConstructLocalMergeTree2(currentViewCell, viewCells); prvs.mViewCell = root; } else { prvs.mViewCell = NULL; //prvs.mPvs = root->GetPvs(); } } bool ViewCellsManager::ViewCellsTreeConstructed() const { return (mViewCellsTree && mViewCellsTree->GetRoot()); } void ViewCellsManager::SetValidity(ViewCell *vc, int minPvs, int maxPvs) const { vc->SetValid(CheckValidity(vc, minPvs, maxPvs)); } void ViewCellsManager::SetValidity( int minPvsSize, int maxPvsSize) const { ViewCellContainer::const_iterator it, it_end = mViewCells.end(); for (it = mViewCells.begin(); it != it_end; ++ it) { SetValidity(*it, minPvsSize, maxPvsSize); } } void ViewCellsManager::SetValidityPercentage( const float minValid, const float maxValid ) { sort(mViewCells.begin(), mViewCells.end(), ViewCell::SmallerPvs); int start = (int)(mViewCells.size() * minValid); int end = (int)(mViewCells.size() * maxValid); for (int i = 0; i < (int)mViewCells.size(); ++ i) { mViewCells[i]->SetValid(i >= start && i <= end); } } int ViewCellsManager::CountValidViewcells() const { ViewCellContainer::const_iterator it, it_end = mViewCells.end(); int valid = 0; for (it = mViewCells.begin(); it != it_end; ++ it) { if ((*it)->GetValid()) ++ valid; } return valid; } bool ViewCellsManager::LoadViewCellsGeometry(const string filename, const bool extrudeBaseTriangles) { /// we use predefined view cells from now on mUsePredefinedViewCells = true; X3dParser parser; if (extrudeBaseTriangles) { Environment::GetSingleton()->GetFloatValue("ViewCells.height", parser.mViewCellHeight); const bool success = parser.ParseFile(filename, *this); if (!success) return false; } else { // hack: use standard mesh loading // create temporary scene graph for loading the view cells geometry // note: delete the meshes as they are created two times for transformed mesh instances. SceneGraphNode *root = new SceneGraphNode(); const bool success = parser.ParseFile(filename, root, true); if (!success) { DEL_PTR(root); return false; } ObjectContainer::const_iterator oit, oit_end = root->mGeometry.end(); for (oit = root->mGeometry.begin(); oit != oit_end; ++ oit) { Mesh *mesh; if ((*oit)->Type() == Intersectable::TRANSFORMED_MESH_INSTANCE) { TransformedMeshInstance *mit = dynamic_cast(*oit); mesh = MeshManager::GetSingleton()->CreateResource(); mit->GetTransformedMesh(*mesh); } else if ((*oit)->Type() == Intersectable::MESH_INSTANCE) { MeshInstance *mit = dynamic_cast(*oit); mesh = mit->GetMesh(); } mesh->ComputeBoundingBox(); mViewCells.push_back(GenerateViewCell(mesh)); } DEL_PTR(root); } // set view space box to bounding box of the view cells AxisAlignedBox3 bbox; bbox.Initialize(); ViewCellContainer::iterator it = mViewCells.begin(), it_end = mViewCells.end(); for (; it != it_end; ++ it) { bbox.Include((*it)->GetMesh()->mBox); } SetViewSpaceBox(bbox); cout << "view space box: " << bbox << endl; cout << "generated " << (int)mViewCells.size() << " view cells using the geometry " << filename << endl; return true; } bool ViewCellsManager::GetViewPoint(Vector3 &viewPoint) const { viewPoint = mViewSpaceBox.GetRandomPoint(); return true; } float ViewCellsManager::GetViewSpaceVolume() { return mViewSpaceBox.GetVolume() * (2.0f * sqr((float)M_PI)); } bool ViewCellsManager::ViewPointValid(const Vector3 &viewPoint) const { if (!ViewCellsConstructed()) { return mViewSpaceBox.IsInside(viewPoint); } else { if (!mViewSpaceBox.IsInside(viewPoint)) return false; ViewCell *viewcell = GetViewCell(viewPoint); if (!viewcell || !viewcell->GetValid()) return false; } return true; } float ViewCellsManager::ComputeSampleContributions(const VssRayContainer &rays, const bool addRays, const bool storeViewCells) { // view cells not yet constructed if (!ViewCellsConstructed()) return 0.0f; float sum = 0.0f; VssRayContainer::const_iterator it, it_end = rays.end(); for (it = rays.begin(); it != it_end; ++ it) { sum += ComputeSampleContribution(*(*it), addRays, storeViewCells); } return sum; } void ViewCellsManager::EvaluateViewCellsStats() { mCurrentViewCellsStats.Reset(); ViewCellContainer::const_iterator it, it_end = mViewCells.end(); for (it = mViewCells.begin(); it != it_end; ++ it) { mViewCellsTree->UpdateViewCellsStats(*it, mCurrentViewCellsStats); } } void ViewCellsManager::EvaluateRenderStatistics(float &totalRenderCost, float &expectedRenderCost, float &deviation, float &variance, float &totalCost, float &avgRenderCost) { //////////// //-- compute expected value totalRenderCost = 0; totalCost = 0; ViewCellContainer::const_iterator it, it_end = mViewCells.end(); for (it = mViewCells.begin(); it != it_end; ++ it) { ViewCell *vc = *it; totalRenderCost += vc->GetPvs().EvalPvsCost() * vc->GetVolume(); totalCost += (int)vc->GetPvs().EvalPvsCost(); } // normalize with view space box totalRenderCost /= mViewSpaceBox.GetVolume(); expectedRenderCost = totalRenderCost / (float)mViewCells.size(); avgRenderCost = totalCost / (float)mViewCells.size(); /////////// //-- compute standard defiation variance = 0; deviation = 0; for (it = mViewCells.begin(); it != it_end; ++ it) { ViewCell *vc = *it; float renderCost = vc->GetPvs().EvalPvsCost() * vc->GetVolume(); float dev; if (1) dev = fabs(avgRenderCost - (float)vc->GetPvs().EvalPvsCost()); else dev = fabs(expectedRenderCost - renderCost); deviation += dev; variance += dev * dev; } variance /= (float)mViewCells.size(); deviation /= (float)mViewCells.size(); } float ViewCellsManager::GetArea(ViewCell *viewCell) const { return viewCell->GetArea(); } float ViewCellsManager::GetVolume(ViewCell *viewCell) const { return viewCell->GetVolume(); } ViewCell *ViewCellsManager::ExtrudeViewCell(const Triangle3 &baseTri, const float height) const { // one mesh per view cell Mesh *mesh = MeshManager::GetSingleton()->CreateResource(); //////////// //-- construct prism // bottom mesh->mFaces.push_back(new Face(2,1,0)); // top mesh->mFaces.push_back(new Face(3,4,5)); // sides mesh->mFaces.push_back(new Face(1, 4, 3, 0)); mesh->mFaces.push_back(new Face(2, 5, 4, 1)); mesh->mFaces.push_back(new Face(3, 5, 2, 0)); ///////////// //-- extrude new vertices for top of prism const Vector3 triNorm = baseTri.GetNormal(); Triangle3 topTri; // add base vertices and calculate top vertices for (int i = 0; i < 3; ++ i) { mesh->mVertices.push_back(baseTri.mVertices[i]); } // add top vertices for (int i = 0; i < 3; ++ i) { mesh->mVertices.push_back(baseTri.mVertices[i] + height * triNorm); } // do we have to preprocess this mesh (we don't want to trace view cells!)? mesh->ComputeBoundingBox(); return GenerateViewCell(mesh); } void ViewCellsManager::FinalizeViewCells(const bool createMesh) { ViewCellContainer::const_iterator it, it_end = mViewCells.end(); // volume and area of the view cells are recomputed and a view cell mesh is created for (it = mViewCells.begin(); it != it_end; ++ it) { Finalize(*it, createMesh); } mViewCellsTree->AssignRandomColors(); mTotalAreaValid = false; } void ViewCellsManager::Finalize(ViewCell *viewCell, const bool createMesh) { // implemented in subclasses } /** fast way of merging 2 view cells. */ ViewCellInterior *ViewCellsManager::MergeViewCells(ViewCell *left, ViewCell *right) const { // generate parent view cell ViewCellInterior *vc = new ViewCellInterior(); vc->GetPvs().Clear(); ObjectPvs::Merge(vc->GetPvs(), left->GetPvs(), right->GetPvs()); // set only links to child (not from child to parent, maybe not wished!!) vc->mChildren.push_back(left); vc->mChildren.push_back(right); // update pvs size UpdateScalarPvsSize(vc, vc->GetPvs().EvalPvsCost(), vc->GetPvs().GetSize()); return vc; } ViewCellInterior *ViewCellsManager::MergeViewCells(ViewCellContainer &children) const { ViewCellInterior *vc = new ViewCellInterior(); ViewCellContainer::const_iterator it, it_end = children.end(); for (it = children.begin(); it != it_end; ++ it) { vc->GetPvs().MergeInPlace((*it)->GetPvs()); vc->mChildren.push_back(*it); } return vc; } void ViewCellsManager::SetRenderer(Renderer *renderer) { mRenderer = renderer; } ViewCellsTree *ViewCellsManager::GetViewCellsTree() { return mViewCellsTree; } void ViewCellsManager::SetVisualizationSamples(const int visSamples) { mVisualizationSamples = visSamples; } void ViewCellsManager::SetConstructionSamples(const int constructionSamples) { mConstructionSamples = constructionSamples; } void ViewCellsManager::SetInitialSamples(const int initialSamples) { mInitialSamples = initialSamples; } void ViewCellsManager::SetPostProcessSamples(const int postProcessSamples) { mPostProcessSamples = postProcessSamples; } int ViewCellsManager::GetVisualizationSamples() const { return mVisualizationSamples; } int ViewCellsManager::GetConstructionSamples() const { return mConstructionSamples; } int ViewCellsManager::GetPostProcessSamples() const { return mPostProcessSamples; } void ViewCellsManager::UpdatePvs() { if (mViewCellPvsIsUpdated || !ViewCellsTreeConstructed()) return; mViewCellPvsIsUpdated = true; ViewCellContainer leaves; mViewCellsTree->CollectLeaves(mViewCellsTree->GetRoot(), leaves); ViewCellContainer::const_iterator it, it_end = leaves.end(); for (it = leaves.begin(); it != it_end; ++ it) { mViewCellsTree->PropagatePvs(*it); } } void ViewCellsManager::GetPvsStatistics(PvsStatistics &stat) { // update pvs of view cells tree if necessary UpdatePvs(); ViewCellContainer::const_iterator it = mViewCells.begin(); stat.viewcells = 0; stat.minPvs = 100000000; stat.maxPvs = 0; stat.avgPvs = 0.0f; stat.avgFilteredPvs = 0.0f; stat.avgFilterContribution = 0.0f; for (; it != mViewCells.end(); ++ it) { ViewCell *viewcell = *it; const float pvsCost = mViewCellsTree->GetPvsCost(viewcell); if (pvsCost < stat.minPvs) stat.minPvs = pvsCost; if (pvsCost > stat.maxPvs) stat.maxPvs = pvsCost; stat.avgPvs += pvsCost; if (0) { ObjectPvs filteredPvs = viewcell->GetPvs(); ApplyFilter2(viewcell, false, 1.0f, filteredPvs); float filteredCost = filteredPvs.EvalPvsCost(); stat.avgFilteredPvs += filteredCost; stat.avgFilterContribution += filteredCost - pvsCost; } ++ stat.viewcells; } if (stat.viewcells) { stat.avgPvs/=stat.viewcells; stat.avgFilteredPvs/=stat.viewcells; stat.avgFilterContribution/=stat.viewcells; } } void ViewCellsManager::PrintPvsStatistics(ostream &s) { s<<"############# Viewcell PVS STAT ##################\n"; PvsStatistics pvsStat; GetPvsStatistics(pvsStat); s<<"#AVG_PVS\n"<GetFloatValue("ViewCells.Visualization.clipPlanePos", pos); Environment::GetSingleton()->GetIntValue("ViewCells.Visualization.clipPlaneAxis", axis); if (axis < 0) { axis = -axis; orientation = false; absPos = mViewSpaceBox.Max() - mViewSpaceBox.Size() * pos; } else { orientation = true; absPos = mViewSpaceBox.Min() + mViewSpaceBox.Size() * pos; } mClipPlaneForViz = AxisAlignedPlane(axis, absPos[axis]); mClipPlaneForViz.mOrientation = orientation; } AxisAlignedBox3 ViewCellsManager::GetViewSpaceBox() const { return mViewSpaceBox; } void ViewCellsManager::ResetViewCells() { // recollect view cells mViewCells.clear(); CollectViewCells(); // stats are computed once more EvaluateViewCellsStats(); // has to be recomputed mTotalAreaValid = false; } int ViewCellsManager::GetMaxPvsSize() const { return mMaxPvsSize; } void ViewCellsManager::AddSampleContributions(const VssRayContainer &rays) { if (!ViewCellsConstructed()) return; VssRayContainer::const_iterator it, it_end = rays.end(); for (it = rays.begin(); it != it_end; ++ it) { AddSampleContributions(*(*it)); } } int ViewCellsManager::GetMinPvsSize() const { return mMinPvsSize; } float ViewCellsManager::GetMaxPvsRatio() const { return mMaxPvsRatio; } void ViewCellsManager::AddSampleContributions(VssRay &ray) { // assumes viewcells have been stored... ViewCellContainer *viewcells = &ray.mViewCells; ViewCellContainer::const_iterator it; if (!ray.mTerminationObject) return; #if USE_KD_PVS float area = GetPreprocessor()->mKdTree->GetBox().SurfaceArea()*KD_PVS_AREA; KdNode *node = GetPreprocessor()->mKdTree->GetNode(ray.mTermination, area); Intersectable *obj = GetPreprocessor()->mKdTree-> GetOrCreateKdIntersectable(node); #else Intersectable *obj = ray.mTerminationObject; #endif for (it = viewcells->begin(); it != viewcells->end(); ++it) { ViewCell *viewcell = *it; if (viewcell->GetValid()) { // if ray not outside of view space viewcell->GetPvs().AddSample(obj, ray.mPdf); } } } float ViewCellsManager::ComputeSampleContribution(VssRay &ray, const bool addRays, const bool storeViewCells) { ViewCellContainer viewcells; ray.mPvsContribution = 0; ray.mRelativePvsContribution = 0.0f; static Ray hray; hray.Init(ray); //hray.mFlags |= Ray::CULL_BACKFACES; //Ray hray(ray); float tmin = 0, tmax = 1.0; if (!GetViewSpaceBox().GetRaySegment(hray, tmin, tmax) || (tmin > tmax)) return 0; Vector3 origin = hray.Extrap(tmin); Vector3 termination = hray.Extrap(tmax); ViewCell::NewMail(); // traverse the view space subdivision CastLineSegment(origin, termination, viewcells); if (storeViewCells) { // copy viewcells memory efficiently ray.mViewCells.reserve(viewcells.size()); ray.mViewCells = viewcells; } #if USE_KD_PVS float area = GetPreprocessor()->mKdTree->GetBox().SurfaceArea()*KD_PVS_AREA; KdNode *node = GetPreprocessor()->mKdTree->GetNode(ray.mTermination, area); Intersectable *obj = GetPreprocessor()->mKdTree-> GetOrCreateKdIntersectable(node); #else Intersectable *obj = ray.mTerminationObject; #endif ViewCellContainer::const_iterator it = viewcells.begin(); for (; it != viewcells.end(); ++ it) { ViewCell *viewcell = *it; if (viewcell->GetValid()) // tests if view cell is in valid view space { float contribution; if (ray.mTerminationObject) { if (viewcell->GetPvs().GetSampleContribution(obj, ray.mPdf, contribution)) { ++ ray.mPvsContribution; ray.mRelativePvsContribution += contribution; } } #if SAMPLE_ORIGIN_OBJECTS // for directional sampling it is important to count only contributions // made in one direction!!! // the other contributions of this sample will be counted for the oposite ray! if (ray.mOriginObject && viewcell->GetPvs().GetSampleContribution(ray.mOriginObject, ray.mPdf, contribution)) { ++ ray.mPvsContribution; ray.mRelativePvsContribution += contribution; } #endif } } // if true, the sampled entities are stored in the pvs if (addRays) { for (it = viewcells.begin(); it != viewcells.end(); ++ it) { ViewCell *viewcell = *it; if (viewcell->GetValid()) { // if view point is valid, add new object to the pvs if (ray.mTerminationObject) { viewcell->GetPvs().AddSample(obj, ray.mPdf); } #if SAMPLE_ORIGIN_OBJECTS if (ray.mOriginObject) { viewcell->GetPvs().AddSample(ray.mOriginObject, ray.mPdf); } #endif } } } return ABS_CONTRIBUTION_WEIGHT*ray.mPvsContribution + (1.0f - ABS_CONTRIBUTION_WEIGHT)*ray.mRelativePvsContribution; } void ViewCellsManager::GetRaySets(const VssRayContainer &sourceRays, const int maxSize, VssRayContainer &usedRays, VssRayContainer *savedRays) const { const int limit = min(maxSize, (int)sourceRays.size()); const float prop = (float)limit / ((float)sourceRays.size() + Limits::Small); VssRayContainer::const_iterator it, it_end = sourceRays.end(); for (it = sourceRays.begin(); it != it_end; ++ it) { if (Random(1.0f) < prop) usedRays.push_back(*it); else if (savedRays) savedRays->push_back(*it); } } float ViewCellsManager::GetRendercost(ViewCell *viewCell) const { return (float)mViewCellsTree->GetPvsCost(viewCell); } float ViewCellsManager::GetAccVcArea() { // if already computed if (mTotalAreaValid) { return mTotalArea; } mTotalArea = 0; ViewCellContainer::const_iterator it, it_end = mViewCells.end(); for (it = mViewCells.begin(); it != it_end; ++ it) { //Debug << "area: " << GetArea(*it); mTotalArea += GetArea(*it); } mTotalAreaValid = true; return mTotalArea; } void ViewCellsManager::PrintStatistics(ostream &s) const { s << mCurrentViewCellsStats << endl; } void ViewCellsManager::CreateUniqueViewCellIds() { if (ViewCellsTreeConstructed()) { mViewCellsTree->CreateUniqueViewCellsIds(); } else // no view cells tree, handle view cells "myself" { int i = 0; ViewCellContainer::const_iterator vit, vit_end = mViewCells.end(); for (vit = mViewCells.begin(); vit != vit_end; ++ vit) { if ((*vit)->GetId() != OUT_OF_BOUNDS_ID) { mViewCells[i]->SetId(i ++); } } } } void ViewCellsManager::ExportViewCellsForViz(Exporter *exporter, const AxisAlignedBox3 *sceneBox, const AxisAlignedPlane *clipPlane, const bool colorCode ) const { ViewCellContainer::const_iterator it, it_end = mViewCells.end(); for (it = mViewCells.begin(); it != it_end; ++ it) { if (!mOnlyValidViewCells || (*it)->GetValid()) { ExportColor(exporter, *it, colorCode); ExportViewCellGeometry(exporter, *it, sceneBox, clipPlane); } } } void ViewCellsManager::CreateViewCellMeshes() { // convert to meshes ViewCellContainer::const_iterator it, it_end = mViewCells.end(); for (it = mViewCells.begin(); it != it_end; ++ it) { if (!(*it)->GetMesh()) { CreateMesh(*it); } } } bool ViewCellsManager::ExportViewCells(const string filename, const bool exportPvs, const ObjectContainer &objects) { return false; } void ViewCellsManager::CollectViewCells(const int n) { mNumActiveViewCells = n; mViewCells.clear(); // implemented in subclasses CollectViewCells(); } void ViewCellsManager::SetViewCellActive(ViewCell *vc) const { ViewCellContainer leaves; // sets the pointers to the currently active view cells mViewCellsTree->CollectLeaves(vc, leaves); ViewCellContainer::const_iterator lit, lit_end = leaves.end(); for (lit = leaves.begin(); lit != lit_end; ++ lit) { dynamic_cast(*lit)->SetActiveViewCell(vc); } } void ViewCellsManager::SetViewCellsActive() { // collect leaf view cells and set the pointers to // the currently active view cells ViewCellContainer::const_iterator it, it_end = mViewCells.end(); for (it = mViewCells.begin(); it != it_end; ++ it) { SetViewCellActive(*it); } } int ViewCellsManager::GetMaxFilterSize() const { return mMaxFilterSize; } static const bool USE_ASCII = true; bool ViewCellsManager::ExportBoundingBoxes(const string filename, const ObjectContainer &objects) const { ObjectContainer::const_iterator it, it_end = objects.end(); if (USE_ASCII) { ofstream boxesOut(filename.c_str()); if (!boxesOut.is_open()) return false; for (it = objects.begin(); it != it_end; ++ it) { MeshInstance *mi = dynamic_cast(*it); const AxisAlignedBox3 box = mi->GetBox(); boxesOut << mi->GetId() << " " << box.Min().x << " " << box.Min().y << " " << box.Min().z << " " << box.Max().x << " " << box.Max().y << " " << box.Max().z << endl; } boxesOut.close(); } else { ofstream boxesOut(filename.c_str(), ios::binary); if (!boxesOut.is_open()) return false; for (it = objects.begin(); it != it_end; ++ it) { MeshInstance *mi = dynamic_cast(*it); const AxisAlignedBox3 box = mi->GetBox(); Vector3 bmin = box.Min(); Vector3 bmax = box.Max(); int id = mi->GetId(); boxesOut.write(reinterpret_cast(&id), sizeof(int)); boxesOut.write(reinterpret_cast(&bmin), sizeof(Vector3)); boxesOut.write(reinterpret_cast(&bmax), sizeof(Vector3)); } boxesOut.close(); } return true; } bool ViewCellsManager::LoadBoundingBoxes(const string filename, IndexedBoundingBoxContainer &boxes) const { Vector3 bmin, bmax; int id; if (USE_ASCII) { ifstream boxesIn(filename.c_str()); if (!boxesIn.is_open()) { cout << "failed to open file " << filename << endl; return false; } string buf; while (!(getline(boxesIn, buf)).eof()) { sscanf(buf.c_str(), "%d %f %f %f %f %f %f", &id, &bmin.x, &bmin.y, &bmin.z, &bmax.x, &bmax.y, &bmax.z); AxisAlignedBox3 box(bmin, bmax); // MeshInstance *mi = new MeshInstance(); // HACK: set bounding box to new box //mi->mBox = box; boxes.push_back(IndexedBoundingBox(id, box)); } boxesIn.close(); } else { ifstream boxesIn(filename.c_str(), ios::binary); if (!boxesIn.is_open()) return false; while (1) { boxesIn.read(reinterpret_cast(&id), sizeof(Vector3)); boxesIn.read(reinterpret_cast(&bmin), sizeof(Vector3)); boxesIn.read(reinterpret_cast(&bmax), sizeof(Vector3)); if (boxesIn.eof()) break; AxisAlignedBox3 box(bmin, bmax); MeshInstance *mi = new MeshInstance(NULL); // HACK: set bounding box to new box //mi->mBox = box; //boxes.push_back(mi); boxes.push_back(IndexedBoundingBox(id, box)); } boxesIn.close(); } return true; } float ViewCellsManager::GetFilterWidth() { return mFilterWidth; } float ViewCellsManager::GetAbsFilterWidth() { return Magnitude(mViewSpaceBox.Size()) * mFilterWidth; } void ViewCellsManager::UpdateScalarPvsSize(ViewCell *vc, const float pvsCost, const int entriesInPvs) const { vc->mPvsCost = pvsCost; vc->mEntriesInPvs = entriesInPvs; vc->mPvsSizeValid = true; } void ViewCellsManager::ApplyFilter(ViewCell *viewCell, KdTree *kdTree, const float viewSpaceFilterSize, const float spatialFilterSize, ObjectPvs &pvs ) { // extend the pvs of the viewcell by pvs of its neighbors // and apply spatial filter by including all neighbors of the objects // in the pvs // get all viewcells intersecting the viewSpaceFilterBox // and compute the pvs union //Vector3 center = viewCell->GetBox().Center(); // Vector3 center = m->mBox.Center(); // AxisAlignedBox3 box(center - Vector3(viewSpaceFilterSize/2), // center + Vector3(viewSpaceFilterSize/2)); if (!ViewCellsConstructed()) return; if (viewSpaceFilterSize >= 0.0f) { const bool usePrVS = false; if (!usePrVS) { AxisAlignedBox3 box = GetViewCellBox(viewCell); box.Enlarge(Vector3(viewSpaceFilterSize/2)); ViewCellContainer viewCells; ComputeBoxIntersections(box, viewCells); // cout<<"box="<SetForcedMaterial(m); } void ViewCellsManager::CollectMergeCandidates(const VssRayContainer &rays, vector &candidates) { // implemented in subclasses } void ViewCellsManager::UpdatePvsForEvaluation() { ObjectPvs objPvs; UpdatePvsForEvaluation(mViewCellsTree->GetRoot(), objPvs); } void ViewCellsManager::UpdatePvsForEvaluation(ViewCell *root, ObjectPvs &pvs) { // terminate traversal if (root->IsLeaf()) { //cout << "updating leaf" << endl; // we assume that pvs is explicitly stored in leaves pvs = root->GetPvs(); UpdateScalarPvsSize(root, pvs.EvalPvsCost(), pvs.GetSize()); return; } //cout << "recursivly updating pvs" << endl; //////////////// //-- interior node => propagate pvs up the tree ViewCellInterior *interior = dynamic_cast(root); // reset interior pvs interior->GetPvs().Clear(); // reset recursive pvs pvs.Clear(); // pvss of child nodes vector pvsList; pvsList.resize((int)interior->mChildren.size()); ViewCellContainer::const_iterator vit, vit_end = interior->mChildren.end(); int i = 0; for (vit = interior->mChildren.begin(); vit != vit_end; ++ vit, ++ i) { ////////////////// //-- recursivly compute child pvss UpdatePvsForEvaluation(*vit, pvsList[i]/*objPvs*/); } #if 1 Intersectable::NewMail(); //-- faster way of computing pvs: //-- construct merged pvs by adding //-- and only those of the next pvs which were not mailed. //-- note: sumpdf is not correct!! vector::iterator oit = pvsList.begin(); for (vit = interior->mChildren.begin(); vit != vit_end; ++ vit, ++ oit) { ObjectPvsEntries::iterator pit, pit_end = (*oit).mEntries.end(); for (pit = (*oit).mEntries.begin(); pit != pit_end; ++ pit) { Intersectable *intersect = (*pit).mObject; if (!intersect->Mailed()) { pvs.AddSample(intersect, (*pit).mData.mSumPdf); intersect->Mail(); } } } // store pvs in this node if (mViewCellsTree->ViewCellsStorage() == ViewCellsTree::PVS_IN_INTERIORS) { interior->SetPvs(pvs); } // set new pvs size UpdateScalarPvsSize(interior, pvs.EvalPvsCost(), pvs.GetSize()); #else // really merge cells: slow put sumPdf is correct viewCellInterior->GetPvs().Merge(backVc->GetPvs()); viewCellInterior->GetPvs().Merge(frontVc->GetPvs()); #endif } /*******************************************************************/ /* BspViewCellsManager implementation */ /*******************************************************************/ BspViewCellsManager::BspViewCellsManager(ViewCellsTree *vcTree, BspTree *bspTree): ViewCellsManager(vcTree), mBspTree(bspTree) { Environment::GetSingleton()->GetIntValue("BspTree.Construction.samples", mInitialSamples); mBspTree->SetViewCellsManager(this); mBspTree->SetViewCellsTree(mViewCellsTree); } bool BspViewCellsManager::ViewCellsConstructed() const { return mBspTree->GetRoot() != NULL; } ViewCell *BspViewCellsManager::GenerateViewCell(Mesh *mesh) const { return new BspViewCell(mesh); } int BspViewCellsManager::ConstructSubdivision(const ObjectContainer &objects, const VssRayContainer &rays) { // if view cells were already constructed, we can finish if (ViewCellsConstructed()) return 0; int sampleContributions = 0; // construct view cells using the collected samples RayContainer constructionRays; VssRayContainer savedRays; // choose a a number of rays based on the ratio of cast rays / requested rays const int limit = min(mInitialSamples, (int)rays.size()); VssRayContainer::const_iterator it, it_end = rays.end(); const float prop = (float)limit / ((float)rays.size() + Limits::Small); for (it = rays.begin(); it != it_end; ++ it) { if (Random(1.0f) < prop) constructionRays.push_back(new Ray(*(*it))); else savedRays.push_back(*it); } if (!mUsePredefinedViewCells) { // no view cells loaded mBspTree->Construct(objects, constructionRays, &mViewSpaceBox); // collect final view cells mBspTree->CollectViewCells(mViewCells); } else { // use predefined view cells geometry => // contruct bsp hierarchy over them mBspTree->Construct(mViewCells); } // destroy rays created only for construction CLEAR_CONTAINER(constructionRays); Debug << mBspTree->GetStatistics() << endl; Debug << "\nView cells after construction:\n" << mCurrentViewCellsStats << endl; // recast rest of the rays if (SAMPLE_AFTER_SUBDIVISION) ComputeSampleContributions(savedRays, true, false); // real meshes are contructed at this stage if (0) { cout << "finalizing view cells ... "; FinalizeViewCells(true); cout << "finished" << endl; } return sampleContributions; } void BspViewCellsManager::CollectViewCells() { if (!ViewCellsTreeConstructed()) { // view cells tree constructed mBspTree->CollectViewCells(mViewCells); } else { // we can use the view cells tree hierarchy to get the right set mViewCellsTree->CollectBestViewCellSet(mViewCells, mNumActiveViewCells); } } float BspViewCellsManager::GetProbability(ViewCell *viewCell) { if (1) return GetVolume(viewCell) / GetViewSpaceBox().GetVolume(); else // compute view cell area as subsititute for probability return GetArea(viewCell) / GetAccVcArea(); } int BspViewCellsManager::CastLineSegment(const Vector3 &origin, const Vector3 &termination, ViewCellContainer &viewcells) { return mBspTree->CastLineSegment(origin, termination, viewcells); } void ViewCellsManager::ExportMergedViewCells(const ObjectContainer &objects) { // save color code const int savedColorCode = mColorCode; // export merged view cells mColorCode = 0; // use random colors Exporter *exporter = Exporter::GetExporter("merged_view_cells.wrl"); cout << "exporting view cells after merge ... "; if (exporter) { if (mExportGeometry) { exporter->ExportGeometry(objects); } exporter->SetFilled(); ExportViewCellsForViz(exporter, NULL, GetClipPlane()); delete exporter; } cout << "finished" << endl; // export merged view cells using pvs color coding mColorCode = 1; exporter = Exporter::GetExporter("merged_view_cells_pvs.wrl"); cout << "exporting view cells after merge (pvs size) ... "; if (exporter) { if (mExportGeometry) { exporter->ExportGeometry(objects); } exporter->SetFilled(); ExportViewCellsForViz(exporter, NULL, GetClipPlane()); delete exporter; } cout << "finished" << endl; mColorCode = savedColorCode; } int BspViewCellsManager::PostProcess(const ObjectContainer &objects, const VssRayContainer &rays) { if (!ViewCellsConstructed()) { Debug << "view cells not constructed" << endl; return 0; } // view cells already finished before post processing step, // i.e., because they were loaded from disc if (mViewCellsFinished) { FinalizeViewCells(true); EvaluateViewCellsStats(); return 0; } ////////////////// //-- merge leaves of the view cell hierarchy cout << "starting post processing using " << mPostProcessSamples << " samples ... "; long startTime = GetTime(); VssRayContainer postProcessRays; GetRaySets(rays, mPostProcessSamples, postProcessRays); if (mMergeViewCells) { cout << "constructing visibility based merge tree" << endl; mViewCellsTree->ConstructMergeTree(rays, objects); } else { cout << "constructing spatial merge tree" << endl; ViewCell *root; // the spatial merge tree is difficult to build for // this type of construction, as view cells cover several // leaves => create dummy tree which is only 2 levels deep if (mUsePredefinedViewCells) { root = ConstructDummyMergeTree(mBspTree->GetRoot()); } else { // create spatial merge hierarchy root = ConstructSpatialMergeTree(mBspTree->GetRoot()); } mViewCellsTree->SetRoot(root); // recompute pvs in the whole hierarchy ObjectPvs pvs; UpdatePvsForEvaluation(root, pvs); } cout << "finished" << endl; cout << "merged view cells in " << TimeDiff(startTime, GetTime()) * 1e-3 << " secs" << endl; Debug << "Postprocessing: Merged view cells in " << TimeDiff(startTime, GetTime()) * 1e-3 << " secs" << endl << endl; //////////////////////// //-- visualization and statistics after merge if (1) { char mstats[100]; Environment::GetSingleton()->GetStringValue("ViewCells.mergeStats", mstats); mViewCellsTree->ExportStats(mstats); } // recompute view cells and stats ResetViewCells(); Debug << "\nView cells after merge:\n" << mCurrentViewCellsStats << endl; // visualization of the view cells if (1) ExportMergedViewCells(objects); // compute final meshes and volume / area if (1) FinalizeViewCells(true); return 0; } BspViewCellsManager::~BspViewCellsManager() { } int BspViewCellsManager::GetType() const { return BSP; } void BspViewCellsManager::Visualize(const ObjectContainer &objects, const VssRayContainer &sampleRays) { if (!ViewCellsConstructed()) return; const int savedColorCode = mColorCode; if (1) // export final view cells { mColorCode = 1; // hack color code Exporter *exporter = Exporter::GetExporter("final_view_cells.wrl"); cout << "exporting view cells after merge (pvs size) ... "; if (exporter) { if (mExportGeometry) { exporter->ExportGeometry(objects); } ExportViewCellsForViz(exporter, NULL, GetClipPlane()); delete exporter; } cout << "finished" << endl; } // reset color code mColorCode = savedColorCode; ////////////////// //-- visualization of the BSP splits bool exportSplits = false; Environment::GetSingleton()->GetBoolValue("BspTree.Visualization.exportSplits", exportSplits); if (exportSplits) { cout << "exporting splits ... "; ExportSplits(objects); cout << "finished" << endl; } int leafOut; Environment::GetSingleton()->GetIntValue("ViewCells.Visualization.maxOutput", leafOut); const int raysOut = 100; ExportSingleViewCells(objects, leafOut, false, true, false, raysOut, ""); } void BspViewCellsManager::ExportSplits(const ObjectContainer &objects) { Exporter *exporter = Exporter::GetExporter("bsp_splits.x3d"); if (exporter) { //exporter->SetFilled(); if (mExportGeometry) { exporter->ExportGeometry(objects); } Material m; m.mDiffuseColor = RgbColor(1, 0, 0); exporter->SetForcedMaterial(m); exporter->SetWireframe(); exporter->ExportBspSplits(*mBspTree, true); // NOTE: take forced material, else big scenes cannot be viewed m.mDiffuseColor = RgbColor(0, 1, 0); exporter->SetForcedMaterial(m); //exporter->ResetForcedMaterial(); delete exporter; } } void BspViewCellsManager::ExportSingleViewCells(const ObjectContainer &objects, const int maxViewCells, const bool sortViewCells, const bool exportPvs, const bool exportRays, const int maxRays, const string prefix, VssRayContainer *visRays) { if (sortViewCells) { // sort view cells to visualize the largest view cells stable_sort(mViewCells.begin(), mViewCells.end(), ViewCell::LargerRenderCost); } ////////// //-- some view cells for output ViewCell::NewMail(); const int limit = min(maxViewCells, (int)mViewCells.size()); for (int i = 0; i < limit; ++ i) { const int idx = sortViewCells ? (int)RandomValue(0, (float)mViewCells.size() - 0.5f) : i; ViewCell *vc = mViewCells[idx]; if (vc->Mailed() || vc->GetId() == OUT_OF_BOUNDS_ID) continue; vc->Mail(); ObjectPvs pvs; mViewCellsTree->GetPvs(vc, pvs); char s[64]; sprintf(s, "%sviewcell-%04d.wrl", prefix.c_str(), i); Exporter *exporter = Exporter::GetExporter(s); cout << "view cell " << idx << ": pvs cost=" << (int)mViewCellsTree->GetPvsCost(vc) << endl; if (exportRays) { //////////// //-- export rays piercing this view cell // use rays stored with the view cells VssRayContainer vcRays, vcRays2, vcRays3; VssRayContainer collectRays; // collect initial view cells ViewCellContainer leaves; mViewCellsTree->CollectLeaves(vc, leaves); ViewCellContainer::const_iterator vit, vit_end = leaves.end(); for (vit = leaves.begin(); vit != vit_end; ++ vit) { // prepare some rays for output VssRayContainer::const_iterator rit, rit_end = (*vit)->GetOrCreateRays()->end(); for (rit = (*vit)->GetOrCreateRays()->begin(); rit != rit_end; ++ rit) { collectRays.push_back(*rit); } } const int raysOut = min((int)collectRays.size(), maxRays); // prepare some rays for output VssRayContainer::const_iterator rit, rit_end = collectRays.end(); for (rit = collectRays.begin(); rit != rit_end; ++ rit) { const float p = RandomValue(0.0f, (float)collectRays.size()); if (p < raysOut) { if ((*rit)->mFlags & VssRay::BorderSample) { vcRays.push_back(*rit); } else if ((*rit)->mFlags & VssRay::ReverseSample) vcRays2.push_back(*rit); else vcRays3.push_back(*rit); } } exporter->ExportRays(vcRays, RgbColor(1, 0, 0)); exporter->ExportRays(vcRays2, RgbColor(0, 1, 0)); exporter->ExportRays(vcRays3, RgbColor(1, 1, 1)); } //////////////// //-- export view cell geometry exporter->SetWireframe(); Material m;//= RandomMaterial(); m.mDiffuseColor = RgbColor(0, 1, 0); exporter->SetForcedMaterial(m); ExportViewCellGeometry(exporter, vc, NULL, NULL); exporter->SetFilled(); if (exportPvs) { Intersectable::NewMail(); ObjectPvsEntries::const_iterator oit, oit_end = pvs.mEntries.end(); // output PVS of view cell for (oit = pvs.mEntries.begin(); oit != oit_end; ++ oit) { Intersectable *intersect = (*oit).mObject; if (!intersect->Mailed()) { intersect->Mail(); m = RandomMaterial(); exporter->SetForcedMaterial(m); exporter->ExportIntersectable(intersect); } } cout << endl; } DEL_PTR(exporter); cout << "finished" << endl; } } void BspViewCellsManager::TestSubdivision() { ViewCellContainer leaves; mViewCellsTree->CollectLeaves(mViewCellsTree->GetRoot(), leaves); ViewCellContainer::const_iterator it, it_end = leaves.end(); const float vol = mViewSpaceBox.GetVolume(); float subdivVol = 0; float newVol = 0; for (it = leaves.begin(); it != it_end; ++ it) { BspNodeGeometry geom; mBspTree->ConstructGeometry(*it, geom); const float lVol = geom.GetVolume(); newVol += lVol; subdivVol += (*it)->GetVolume(); const float thres = 0.9f; if ((lVol < ((*it)->GetVolume() * thres)) || (lVol * thres > ((*it)->GetVolume()))) Debug << "warning: " << lVol << " " << (*it)->GetVolume() << endl; } Debug << "exact volume: " << vol << endl; Debug << "subdivision volume: " << subdivVol << endl; Debug << "new volume: " << newVol << endl; } void BspViewCellsManager::ExportViewCellGeometry(Exporter *exporter, ViewCell *vc, const AxisAlignedBox3 *sceneBox, const AxisAlignedPlane *clipPlane ) const { if (clipPlane) { const Plane3 plane = clipPlane->GetPlane(); ViewCellContainer leaves; mViewCellsTree->CollectLeaves(vc, leaves); ViewCellContainer::const_iterator it, it_end = leaves.end(); for (it = leaves.begin(); it != it_end; ++ it) { BspNodeGeometry geom; BspNodeGeometry front; BspNodeGeometry back; mBspTree->ConstructGeometry(*it, geom); const float eps = 0.0001f; const int cf = geom.Side(plane, eps); if (cf == -1) { exporter->ExportPolygons(geom.GetPolys()); } else if (cf == 0) { geom.SplitGeometry(front, back, plane, mViewSpaceBox, eps); if (back.Valid()) { exporter->ExportPolygons(back.GetPolys()); } } } } else { // export mesh if available // TODO: some bug here? if (1 && vc->GetMesh()) { exporter->ExportMesh(vc->GetMesh()); } else { BspNodeGeometry geom; mBspTree->ConstructGeometry(vc, geom); exporter->ExportPolygons(geom.GetPolys()); } } } void BspViewCellsManager::CreateMesh(ViewCell *vc) { // note: should previous mesh be deleted (via mesh manager?) BspNodeGeometry geom; mBspTree->ConstructGeometry(vc, geom); Mesh *mesh = MeshManager::GetSingleton()->CreateResource(); IncludeNodeGeomInMesh(geom, *mesh); vc->SetMesh(mesh); } void BspViewCellsManager::Finalize(ViewCell *viewCell, const bool createMesh) { float area = 0; float volume = 0; ViewCellContainer leaves; mViewCellsTree->CollectLeaves(viewCell, leaves); ViewCellContainer::const_iterator it, it_end = leaves.end(); for (it = leaves.begin(); it != it_end; ++ it) { BspNodeGeometry geom; mBspTree->ConstructGeometry(*it, geom); const float lVol = geom.GetVolume(); const float lArea = geom.GetArea(); area += lArea; volume += lVol; CreateMesh(*it); } viewCell->SetVolume(volume); viewCell->SetArea(area); } ViewCell *BspViewCellsManager::GetViewCell(const Vector3 &point, const bool active) const { if (!ViewCellsConstructed()) { return NULL; } if (!mViewSpaceBox.IsInside(point)) { return NULL; } return mBspTree->GetViewCell(point); } void BspViewCellsManager::CollectMergeCandidates(const VssRayContainer &rays, vector &candidates) { cout << "collecting merge candidates ... " << endl; if (mUseRaysForMerge) { mBspTree->CollectMergeCandidates(rays, candidates); } else { vector leaves; mBspTree->CollectLeaves(leaves); mBspTree->CollectMergeCandidates(leaves, candidates); } cout << "fininshed collecting candidates" << endl; } bool BspViewCellsManager::ExportViewCells(const string filename, const bool exportPvs, const ObjectContainer &objects) { if (!ViewCellsConstructed() || !ViewCellsTreeConstructed()) { return false; } cout << "exporting view cells to xml ... "; OUT_STREAM stream(filename.c_str()); // for output we need unique ids for each view cell CreateUniqueViewCellIds(); stream << ""<" << endl; if (exportPvs) { ////////// //-- export bounding boxes: they are used to identify the objects from the pvs and //-- assign them to the entities in the rendering engine stream << "" << endl; ObjectContainer::const_iterator oit, oit_end = objects.end(); for (oit = objects.begin(); oit != oit_end; ++ oit) { const AxisAlignedBox3 box = (*oit)->GetBox(); stream << "GetId() << "\"" << " min=\"" << box.Min().x << " " << box.Min().y << " " << box.Min().z << "\"" << " max=\"" << box.Max().x << " " << box.Max().y << " " << box.Max().z << "\" />" << endl; } stream << "" << endl; } /////////// //-- export the view cells and the pvs const int numViewCells = mCurrentViewCellsStats.viewCells; stream << "" << endl; mViewCellsTree->Export(stream, exportPvs); stream << "" << endl; ///////////// //-- export the view space hierarchy stream << "" << endl; mBspTree->Export(stream); // end tags stream << "" << endl; stream << "" << endl; stream.close(); cout << "finished" << endl; return true; } ViewCell *BspViewCellsManager::ConstructDummyMergeTree(BspNode *root) { ViewCellInterior *vcRoot = new ViewCellInterior(); // evaluate merge cost for priority traversal const float mergeCost = -(float)root->mTimeStamp; vcRoot->SetMergeCost(mergeCost); float volume = 0; vector leaves; mBspTree->CollectLeaves(leaves); vector::const_iterator lit, lit_end = leaves.end(); ViewCell::NewMail(); for (lit = leaves.begin(); lit != lit_end; ++ lit) { BspLeaf *leaf = *lit; ViewCell *vc = leaf->GetViewCell(); if (!vc->Mailed()) { vc->Mail(); vc->SetMergeCost(0.0f); vcRoot->SetupChildLink(vc); volume += vc->GetVolume(); volume += vc->GetVolume(); vcRoot->SetVolume(volume); } } return vcRoot; } ViewCell *BspViewCellsManager::ConstructSpatialMergeTree(BspNode *root) { // terminate recursion if (root->IsLeaf()) { BspLeaf *leaf = dynamic_cast(root); leaf->GetViewCell()->SetMergeCost(0.0f); return leaf->GetViewCell(); } BspInterior *interior = dynamic_cast(root); ViewCellInterior *viewCellInterior = new ViewCellInterior(); // evaluate merge cost for priority traversal const float mergeCost = -(float)root->mTimeStamp; viewCellInterior->SetMergeCost(mergeCost); float volume = 0; BspNode *front = interior->GetFront(); BspNode *back = interior->GetBack(); //////////// //-- recursivly compute child hierarchies ViewCell *backVc = ConstructSpatialMergeTree(back); ViewCell *frontVc = ConstructSpatialMergeTree(front); viewCellInterior->SetupChildLink(backVc); viewCellInterior->SetupChildLink(frontVc); volume += backVc->GetVolume(); volume += frontVc->GetVolume(); viewCellInterior->SetVolume(volume); return viewCellInterior; } /************************************************************************/ /* KdViewCellsManager implementation */ /************************************************************************/ KdViewCellsManager::KdViewCellsManager(ViewCellsTree *vcTree, KdTree *kdTree): ViewCellsManager(vcTree), mKdTree(kdTree), mKdPvsDepth(100) { } float KdViewCellsManager::GetProbability(ViewCell *viewCell) { // compute view cell area / volume as subsititute for probability if (0) return GetArea(viewCell) / GetViewSpaceBox().SurfaceArea(); else return GetVolume(viewCell) / GetViewSpaceBox().GetVolume(); } void KdViewCellsManager::CollectViewCells() { //mKdTree->CollectViewCells(mViewCells); TODO } int KdViewCellsManager::ConstructSubdivision(const ObjectContainer &objects, const VssRayContainer &rays) { // if view cells already constructed if (ViewCellsConstructed()) return 0; mKdTree->Construct(); mTotalAreaValid = false; // create the view cells mKdTree->CreateAndCollectViewCells(mViewCells); // cast rays ComputeSampleContributions(rays, true, false); EvaluateViewCellsStats(); Debug << "\nView cells after construction:\n" << mCurrentViewCellsStats << endl; return 0; } bool KdViewCellsManager::ViewCellsConstructed() const { return mKdTree->GetRoot() != NULL; } int KdViewCellsManager::PostProcess(const ObjectContainer &objects, const VssRayContainer &rays) { return 0; } void KdViewCellsManager::ExportSingleViewCells(const ObjectContainer &objects, const int maxViewCells, const bool sortViewCells, const bool exportPvs, const bool exportRays, const int maxRays, const string prefix, VssRayContainer *visRays) { // TODO } void KdViewCellsManager::Visualize(const ObjectContainer &objects, const VssRayContainer &sampleRays) { if (!ViewCellsConstructed()) return; // using view cells instead of the kd PVS of objects const bool useViewCells = true; bool exportRays = false; int limit = min(mVisualizationSamples, (int)sampleRays.size()); const int pvsOut = min((int)objects.size(), 10); VssRayContainer *rays = new VssRayContainer[pvsOut]; if (useViewCells) { const int leafOut = 10; ViewCell::NewMail(); //-- some rays for output const int raysOut = min((int)sampleRays.size(), mVisualizationSamples); Debug << "visualization using " << raysOut << " samples" << endl; //-- some random view cells and rays for output vector kdLeaves; for (int i = 0; i < leafOut; ++ i) kdLeaves.push_back(dynamic_cast(mKdTree->GetRandomLeaf())); for (int i = 0; i < kdLeaves.size(); ++ i) { KdLeaf *leaf = kdLeaves[i]; RayContainer vcRays; cout << "creating output for view cell " << i << " ... "; #if 0 // check whether we can add the current ray to the output rays for (int k = 0; k < raysOut; ++ k) { Ray *ray = sampleRays[k]; for (int j = 0; j < (int)ray->bspIntersections.size(); ++ j) { BspLeaf *leaf2 = ray->bspIntersections[j].mLeaf; if (leaf->GetViewCell() == leaf2->GetViewCell()) { vcRays.push_back(ray); } } } #endif Intersectable::NewMail(); ViewCell *vc = leaf->mViewCell; char str[64]; sprintf(str, "viewcell%04d.wrl", i); Exporter *exporter = Exporter::GetExporter(str); exporter->SetFilled(); exporter->SetWireframe(); //exporter->SetFilled(); Material m;//= RandomMaterial(); m.mDiffuseColor = RgbColor(1, 1, 0); exporter->SetForcedMaterial(m); AxisAlignedBox3 box = mKdTree->GetBox(leaf); exporter->ExportBox(box); // export rays piercing this view cell exporter->ExportRays(vcRays, 1000, RgbColor(0, 1, 0)); m.mDiffuseColor = RgbColor(1, 0, 0); exporter->SetForcedMaterial(m); // exporter->SetWireframe(); exporter->SetFilled(); ObjectPvsEntries::iterator it, it_end = vc->GetPvs().mEntries.end(); // -- output PVS of view cell for (it = vc->GetPvs().mEntries.begin(); it != it_end; ++ it) { Intersectable *intersect = (*it).mObject; if (!intersect->Mailed()) { exporter->ExportIntersectable(intersect); intersect->Mail(); } } DEL_PTR(exporter); cout << "finished" << endl; } DEL_PTR(rays); } else // using kd PVS of objects { for (int i = 0; i < limit; ++ i) { VssRay *ray = sampleRays[i]; // check whether we can add this to the rays for (int j = 0; j < pvsOut; j++) { if (objects[j] == ray->mTerminationObject) { rays[j].push_back(ray); } } } if (exportRays) { Exporter *exporter = NULL; exporter = Exporter::GetExporter("sample-rays.x3d"); exporter->SetWireframe(); exporter->ExportKdTree(*mKdTree); for (i = 0; i < pvsOut; i++) exporter->ExportRays(rays[i], RgbColor(1, 0, 0)); exporter->SetFilled(); delete exporter; } for (int k=0; k < pvsOut; k++) { Intersectable *object = objects[k]; char str[64]; sprintf(str, "viewcell%04d.wrl", i); Exporter *exporter = Exporter::GetExporter(str); exporter->SetWireframe(); // matt: no kd pvs /* KdPvsMap::iterator kit = object->mKdPvs.mEntries.begin(); Intersectable::NewMail(); // avoid adding the object to the list object->Mail(); ObjectContainer visibleObjects; for (; kit != object->mKdPvs.mEntries.end(); i++) { KdNode *node = (*kit).first; exporter->ExportBox(mKdTree->GetBox(node)); mKdTree->CollectObjects(node, visibleObjects); } exporter->ExportRays(rays[k], RgbColor(0, 1, 0)); exporter->SetFilled(); for (int j = 0; j < visibleObjects.size(); j++) exporter->ExportIntersectable(visibleObjects[j]); Material m; m.mDiffuseColor = RgbColor(1, 0, 0); exporter->SetForcedMaterial(m); exporter->ExportIntersectable(object); */ delete exporter; } } } ViewCell *KdViewCellsManager::GenerateViewCell(Mesh *mesh) const { return new KdViewCell(mesh); } void KdViewCellsManager::ExportViewCellGeometry(Exporter *exporter, ViewCell *vc, const AxisAlignedBox3 *sceneBox, const AxisAlignedPlane *clipPlane ) const { ViewCellContainer leaves; mViewCellsTree->CollectLeaves(vc, leaves); ViewCellContainer::const_iterator it, it_end = leaves.end(); for (it = leaves.begin(); it != it_end; ++ it) { KdViewCell *kdVc = dynamic_cast(*it); exporter->ExportBox(mKdTree->GetBox(kdVc->mLeaves[0])); } } int KdViewCellsManager::GetType() const { return ViewCellsManager::KD; } KdNode *KdViewCellsManager::GetNodeForPvs(KdLeaf *leaf) { KdNode *node = leaf; while (node->mParent && node->mDepth > mKdPvsDepth) node = node->mParent; return node; } int KdViewCellsManager::CastLineSegment(const Vector3 &origin, const Vector3 &termination, ViewCellContainer &viewcells) { return mKdTree->CastLineSegment(origin, termination, viewcells); } void KdViewCellsManager::CreateMesh(ViewCell *vc) { // TODO } void KdViewCellsManager::CollectMergeCandidates(const VssRayContainer &rays, vector &candidates) { // TODO } /**************************************************************************/ /* VspBspViewCellsManager implementation */ /**************************************************************************/ VspBspViewCellsManager::VspBspViewCellsManager(ViewCellsTree *vcTree, VspBspTree *vspBspTree): ViewCellsManager(vcTree), mVspBspTree(vspBspTree) { Environment::GetSingleton()->GetIntValue("VspBspTree.Construction.samples", mInitialSamples); mVspBspTree->SetViewCellsManager(this); mVspBspTree->mViewCellsTree = mViewCellsTree; } VspBspViewCellsManager::~VspBspViewCellsManager() { } float VspBspViewCellsManager::GetProbability(ViewCell *viewCell) { if (0 && mVspBspTree->mUseAreaForPvs) return GetArea(viewCell) / GetAccVcArea(); else return GetVolume(viewCell) / mViewSpaceBox.GetVolume(); } void VspBspViewCellsManager::CollectViewCells() { // view cells tree constructed? if (!ViewCellsTreeConstructed()) { mVspBspTree->CollectViewCells(mViewCells, false); } else { // we can use the view cells tree hierarchy to get the right set mViewCellsTree->CollectBestViewCellSet(mViewCells, mNumActiveViewCells); } } void VspBspViewCellsManager::CollectMergeCandidates(const VssRayContainer &rays, vector &candidates) { cout << "collecting merge candidates ... " << endl; if (mUseRaysForMerge) { mVspBspTree->CollectMergeCandidates(rays, candidates); } else { vector leaves; mVspBspTree->CollectLeaves(leaves); mVspBspTree->CollectMergeCandidates(leaves, candidates); } cout << "fininshed collecting candidates" << endl; } bool VspBspViewCellsManager::ViewCellsConstructed() const { return mVspBspTree->GetRoot() != NULL; } ViewCell *VspBspViewCellsManager::GenerateViewCell(Mesh *mesh) const { return new BspViewCell(mesh); } int VspBspViewCellsManager::ConstructSubdivision(const ObjectContainer &objects, const VssRayContainer &rays) { mMaxPvsSize = (int)(mMaxPvsRatio * (float)objects.size()); // if view cells were already constructed if (ViewCellsConstructed()) { return 0; } int sampleContributions = 0; VssRayContainer sampleRays; const int limit = min(mInitialSamples, (int)rays.size()); Debug << "samples used for vsp bsp subdivision: " << mInitialSamples << ", actual rays: " << (int)rays.size() << endl; VssRayContainer savedRays; if (SAMPLE_AFTER_SUBDIVISION) { VssRayContainer constructionRays; GetRaySets(rays, mInitialSamples, constructionRays, &savedRays); Debug << "rays used for initial construction: " << (int)constructionRays.size() << endl; Debug << "rays saved for later use: " << (int)savedRays.size() << endl; mVspBspTree->Construct(constructionRays, &mViewSpaceBox); } else { Debug << "rays used for initial construction: " << (int)rays.size() << endl; mVspBspTree->Construct(rays, &mViewSpaceBox); } // collapse invalid regions cout << "collapsing invalid tree regions ... "; long startTime = GetTime(); const int collapsedLeaves = mVspBspTree->CollapseTree(); Debug << "collapsed in " << TimeDiff(startTime, GetTime()) * 1e-3 << " seconds" << endl; cout << "finished" << endl; ///////////////// //-- stats after construction Debug << mVspBspTree->GetStatistics() << endl; ResetViewCells(); Debug << "\nView cells after construction:\n" << mCurrentViewCellsStats << endl; ////////////////////// //-- recast the rest of the rays startTime = GetTime(); cout << "Computing remaining ray contributions ... "; if (SAMPLE_AFTER_SUBDIVISION) ComputeSampleContributions(savedRays, true, false); cout << "finished" << endl; Debug << "Computed remaining ray contribution in " << TimeDiff(startTime, GetTime()) * 1e-3 << " secs" << endl; cout << "construction finished" << endl; if (0) { //////// //-- real meshes are contructed at this stage cout << "finalizing view cells ... "; FinalizeViewCells(true); cout << "finished" << endl; } return sampleContributions; } void VspBspViewCellsManager::MergeViewCells(const VssRayContainer &rays, const ObjectContainer &objects) { int vcSize = 0; int pvsSize = 0; //-- merge view cells cout << "starting merge using " << mPostProcessSamples << " samples ... " << endl; long startTime = GetTime(); if (mMergeViewCells) { // TODO: should be done BEFORE the ray casting // compute tree by merging the nodes based on cost heuristics mViewCellsTree->ConstructMergeTree(rays, objects); } else { // compute tree by merging the nodes of the spatial hierarchy ViewCell *root = ConstructSpatialMergeTree(mVspBspTree->GetRoot()); mViewCellsTree->SetRoot(root); // compute pvs ObjectPvs pvs; UpdatePvsForEvaluation(root, pvs); } if (1) { char mstats[100]; ObjectPvs pvs; Environment::GetSingleton()->GetStringValue("ViewCells.mergeStats", mstats); mViewCellsTree->ExportStats(mstats); } cout << "merged view cells in " << TimeDiff(startTime, GetTime()) *1e-3 << " secs" << endl; Debug << "Postprocessing: Merged view cells in " << TimeDiff(startTime, GetTime()) *1e-3 << " secs" << endl << endl; ////////////////// //-- stats and visualizations int savedColorCode = mColorCode; // get currently active view cell set ResetViewCells(); Debug << "\nView cells after merge:\n" << mCurrentViewCellsStats << endl; if (mShowVisualization) // export merged view cells { mColorCode = 0; Exporter *exporter = Exporter::GetExporter("merged_view_cells.wrl"); cout << "exporting view cells after merge ... "; if (exporter) { if (0) exporter->SetWireframe(); else exporter->SetFilled(); ExportViewCellsForViz(exporter, NULL, GetClipPlane()); if (mExportGeometry) { Material m; m.mDiffuseColor = RgbColor(0, 1, 0); exporter->SetForcedMaterial(m); exporter->SetFilled(); exporter->ExportGeometry(objects); } delete exporter; } cout << "finished" << endl; } if (mShowVisualization) { // use pvs size for color coding mColorCode = 1; Exporter *exporter = Exporter::GetExporter("merged_view_cells_pvs.wrl"); cout << "exporting view cells after merge (pvs size) ... "; if (exporter) { exporter->SetFilled(); ExportViewCellsForViz(exporter, NULL, GetClipPlane()); if (mExportGeometry) { Material m; m.mDiffuseColor = RgbColor(0, 1, 0); exporter->SetForcedMaterial(m); exporter->SetFilled(); exporter->ExportGeometry(objects); } delete exporter; } cout << "finished" << endl; } mColorCode = savedColorCode; } void VspBspViewCellsManager::RefineViewCells(const VssRayContainer &rays, const ObjectContainer &objects) { mRenderer->RenderScene(); SimulationStatistics ss; dynamic_cast(mRenderer)->GetStatistics(ss); Debug << "render time before refine\n\n" << ss << endl; const long startTime = GetTime(); cout << "Refining the merged view cells ... "; // refining the merged view cells const int refined = mViewCellsTree->RefineViewCells(rays, objects); //-- stats and visualizations cout << "finished" << endl; cout << "refined " << refined << " view cells in " << TimeDiff(startTime, GetTime()) *1e-3 << " secs" << endl; Debug << "Postprocessing: refined " << refined << " view cells in " << TimeDiff(startTime, GetTime()) *1e-3 << " secs" << endl << endl; } int VspBspViewCellsManager::PostProcess(const ObjectContainer &objects, const VssRayContainer &rays) { if (!ViewCellsConstructed()) { Debug << "postprocess error: no view cells constructed" << endl; return 0; } // view cells already finished before post processing step // (i.e. because they were loaded) if (mViewCellsFinished) { FinalizeViewCells(true); EvaluateViewCellsStats(); return 0; } // check if new view cells turned invalid int minPvs, maxPvs; if (0) { minPvs = mMinPvsSize; maxPvs = mMaxPvsSize; } else { // problem matt: why did I start here from zero? minPvs = 0; maxPvs = mMaxPvsSize; } Debug << "setting validity, min: " << minPvs << " max: " << maxPvs << endl; cout << "setting validity, min: " << minPvs << " max: " << maxPvs << endl; SetValidity(minPvs, maxPvs); // update valid view space according to valid view cells if (0) mVspBspTree->ValidateTree(); // area has to be recomputed mTotalAreaValid = false; VssRayContainer postProcessRays; GetRaySets(rays, mPostProcessSamples, postProcessRays); Debug << "post processing using " << (int)postProcessRays.size() << " samples" << endl; // should maybe be done here to allow merge working // with area or volume and to correct the rendering statistics if (0) FinalizeViewCells(false); ////////// //-- merge the individual view cells MergeViewCells(postProcessRays, objects); // refines the merged view cells if (0) RefineViewCells(postProcessRays, objects); /////////// //-- render simulation after merge + refine cout << "\nview cells partition render time before compress" << endl << endl;; dynamic_cast(mRenderer)->RenderScene(); SimulationStatistics ss; dynamic_cast(mRenderer)->GetStatistics(ss); cout << ss << endl; //////////// //-- compression //#if HAS_TO_BE_REDONE if (ViewCellsTreeConstructed() && mCompressViewCells) { int pvsEntries = mViewCellsTree->CountStoredPvsEntries(mViewCellsTree->GetRoot()); Debug << "number of entries before compress: " << pvsEntries << endl; mViewCellsTree->SetViewCellsStorage(ViewCellsTree::COMPRESSED); pvsEntries = mViewCellsTree->CountStoredPvsEntries(mViewCellsTree->GetRoot()); Debug << "number of entries after compress: " << pvsEntries << endl; } //#endif // collapse sibling leaves that share the same view cell if (0) mVspBspTree->CollapseTree(); // recompute view cell list and statistics ResetViewCells(); // compute final meshes and volume / area if (1) FinalizeViewCells(true); return 0; } int VspBspViewCellsManager::GetType() const { return VSP_BSP; } ViewCell *VspBspViewCellsManager::ConstructSpatialMergeTree(BspNode *root) { // terminate recursion if (root->IsLeaf()) { BspLeaf *leaf = dynamic_cast(root); leaf->GetViewCell()->SetMergeCost(0.0f); return leaf->GetViewCell(); } BspInterior *interior = dynamic_cast(root); ViewCellInterior *viewCellInterior = new ViewCellInterior(); // evaluate merge cost for priority traversal float mergeCost = 1.0f / (float)root->mTimeStamp; viewCellInterior->SetMergeCost(mergeCost); float volume = 0; BspNode *front = interior->GetFront(); BspNode *back = interior->GetBack(); ObjectPvs frontPvs, backPvs; //-- recursivly compute child hierarchies ViewCell *backVc = ConstructSpatialMergeTree(back); ViewCell *frontVc = ConstructSpatialMergeTree(front); viewCellInterior->SetupChildLink(backVc); viewCellInterior->SetupChildLink(frontVc); volume += backVc->GetVolume(); volume += frontVc->GetVolume(); viewCellInterior->SetVolume(volume); return viewCellInterior; } bool VspBspViewCellsManager::GetViewPoint(Vector3 &viewPoint) const { if (!ViewCellsConstructed()) return ViewCellsManager::GetViewPoint(viewPoint); // TODO: set reasonable limit const int limit = 20; for (int i = 0; i < limit; ++ i) { viewPoint = mViewSpaceBox.GetRandomPoint(); if (mVspBspTree->ViewPointValid(viewPoint)) { return true; } } Debug << "failed to find valid view point, taking " << viewPoint << endl; return false; } bool VspBspViewCellsManager::ViewPointValid(const Vector3 &viewPoint) const { // $$JB -> implemented in viewcellsmanager (slower, but allows dynamic // validy update in preprocessor for all managers) return ViewCellsManager::ViewPointValid(viewPoint); // return mViewSpaceBox.IsInside(viewPoint) && // mVspBspTree->ViewPointValid(viewPoint); } void VspBspViewCellsManager::Visualize(const ObjectContainer &objects, const VssRayContainer &sampleRays) { if (!ViewCellsConstructed()) return; VssRayContainer visRays; GetRaySets(sampleRays, mVisualizationSamples, visRays); if (1) { ////////////////// //-- export final view cell partition Exporter *exporter = Exporter::GetExporter("final_view_cells.wrl"); if (exporter) { cout << "exporting view cells after post process ... "; if (0) { // export view space box exporter->SetWireframe(); exporter->ExportBox(mViewSpaceBox); exporter->SetFilled(); } Material m; m.mDiffuseColor.r = 0.0f; m.mDiffuseColor.g = 0.5f; m.mDiffuseColor.b = 0.5f; exporter->SetForcedMaterial(m); if (1 && mExportGeometry) { exporter->ExportGeometry(objects); } if (0 && mExportRays) { exporter->ExportRays(visRays, RgbColor(1, 0, 0)); } ExportViewCellsForViz(exporter, NULL, GetClipPlane()); delete exporter; cout << "finished" << endl; } } //////////////// //-- visualization of the BSP splits bool exportSplits = false; Environment::GetSingleton()->GetBoolValue("VspBspTree.Visualization.exportSplits", exportSplits); if (exportSplits) { cout << "exporting splits ... "; ExportSplits(objects, visRays); cout << "finished" << endl; } //////// //-- export single view cells int leafOut; Environment::GetSingleton()->GetIntValue("ViewCells.Visualization.maxOutput", leafOut); const int raysOut = 100; ExportSingleViewCells(objects, leafOut, false, true, false, raysOut, ""); } void VspBspViewCellsManager::ExportSplits(const ObjectContainer &objects, const VssRayContainer &rays) { Exporter *exporter = Exporter::GetExporter("bsp_splits.x3d"); if (exporter) { Material m; m.mDiffuseColor = RgbColor(1, 0, 0); exporter->SetForcedMaterial(m); exporter->SetWireframe(); exporter->ExportBspSplits(*mVspBspTree, true); // take forced material, else big scenes cannot be viewed m.mDiffuseColor = RgbColor(0, 1, 0); exporter->SetForcedMaterial(m); exporter->SetFilled(); exporter->ResetForcedMaterial(); // export rays if (mExportRays) { exporter->ExportRays(rays, RgbColor(1, 1, 0)); } if (mExportGeometry) { exporter->ExportGeometry(objects); } delete exporter; } } void VspBspViewCellsManager::ExportSingleViewCells(const ObjectContainer &objects, const int maxViewCells, const bool sortViewCells, const bool exportPvs, const bool exportRays, const int maxRays, const string prefix, VssRayContainer *visRays) { if (sortViewCells) { // sort view cells to visualize the largest view cells stable_sort(mViewCells.begin(), mViewCells.end(), ViewCell::LargerRenderCost); } ////////// //-- some view cells for output ViewCell::NewMail(); const int limit = min(maxViewCells, (int)mViewCells.size()); for (int i = 0; i < limit; ++ i) { cout << "creating output for view cell " << i << " ... "; ViewCell *vc = sortViewCells ? // largest view cell pvs first? mViewCells[(int)RandomValue(0, (float)mViewCells.size() - 0.5f)] : mViewCells[i]; if (vc->Mailed() || vc->GetId() == OUT_OF_BOUNDS_ID) continue; vc->Mail(); ObjectPvs pvs; mViewCellsTree->GetPvs(vc, pvs); char s[64]; sprintf(s, "%sviewcell%04d.wrl", prefix.c_str(), i); Exporter *exporter = Exporter::GetExporter(s); const float pvsCost = mViewCellsTree->GetPvsCost(vc); cout << "view cell " << vc->GetId() << ": pvs cost=" << pvsCost << endl; if (exportRays) { //////////// //-- export rays piercing this view cell // take rays stored with the view cells during subdivision VssRayContainer vcRays; VssRayContainer collectRays; // collect initial view cells ViewCellContainer leaves; mViewCellsTree->CollectLeaves(vc, leaves); ViewCellContainer::const_iterator vit, vit_end = leaves.end(); for (vit = leaves.begin(); vit != vit_end; ++ vit) { BspLeaf *vcLeaf = dynamic_cast(*vit)->mLeaves[0]; VssRayContainer::const_iterator rit, rit_end = vcLeaf->mVssRays.end(); for (rit = vcLeaf->mVssRays.begin(); rit != rit_end; ++ rit) { collectRays.push_back(*rit); } } const int raysOut = min((int)collectRays.size(), maxRays); // prepare some rays for output VssRayContainer::const_iterator rit, rit_end = collectRays.end(); for (rit = collectRays.begin(); rit != rit_end; ++ rit) { const float p = RandomValue(0.0f, (float)collectRays.size()); if (p < raysOut) { vcRays.push_back(*rit); } } exporter->ExportRays(vcRays, RgbColor(1, 1, 1)); } //////////////// //-- export view cell geometry exporter->SetWireframe(); Material m;//= RandomMaterial(); m.mDiffuseColor = RgbColor(0, 1, 0); exporter->SetForcedMaterial(m); ExportViewCellGeometry(exporter, vc, NULL, NULL); exporter->SetFilled(); if (exportPvs) { Intersectable::NewMail(); ObjectPvsEntries::const_iterator oit, oit_end = pvs.mEntries.end(); cout << endl; // output PVS of view cell for (oit = pvs.mEntries.begin(); oit != oit_end; ++ oit) { Intersectable *intersect = (*oit).mObject; if (!intersect->Mailed()) { intersect->Mail(); m = RandomMaterial(); exporter->SetForcedMaterial(m); exporter->ExportIntersectable(intersect); } } cout << endl; } DEL_PTR(exporter); cout << "finished" << endl; } } void VspBspViewCellsManager::TestFilter(const ObjectContainer &objects) { Exporter *exporter = Exporter::GetExporter("filter.x3d"); Vector3 bsize = mViewSpaceBox.Size(); const Vector3 viewPoint(mViewSpaceBox.Center()); float w = Magnitude(mViewSpaceBox.Size()) * mFilterWidth; const Vector3 width = Vector3(w); PrVs testPrVs; if (exporter) { ViewCellContainer viewCells; const AxisAlignedBox3 tbox = GetFilterBBox(viewPoint, mFilterWidth); GetPrVS(viewPoint, testPrVs, GetFilterWidth()); exporter->SetWireframe(); exporter->SetForcedMaterial(RgbColor(1,1,1)); exporter->ExportBox(tbox); exporter->SetFilled(); exporter->SetForcedMaterial(RgbColor(0,1,0)); ExportViewCellGeometry(exporter, GetViewCell(viewPoint), NULL, NULL); //exporter->ResetForcedMaterial(); exporter->SetForcedMaterial(RgbColor(0,0,1)); ExportViewCellGeometry(exporter, testPrVs.mViewCell, NULL, NULL); exporter->SetForcedMaterial(RgbColor(1,0,0)); exporter->ExportGeometry(objects); delete exporter; } } int VspBspViewCellsManager::ComputeBoxIntersections(const AxisAlignedBox3 &box, ViewCellContainer &viewCells) const { return mVspBspTree->ComputeBoxIntersections(box, viewCells); } int VspBspViewCellsManager::CastLineSegment(const Vector3 &origin, const Vector3 &termination, ViewCellContainer &viewcells) { return mVspBspTree->CastLineSegment(origin, termination, viewcells); } void VspBspViewCellsManager::VisualizeWithFromPointQueries() { int numSamples; Environment::GetSingleton()->GetIntValue("RenderSampler.samples", numSamples); cout << "samples" << numSamples << endl; vector samples; if (!mPreprocessor->GetRenderer()) return; //start the view point queries long startTime = GetTime(); cout << "starting sampling of render cost ... "; mPreprocessor->GetRenderer()->SampleRenderCost(numSamples, samples, true); cout << "finished in " << TimeDiff(startTime, GetTime()) * 1e-3 << " secs" << endl; // for each sample: // find view cells associated with the samples // store the sample pvs with the pvs associated with the view cell // // for each view cell: // compute difference point sampled pvs - view cell pvs // export geometry with color coded pvs difference std::map sampleMap; vector::const_iterator rit, rit_end = samples.end(); for (rit = samples.begin(); rit != rit_end; ++ rit) { RenderCostSample sample = *rit; ViewCell *vc = GetViewCell(sample.mPosition); std::map::iterator it = sampleMap.find(vc); if (it == sampleMap.end()) { sampleMap[vc] = sample.mPvs; } else { (*it).second.MergeInPlace(sample.mPvs); } } // visualize the view cells std::map::const_iterator vit, vit_end = sampleMap.end(); Material m;//= RandomMaterial(); for (vit = sampleMap.begin(); vit != vit_end; ++ vit) { ViewCell *vc = (*vit).first; const int pvsVc = mViewCellsTree->GetPvsEntries(vc); const int pvsPtSamples = (*vit).second.GetSize(); m.mDiffuseColor.r = (float) (pvsVc - pvsPtSamples); m.mDiffuseColor.b = 1.0f; //exporter->SetForcedMaterial(m); //ExportViewCellGeometry(exporter, vc, mClipPlaneForViz); /* // counting the pvss for (rit = samples.begin(); rit != rit_end; ++ rit) { RenderCostSample sample = *rit; ViewCell *vc = GetViewCell(sample.mPosition); AxisAlignedBox3 box(sample.mPosition - Vector3(1, 1, 1), sample.mPosition + Vector3(1, 1, 1)); Mesh *hMesh = CreateMeshFromBox(box); DEL_PTR(hMesh); } */ } } void VspBspViewCellsManager::ExportViewCellGeometry(Exporter *exporter, ViewCell *vc, const AxisAlignedBox3 *sceneBox, const AxisAlignedPlane *clipPlane ) const { if (clipPlane) { const Plane3 plane = clipPlane->GetPlane(); ViewCellContainer leaves; mViewCellsTree->CollectLeaves(vc, leaves); ViewCellContainer::const_iterator it, it_end = leaves.end(); for (it = leaves.begin(); it != it_end; ++ it) { BspNodeGeometry geom; BspNodeGeometry front; BspNodeGeometry back; mVspBspTree->ConstructGeometry(*it, geom); const float eps = 0.0001f; const int cf = geom.Side(plane, eps); if (cf == -1) { exporter->ExportPolygons(geom.GetPolys()); } else if (cf == 0) { geom.SplitGeometry(front, back, plane, mViewSpaceBox, eps); if (back.Valid()) { exporter->ExportPolygons(back.GetPolys()); } } } } else { // export mesh if available // TODO: some bug here? if (1 && vc->GetMesh()) { exporter->ExportMesh(vc->GetMesh()); } else { BspNodeGeometry geom; mVspBspTree->ConstructGeometry(vc, geom); exporter->ExportPolygons(geom.GetPolys()); } } } int VspBspViewCellsManager::GetMaxTreeDiff(ViewCell *vc) const { ViewCellContainer leaves; mViewCellsTree->CollectLeaves(vc, leaves); int maxDist = 0; // compute max height difference for (int i = 0; i < (int)leaves.size(); ++ i) { for (int j = 0; j < (int)leaves.size(); ++ j) { BspLeaf *leaf = dynamic_cast(leaves[i])->mLeaves[0]; if (i != j) { BspLeaf *leaf2 =dynamic_cast(leaves[j])->mLeaves[0]; const int dist = mVspBspTree->TreeDistance(leaf, leaf2); if (dist > maxDist) maxDist = dist; } } } return maxDist; } ViewCell *VspBspViewCellsManager::GetViewCell(const Vector3 &point, const bool active) const { if (!ViewCellsConstructed()) return NULL; if (!mViewSpaceBox.IsInside(point)) return NULL; return mVspBspTree->GetViewCell(point, active); } void VspBspViewCellsManager::CreateMesh(ViewCell *vc) { BspNodeGeometry geom; mVspBspTree->ConstructGeometry(vc, geom); Mesh *mesh = MeshManager::GetSingleton()->CreateResource(); IncludeNodeGeomInMesh(geom, *mesh); vc->SetMesh(mesh); } int VspBspViewCellsManager::CastBeam(Beam &beam) { return mVspBspTree->CastBeam(beam); } void VspBspViewCellsManager::Finalize(ViewCell *viewCell, const bool createMesh) { float area = 0; float volume = 0; ViewCellContainer leaves; mViewCellsTree->CollectLeaves(viewCell, leaves); ViewCellContainer::const_iterator it, it_end = leaves.end(); for (it = leaves.begin(); it != it_end; ++ it) { BspNodeGeometry geom; mVspBspTree->ConstructGeometry(*it, geom); const float lVol = geom.GetVolume(); const float lArea = geom.GetArea(); area += lArea; volume += lVol; if (createMesh) CreateMesh(*it); } viewCell->SetVolume(volume); viewCell->SetArea(area); } void VspBspViewCellsManager::TestSubdivision() { ViewCellContainer leaves; mViewCellsTree->CollectLeaves(mViewCellsTree->GetRoot(), leaves); ViewCellContainer::const_iterator it, it_end = leaves.end(); const float vol = mViewSpaceBox.GetVolume(); float subdivVol = 0; float newVol = 0; for (it = leaves.begin(); it != it_end; ++ it) { BspNodeGeometry geom; mVspBspTree->ConstructGeometry(*it, geom); const float lVol = geom.GetVolume(); newVol += lVol; subdivVol += (*it)->GetVolume(); float thres = 0.9f; if ((lVol < ((*it)->GetVolume() * thres)) || (lVol * thres > ((*it)->GetVolume()))) Debug << "warning: " << lVol << " " << (*it)->GetVolume() << endl; } Debug << "exact volume: " << vol << endl; Debug << "subdivision volume: " << subdivVol << endl; Debug << "new volume: " << newVol << endl; } void VspBspViewCellsManager::PrepareLoadedViewCells() { // TODO: do I still need this here? if (0) mVspBspTree->RepairViewCellsLeafLists(); } /**************************************************************************/ /* VspOspViewCellsManager implementation */ /**************************************************************************/ VspOspViewCellsManager::VspOspViewCellsManager(ViewCellsTree *vcTree, const string &hierarchyType) : ViewCellsManager(vcTree) { Environment::GetSingleton()->GetIntValue("Hierarchy.Construction.samples", mInitialSamples); mHierarchyManager = CreateHierarchyManager(hierarchyType); mHierarchyManager->SetViewCellsManager(this); mHierarchyManager->SetViewCellsTree(mViewCellsTree); } VspOspViewCellsManager::VspOspViewCellsManager(ViewCellsTree *vcTree, HierarchyManager *hm) : ViewCellsManager(vcTree), mHierarchyManager(hm) { Environment::GetSingleton()->GetIntValue("Hierarchy.Construction.samples", mInitialSamples); mHierarchyManager->SetViewCellsManager(this); mHierarchyManager->SetViewCellsTree(mViewCellsTree); } HierarchyManager *VspOspViewCellsManager::CreateHierarchyManager(const string &hierarchyType) { HierarchyManager *hierarchyManager; if (strcmp(hierarchyType.c_str(), "osp") == 0) { Debug << "hierarchy manager: osp" << endl; hierarchyManager = new HierarchyManager(HierarchyManager::KD_BASED_OBJ_SUBDIV); } else if (strcmp(hierarchyType.c_str(), "bvh") == 0) { Debug << "hierarchy manager: bvh" << endl; hierarchyManager = new HierarchyManager(HierarchyManager::BV_BASED_OBJ_SUBDIV); } else // only view space partition { Debug << "hierarchy manager: obj" << endl; hierarchyManager = new HierarchyManager(HierarchyManager::NO_OBJ_SUBDIV); } return hierarchyManager; } VspOspViewCellsManager::~VspOspViewCellsManager() { DEL_PTR(mHierarchyManager); } float VspOspViewCellsManager::GetProbability(ViewCell *viewCell) { return GetVolume(viewCell) / mViewSpaceBox.GetVolume(); } void VspOspViewCellsManager::CollectViewCells() { // view cells tree constructed if (!ViewCellsTreeConstructed()) { mHierarchyManager->GetVspTree()->CollectViewCells(mViewCells, false); } else { // we can use the view cells tree hierarchy to get the right set mViewCellsTree->CollectBestViewCellSet(mViewCells, mNumActiveViewCells); } } bool VspOspViewCellsManager::ViewCellsConstructed() const { return mHierarchyManager->GetVspTree()->GetRoot() != NULL; } ViewCell *VspOspViewCellsManager::GenerateViewCell(Mesh *mesh) const { return new VspViewCell(mesh); } int VspOspViewCellsManager::ConstructSubdivision(const ObjectContainer &objects, const VssRayContainer &rays) { mMaxPvsSize = (int)(mMaxPvsRatio * (float)objects.size()); // skip rest if view cells were already constructed if (ViewCellsConstructed()) return 0; int sampleContributions = 0; VssRayContainer sampleRays; int limit = min (mInitialSamples, (int)rays.size()); VssRayContainer constructionRays; VssRayContainer savedRays; Debug << "samples used for vsp bsp subdivision: " << mInitialSamples << ", actual rays: " << (int)rays.size() << endl; GetRaySets(rays, mInitialSamples, constructionRays, &savedRays); Debug << "initial rays used for construction: " << (int)constructionRays.size() << endl; Debug << "saved rays: " << (int)savedRays.size() << endl; mHierarchyManager->Construct(constructionRays, objects, &mViewSpaceBox); #if TEST_EVALUATION VssRayContainer::const_iterator tit, tit_end = constructionRays.end(); for (tit = constructionRays.begin(); tit != tit_end; ++ tit) { storedRays.push_back(new VssRay(*(*tit))); } #endif ///////////////////////// //-- print satistics for subdivision and view cells Debug << endl << endl << *mHierarchyManager << endl; ResetViewCells(); Debug << "\nView cells after construction:\n" << mCurrentViewCellsStats << endl; ////////////// //-- recast rest of rays const long startTime = GetTime(); cout << "Computing remaining ray contributions ... "; if (SAMPLE_AFTER_SUBDIVISION) ComputeSampleContributions(savedRays, true, false); Debug << "finished computing remaining ray contribution in " << TimeDiff(startTime, GetTime()) * 1e-3 << " secs" << endl; if (0) { // real meshes are constructed at this stage cout << "finalizing view cells ... "; FinalizeViewCells(true); cout << "finished" << endl; } return sampleContributions; } int VspOspViewCellsManager::PostProcess(const ObjectContainer &objects, const VssRayContainer &rays) { if (!ViewCellsConstructed()) { Debug << "postprocess error: no view cells constructed" << endl; return 0; } // if view cells were already constructed before post processing step // (e.g., because they were loaded), we are finished if (mViewCellsFinished) { FinalizeViewCells(true); EvaluateViewCellsStats(); return 0; } // check if new view cells turned invalid int minPvs, maxPvs; if (0) { minPvs = mMinPvsSize; maxPvs = mMaxPvsSize; } else { // problem matt: why did I start here from zero? minPvs = 0; maxPvs = mMaxPvsSize; } Debug << "setting validity, min: " << minPvs << " max: " << maxPvs << endl; cout << "setting validity, min: " << minPvs << " max: " << maxPvs << endl; SetValidity(minPvs, maxPvs); // area is not up to date, has to be recomputed mTotalAreaValid = false; VssRayContainer postProcessRays; GetRaySets(rays, mPostProcessSamples, postProcessRays); Debug << "post processing using " << (int)postProcessRays.size() << " samples" << endl; // compute tree by merging the nodes of the spatial hierarchy ViewCell *root = ConstructSpatialMergeTree(mHierarchyManager->GetVspTree()->GetRoot()); mViewCellsTree->SetRoot(root); ////////////////////////// //-- update pvs up to the root of the hierarchy ObjectPvs pvs; UpdatePvsForEvaluation(root, pvs); ////////////////////// //-- render simulation after merge + refine cout << "\nview cells partition render time before compress" << endl << endl; dynamic_cast(mRenderer)->RenderScene(); SimulationStatistics ss; dynamic_cast(mRenderer)->GetStatistics(ss); cout << ss << endl; /////////// //-- compression if (ViewCellsTreeConstructed() && mCompressViewCells) { int pvsEntries = mViewCellsTree->CountStoredPvsEntries(mViewCellsTree->GetRoot()); Debug << "number of entries before compress: " << pvsEntries << endl; mViewCellsTree->SetViewCellsStorage(ViewCellsTree::COMPRESSED); pvsEntries = mViewCellsTree->CountStoredPvsEntries(mViewCellsTree->GetRoot()); Debug << "number of entries after compress: " << pvsEntries << endl; } ///////////// //-- some tasks still to do on the view cells: //-- Compute meshes from view cell geometry, evaluate volume and / or area if (1) FinalizeViewCells(true); return 0; } int VspOspViewCellsManager::GetType() const { return VSP_OSP; } ViewCell *VspOspViewCellsManager::ConstructSpatialMergeTree(VspNode *root) { // terminate recursion if (root->IsLeaf()) { VspLeaf *leaf = dynamic_cast(root); leaf->GetViewCell()->SetMergeCost(0.0f); return leaf->GetViewCell(); } VspInterior *interior = dynamic_cast(root); ViewCellInterior *viewCellInterior = new ViewCellInterior(); // evaluate merge cost for priority traversal const float mergeCost = -(float)root->mTimeStamp; viewCellInterior->SetMergeCost(mergeCost); float volume = 0; VspNode *front = interior->GetFront(); VspNode *back = interior->GetBack(); ObjectPvs frontPvs, backPvs; ///////// //-- recursivly compute child hierarchies ViewCell *backVc = ConstructSpatialMergeTree(back); ViewCell *frontVc = ConstructSpatialMergeTree(front); viewCellInterior->SetupChildLink(backVc); viewCellInterior->SetupChildLink(frontVc); volume += backVc->GetVolume(); volume += frontVc->GetVolume(); viewCellInterior->SetVolume(volume); return viewCellInterior; } bool VspOspViewCellsManager::GetViewPoint(Vector3 &viewPoint) const { if (!ViewCellsConstructed()) return ViewCellsManager::GetViewPoint(viewPoint); // TODO: set reasonable limit const int limit = 20; for (int i = 0; i < limit; ++ i) { viewPoint = mViewSpaceBox.GetRandomPoint(); if (mHierarchyManager->GetVspTree()->ViewPointValid(viewPoint)) { return true; } } Debug << "failed to find valid view point, taking " << viewPoint << endl; return false; } void VspOspViewCellsManager::ExportViewCellGeometry(Exporter *exporter, ViewCell *vc, const AxisAlignedBox3 *sceneBox, const AxisAlignedPlane *clipPlane ) const { ViewCellContainer leaves; mViewCellsTree->CollectLeaves(vc, leaves); ViewCellContainer::const_iterator it, it_end = leaves.end(); Plane3 plane; if (clipPlane) { // arbitrary plane definition plane = clipPlane->GetPlane(); } for (it = leaves.begin(); it != it_end; ++ it) { VspViewCell *vspVc = dynamic_cast(*it); VspLeaf *l = vspVc->mLeaves[0]; const AxisAlignedBox3 box = mHierarchyManager->GetVspTree()->GetBoundingBox(vspVc->mLeaves[0]); if (sceneBox && !Overlap(*sceneBox, box)) continue; if (clipPlane) { if (box.Side(plane) == -1) { exporter->ExportBox(box); } else if (box.Side(plane) == 0) { // intersection AxisAlignedBox3 fbox, bbox; box.Split(clipPlane->mAxis, clipPlane->mPosition, fbox, bbox); exporter->ExportBox(bbox); } } else { exporter->ExportBox(box); } } } bool VspOspViewCellsManager::ViewPointValid(const Vector3 &viewPoint) const { // $$JB -> implemented in viewcellsmanager (slower, but allows dynamic // validy update in preprocessor for all managers) return ViewCellsManager::ViewPointValid(viewPoint); // return mViewSpaceBox.IsInside(viewPoint) && // mVspTree->ViewPointValid(viewPoint); } void VspOspViewCellsManager::Visualize(const ObjectContainer &objects, const VssRayContainer &sampleRays) { if (!ViewCellsConstructed()) return; VssRayContainer visRays; GetRaySets(sampleRays, mVisualizationSamples, visRays); //////////// //-- export final view cells Exporter *exporter = Exporter::GetExporter("final_view_cells.wrl"); if (exporter) { // hack color code (show pvs size) const int savedColorCode = mColorCode; mColorCode = 0; const long starttime = GetTime(); cout << "exporting final view cells (after initial construction + post process) ... "; // matt: hack for clamping scene AxisAlignedBox3 bbox = mViewSpaceBox; bbox.Scale(Vector3(0.5, 1, 0.5)); if (CLAMP_TO_BOX) { exporter->SetWireframe(); exporter->ExportBox(bbox); exporter->SetFilled(); } if (0 && mExportGeometry) { exporter->ExportGeometry(objects, true, CLAMP_TO_BOX ? &bbox : NULL); } if (1 && mExportRays) { exporter->ExportRays(visRays, RgbColor(0, 1, 0)); } mHierarchyManager->ExportObjectSpaceHierarchy(exporter, objects, CLAMP_TO_BOX ? &bbox : NULL, false); ExportViewCellsForViz(exporter, CLAMP_TO_BOX ? &bbox : NULL, GetClipPlane()); delete exporter; cout << "finished in " << TimeDiff(starttime, GetTime()) * 1e-3f << " secs" << endl; mColorCode = savedColorCode; } // export final object partition exporter = Exporter::GetExporter("final_object_partition.wrl"); if (exporter) { const long starttime = GetTime(); // matt: hack for making visualization smaller in size AxisAlignedBox3 bbox = mHierarchyManager->GetObjectSpaceBox(); bbox.Scale(Vector3(0.5, 1, 0.5)); cout << "exporting object space hierarchy ... "; mHierarchyManager->ExportObjectSpaceHierarchy(exporter, objects, CLAMP_TO_BOX ? &bbox : NULL); delete exporter; cout << "finished in " << TimeDiff(starttime, GetTime()) * 1e-3f << " secs" << endl; } // visualization of the view cells if (0) ExportMergedViewCells(objects); // export some view cell int leafOut; Environment::GetSingleton()->GetIntValue("ViewCells.Visualization.maxOutput", leafOut); const int raysOut = 100; ExportSingleViewCells(objects, leafOut, false, true, false, raysOut, ""); } void VspOspViewCellsManager::ExportSingleViewCells(const ObjectContainer &objects, const int maxViewCells, const bool sortViewCells, const bool exportPvs, const bool exportRays, const int maxRays, const string prefix, VssRayContainer *visRays) { if (sortViewCells) { // sort view cells to visualize the view cells with highest render cost stable_sort(mViewCells.begin(), mViewCells.end(), ViewCell::LargerRenderCost); } ViewCell::NewMail(); const int limit = min(maxViewCells, (int)mViewCells.size()); cout << "\nExporting " << limit << " single view cells: " << endl; for (int i = 0; i < limit; ++ i) { cout << "creating output for view cell " << i << " ... "; // largest view cell pvs first of random view cell ViewCell *vc = sortViewCells ? mViewCells[i] : mViewCells[(int)RandomValue(0, (float)mViewCells.size() - 1)]; if (vc->Mailed()) // already used continue; vc->Mail(); ObjectPvs pvs; mViewCellsTree->GetPvs(vc, pvs); char s[64]; sprintf(s, "%sviewcell%04d.wrl", prefix.c_str(), i); Exporter *exporter = Exporter::GetExporter(s); cout << "view cell " << vc->GetId() << ": pvs cost=" << mViewCellsTree->GetPvsCost(vc) << endl; if (exportPvs) { Material m; Intersectable::NewMail(); ObjectPvsEntries::const_iterator oit, oit_end = pvs.mEntries.end(); // output PVS of view cell for (oit = pvs.mEntries.begin(); oit != oit_end; ++ oit) { Intersectable *intersect = (*oit).mObject; if (!intersect->Mailed()) { m = RandomMaterial(); exporter->SetForcedMaterial(m); exporter->ExportIntersectable(intersect); intersect->Mail(); } } } if (exportRays) { //////////// //-- export the sample rays // output rays stored with the view cells during subdivision VssRayContainer vcRays; VssRayContainer collectRays; // collect intial view cells ViewCellContainer leaves; mViewCellsTree->CollectLeaves(vc, leaves); ViewCellContainer::const_iterator vit, vit_end = leaves.end(); for (vit = leaves.begin(); vit != vit_end; ++ vit) { VspLeaf *vcLeaf = dynamic_cast(*vit)->mLeaves[0]; VssRayContainer::const_iterator rit, rit_end = vcLeaf->mVssRays.end(); for (rit = vcLeaf->mVssRays.begin(); rit != rit_end; ++ rit) { collectRays.push_back(*rit); } } const int raysOut = min((int)collectRays.size(), maxRays); VssRayContainer::const_iterator rit, rit_end = collectRays.end(); for (rit = collectRays.begin(); rit != rit_end; ++ rit) { const float p = RandomValue(0.0f, (float)collectRays.size()); if (p < raysOut) vcRays.push_back(*rit); } exporter->ExportRays(vcRays, RgbColor(1, 1, 1)); } ///////////////// //-- export view cell geometry exporter->SetWireframe(); Material m; m.mDiffuseColor = RgbColor(0, 1, 0); exporter->SetForcedMaterial(m); ExportViewCellGeometry(exporter, vc, NULL, NULL); exporter->SetFilled(); DEL_PTR(exporter); cout << "finished" << endl; } cout << endl; } int VspOspViewCellsManager::ComputeBoxIntersections(const AxisAlignedBox3 &box, ViewCellContainer &viewCells) const { return mHierarchyManager->GetVspTree()->ComputeBoxIntersections(box, viewCells); } int VspOspViewCellsManager::CastLineSegment(const Vector3 &origin, const Vector3 &termination, ViewCellContainer &viewcells) { return mHierarchyManager->GetVspTree()->CastLineSegment(origin, termination, viewcells); } bool VspOspViewCellsManager::ExportViewCells(const string filename, const bool exportPvs, const ObjectContainer &objects) { if (!ViewCellsConstructed() || !ViewCellsTreeConstructed()) return false; const long starttime = GetTime(); cout << "exporting view cells to xml ... "; OUT_STREAM stream(filename.c_str()); // for output we need unique ids for each view cell CreateUniqueViewCellIds(); stream << ""<" << endl; if (exportPvs) { /////////////// //-- export bounding boxes //-- The bounding boxes are used to identify //-- the objects in the rendering engine mHierarchyManager->ExportBoundingBoxes(stream, objects); } ////////////////////////// //-- export the view cells and the pvs const int numViewCells = mCurrentViewCellsStats.viewCells; stream << "" << endl; mViewCellsTree->Export(stream, exportPvs); stream << "" << endl; ////////////////////// //-- export the view space hierarchy stream << "" << endl; mHierarchyManager->GetVspTree()->Export(stream); stream << "" << endl; ////////////////////// //-- export the object space partition mHierarchyManager->ExportObjectSpaceHierarchy(stream); stream << "" << endl; stream.close(); cout << "finished in " << TimeDiff(starttime, GetTime()) * 1e-3 << " secs" << endl; return true; } ViewCell *VspOspViewCellsManager::GetViewCell(const Vector3 &point, const bool active) const { if (!ViewCellsConstructed()) return NULL; if (!mViewSpaceBox.IsInside(point)) return NULL; return mHierarchyManager->GetVspTree()->GetViewCell(point, active); } void VspOspViewCellsManager::CreateMesh(ViewCell *vc) { // matt: TODO Mesh *mesh = MeshManager::GetSingleton()->CreateResource(); ViewCellContainer leaves; mViewCellsTree->CollectLeaves(vc, leaves); ViewCellContainer::const_iterator it, it_end = leaves.end(); for (it = leaves.begin(); it != it_end; ++ it) { VspLeaf *leaf = dynamic_cast(*it)->mLeaves[0]; const AxisAlignedBox3 box = mHierarchyManager->GetVspTree()->GetBoundingBox(leaf); IncludeBoxInMesh(box, *mesh); } vc->SetMesh(mesh); } int VspOspViewCellsManager::CastBeam(Beam &beam) { // matt: TODO return 0; } void VspOspViewCellsManager::Finalize(ViewCell *viewCell, const bool createMesh) { float area = 0; float volume = 0; ViewCellContainer leaves; mViewCellsTree->CollectLeaves(viewCell, leaves); ViewCellContainer::const_iterator it, it_end = leaves.end(); for (it = leaves.begin(); it != it_end; ++ it) { VspLeaf *leaf = dynamic_cast(*it)->mLeaves[0]; const AxisAlignedBox3 box = mHierarchyManager->GetVspTree()->GetBoundingBox(leaf); const float lVol = box.GetVolume(); const float lArea = box.SurfaceArea(); area += lArea; volume += lVol; CreateMesh(*it); } viewCell->SetVolume(volume); viewCell->SetArea(area); } float VspOspViewCellsManager::ComputeSampleContribution(VssRay &ray, const bool addRays, const bool storeViewCells) { ViewCellContainer viewcells; ray.mPvsContribution = 0; ray.mRelativePvsContribution = 0.0f; static Ray hray; hray.Init(ray); //hray.mFlags |= Ray::CULL_BACKFACES; //Ray hray(ray); float tmin = 0, tmax = 1.0; if (!GetViewSpaceBox().GetRaySegment(hray, tmin, tmax) || (tmin > tmax)) return 0; Vector3 origin = hray.Extrap(tmin); Vector3 termination = hray.Extrap(tmax); ViewCell::NewMail(); // traverse the view space subdivision CastLineSegment(origin, termination, viewcells); if (storeViewCells) { // copy viewcells memory efficiently ray.mViewCells.reserve(viewcells.size()); ray.mViewCells = viewcells; } ViewCellContainer::const_iterator it = viewcells.begin(); for (; it != viewcells.end(); ++ it) { ViewCell *viewcell = *it; if (viewcell->GetValid()) { // if ray not outside of view space float contribution; if (ray.mTerminationObject) { // todo: maybe not correct for kd node pvs Intersectable *obj = mHierarchyManager->GetIntersectable(ray, true); if (viewcell->GetPvs().GetSampleContribution(obj, ray.mPdf, contribution)) { ++ ray.mPvsContribution; } ray.mRelativePvsContribution += contribution; } //////////////// //-- for directional sampling it is important to count only contributions //-- made in one direction! //-- the other contributions of this sample will be counted for the opposite ray! #if SAMPLE_ORIGIN_OBJECTS if (ray.mOriginObject && viewcell->GetPvs().GetSampleContribution(ray.mOriginObject, ray.mPdf, contribution)) { ++ ray.mPvsContribution; ray.mRelativePvsContribution += contribution; } #endif } } if (!addRays) { return ray.mRelativePvsContribution; } // sampled objects are stored in the pvs for (it = viewcells.begin(); it != viewcells.end(); ++ it) { ViewCell *viewCell = *it; if (!viewCell->GetValid()) break; AddSampleToPvs( ray.mTerminationObject, ray.mTermination, viewCell, ray.mPdf, ray.mRelativePvsContribution); #if SAMPLE_ORIGIN_OBJECTS AddSampleToPvs( ray.mOriginObject, ray.mOrigin, viewCell, ray.mPdf, ray.mRelativePvsContribution); #endif } return ABS_CONTRIBUTION_WEIGHT*ray.mPvsContribution + (1.0f - ABS_CONTRIBUTION_WEIGHT)*ray.mRelativePvsContribution; } bool VspOspViewCellsManager::AddSampleToPvs(Intersectable *obj, const Vector3 &hitPoint, ViewCell *vc, const float pdf, float &contribution) const { // The hierarchy manager decides about the type of sample cast return mHierarchyManager->AddSampleToPvs(obj, hitPoint, vc, pdf, contribution); } void VspOspViewCellsManager::PrepareLoadedViewCells() { // TODO } ViewCellsManager *VspOspViewCellsManager::LoadViewCells(const string &filename, ObjectContainer *objects, const bool finalizeViewCells, BoundingBoxConverter *bconverter) { ViewCellsManager *vm = ViewCellsManager::LoadViewCells(filename, objects, finalizeViewCells, bconverter); #if 0 // insert scene objects in tree mOspTree->InsertObjects(mOspTree->GetRoot(), *objects); #endif return vm; } void VspOspViewCellsManager::CollectObjects(const AxisAlignedBox3 &box, ObjectContainer &objects) { mHierarchyManager->CollectObjects(box, objects); } #if 1 void VspOspViewCellsManager::EvalViewCellPartition() { int samplesPerPass; int numSamples; int castSamples = 0; int oldSamples = 0; int samplesForStats; char statsPrefix[100]; char suffix[100]; int splitsStepSize; Environment::GetSingleton()->GetIntValue("ViewCells.Evaluation.samplesPerPass", samplesPerPass); Environment::GetSingleton()->GetIntValue("ViewCells.Evaluation.samplesForStats", samplesForStats); Environment::GetSingleton()->GetIntValue("ViewCells.Evaluation.samples", numSamples); Environment::GetSingleton()->GetStringValue("ViewCells.Evaluation.statsPrefix", statsPrefix); Environment::GetSingleton()->GetIntValue("ViewCells.Evaluation.stepSize", splitsStepSize); Debug << "step size: " << splitsStepSize << endl; Debug << "view cell evaluation samples per pass: " << samplesPerPass << endl; Debug << "view cell evaluation samples: " << numSamples << endl; Debug << "view cell stats prefix: " << statsPrefix << endl; // should directional sampling be used? bool dirSamples = (mEvaluationSamplingType == SamplingStrategy::DIRECTION_BASED_DISTRIBUTION); cout << "reseting pvs ... "; // reset pvs and start over from zero mViewCellsTree->ResetPvs(); cout << "finished" << endl; cout << "Evaluating view cell partition ... " << endl; while (castSamples < numSamples) { /////////////// //-- we have to use uniform sampling strategy for construction rays VssRayContainer evaluationSamples; const int samplingType = mEvaluationSamplingType; long startTime = GetTime(); cout << "casting " << samplesPerPass << " samples ... "; Debug << "casting " << samplesPerPass << " samples ... "; CastPassSamples(samplesPerPass, samplingType, evaluationSamples); castSamples += samplesPerPass; Real timeDiff = TimeDiff(startTime, GetTime()); cout << "finished in " << timeDiff * 1e-3f << " secs" << endl; cout << "computing sample contributions of " << (int)evaluationSamples.size() << " samples ... "; Debug << "finished in " << timeDiff * 1e-3f << " secs" << endl; Debug << "computing sample contributions of " << (int)evaluationSamples.size() << " samples ... "; startTime = GetTime(); ComputeSampleContributions(evaluationSamples, true, false); timeDiff = TimeDiff(startTime, GetTime()); cout << "finished in " << timeDiff * 1e-3 << " secs" << endl; Debug << "finished in " << timeDiff * 1e-3 << " secs" << endl; if ((castSamples >= samplesForStats + oldSamples) || (castSamples >= numSamples)) { oldSamples += samplesForStats; /////////// //-- output stats sprintf(suffix, "-%09d-eval.log", castSamples); const string filename = string(statsPrefix) + string(suffix); startTime = GetTime(); cout << "compute new statistics ... " << endl; ofstream ofstr(filename.c_str()); mHierarchyManager->EvaluateSubdivision2(ofstr, splitsStepSize); timeDiff = TimeDiff(startTime, GetTime()); cout << "finished in " << timeDiff * 1e-3 << " secs" << endl; cout << "*************************************" << endl; Debug << "statistics computed in " << timeDiff * 1e-3 << " secs" << endl; // only for debugging purpose if (0) { ViewCellContainer viewCells; mViewCellsTree->CollectLeaves(mViewCellsTree->GetRoot(), viewCells); ViewCellContainer::const_iterator vit, vit_end = viewCells.end(); int pvsSize = 0; for (vit = viewCells.begin(); vit != vit_end; ++ vit) { pvsSize += (*vit)->GetPvs().GetSize(); } cout << "debug entries: " << pvsSize << ", memcost: " << (float)pvsSize * ObjectPvs::GetEntrySize() << endl; } } disposeRays(evaluationSamples, NULL); } } #endif }