#include "ViewCellsManager.h" #include "RenderSimulator.h" #include "Mesh.h" #include "Triangle3.h" #include "ViewCell.h" #include "Environment.h" #include "X3dParser.h" #include "ViewCellBsp.h" #include "KdTree.h" #include "VspKdTree.h" #include "Exporter.h" #include "VspBspTree.h" #include "ViewCellsParser.h" #include "Beam.h" #include "VssPreprocessor.h" #include "RssPreprocessor.h" #include "BoundingBoxConverter.h" namespace GtpVisibilityPreprocessor { // HACK const static bool SAMPLE_AFTER_SUBDIVISION = true; const static bool TEST_EMPTY_VIEW_CELLS = false; template class myless { public: //bool operator() (HierarchyNode *v1, HierarchyNode *v2) const bool operator() (T v1, T v2) const { return (v1->GetMergeCost() < v2->GetMergeCost()); } }; //typedef priority_queue, myless::value_type> > FilterQueue; ViewCellsManager::ViewCellsManager(Environment *env): mRenderer(NULL), mInitialSamples(0), mConstructionSamples(0), mPostProcessSamples(0), mVisualizationSamples(0), mTotalAreaValid(false), mTotalArea(0.0f), mViewCellsFinished(false), mMaxPvsSize(9999999), mMinPvsSize(0), // one means only empty view cells are invalid mMaxPvsRatio(1.0), mViewCellPvsIsUpdated(false) ,mEnvironment(env) { mViewSpaceBox.Initialize(); ParseEnvironment(); mViewCellsTree = new ViewCellsTree(this, env); } void ViewCellsManager::ParseEnvironment() { // visualization stuff mEnvironment->GetBoolValue("ViewCells.Visualization.exportRays", mExportRays); mEnvironment->GetBoolValue("ViewCells.Visualization.exportGeometry", mExportGeometry); mEnvironment->GetFloatValue("ViewCells.maxPvsRatio", mMaxPvsRatio); mEnvironment->GetBoolValue("ViewCells.pruneEmptyViewCells", mPruneEmptyViewCells); // HACK if (0) mMinPvsSize = mPruneEmptyViewCells ? 1 : 0; else mMinPvsSize = 0; mEnvironment->GetBoolValue("ViewCells.processOnlyValidViewCells", mOnlyValidViewCells); mEnvironment->GetIntValue("ViewCells.Construction.samples", mConstructionSamples); mEnvironment->GetIntValue("ViewCells.PostProcess.samples", mPostProcessSamples); mEnvironment->GetBoolValue("ViewCells.PostProcess.useRaysForMerge", mUseRaysForMerge); mEnvironment->GetIntValue("ViewCells.Visualization.samples", mVisualizationSamples); mEnvironment->GetIntValue("ViewCells.Construction.samplesPerPass", mSamplesPerPass); mEnvironment->GetBoolValue("ViewCells.exportToFile", mExportViewCells); mEnvironment->GetIntValue("ViewCells.active", mNumActiveViewCells); mEnvironment->GetBoolValue("ViewCells.PostProcess.compress", mCompressViewCells); mEnvironment->GetBoolValue("ViewCells.Visualization.useClipPlane", mUseClipPlaneForViz); mEnvironment->GetBoolValue("ViewCells.PostProcess.merge", mMergeViewCells); mEnvironment->GetBoolValue("ViewCells.evaluateViewCells", mEvaluateViewCells); mEnvironment->GetBoolValue("ViewCells.showVisualization", mShowVisualization); mEnvironment->GetIntValue("ViewCells.Filter.maxSize", mMaxFilterSize); mEnvironment->GetFloatValue("ViewCells.Filter.width", mFilterWidth); mEnvironment->GetIntValue("ViewCells.renderCostEvaluationType", mRenderCostEvaluationType); mEnvironment->GetBoolValue("ViewCells.exportBboxesForPvs", mExportBboxesForPvs); mEnvironment->GetBoolValue("ViewCells.exportPvs", mExportPvs); char buf[100]; mEnvironment->GetStringValue("ViewCells.samplingType", buf); if (strcmp(buf, "box") == 0) { mSamplingType = Preprocessor::SPATIAL_BOX_BASED_DISTRIBUTION; } else if (strcmp(buf, "directional") == 0) { mSamplingType = Preprocessor::DIRECTION_BASED_DISTRIBUTION; } else { Debug << "error! wrong sampling type" << endl; exit(0); } mEnvironment->GetStringValue("ViewCells.Evaluation.samplingType", buf); if (strcmp(buf, "box") == 0) { mEvaluationSamplingType = Preprocessor::SPATIAL_BOX_BASED_DISTRIBUTION; } else if (strcmp(buf, "directional") == 0) { mEvaluationSamplingType = Preprocessor::DIRECTION_BASED_DISTRIBUTION; } else { Debug << "error! wrong sampling type" << endl; exit(0); } mEnvironment->GetStringValue("ViewCells.renderCostEvaluationType", buf); if (strcmp(buf, "perobject") == 0) { mRenderCostEvaluationType = ViewCellsManager::PER_OBJECT; } else if (strcmp(buf, "directional") == 0) { mRenderCostEvaluationType = ViewCellsManager::PER_TRIANGLE; } else { Debug << "error! wrong sampling type" << endl; exit(0); } mEnvironment->GetStringValue("ViewCells.Visualization.colorCode", buf); if (strcmp(buf, "PVS") == 0) mColorCode = 1; else if (strcmp(buf, "MergedLeaves") == 0) mColorCode = 2; else if (strcmp(buf, "MergedTreeDiff") == 0) mColorCode = 3; else mColorCode = 0; Debug << "***********View Cells options ****************" << endl; Debug << "color code: " << mColorCode << endl; Debug << "export rays: " << mExportRays << endl; Debug << "export geometry: " << mExportGeometry << endl; Debug << "max pvs ratio: " << mMaxPvsRatio << endl; Debug << "prune empty view cells: " << mPruneEmptyViewCells << endl; Debug << "process only valid view cells: " << mOnlyValidViewCells << endl; Debug << "construction samples: " << mConstructionSamples << endl; Debug << "post process samples: " << mPostProcessSamples << endl; Debug << "post process use rays for merge: " << mUseRaysForMerge << endl; Debug << "visualization samples: " << mVisualizationSamples << endl; Debug << "construction samples per pass: " << mSamplesPerPass << endl; Debug << "export to file: " << mExportViewCells << endl; Debug << "active view cells: " << mNumActiveViewCells << endl; Debug << "post process compress: " << mCompressViewCells << endl; Debug << "visualization use clipPlane: " << mUseClipPlaneForViz << endl; Debug << "post process merge: " << mMergeViewCells << endl; Debug << "evaluate view cells: " << mEvaluateViewCells << endl; Debug << "sampling type: " << mSamplingType << endl; Debug << "render cost evaluation type: " << mRenderCostEvaluationType << endl; Debug << "evaluation sampling type: " << mEvaluationSamplingType << endl; Debug << "show visualization: " << mShowVisualization << endl; Debug << "filter width: " << mFilterWidth << endl; Debug << "sample after subdivision: " << SAMPLE_AFTER_SUBDIVISION << endl; Debug << "export bounding boxes: " << mExportBboxesForPvs << endl; Debug << "export pvs for view cells: " << mExportPvs << endl; Debug << endl; } ViewCellsManager::~ViewCellsManager() { DEL_PTR(mRenderer); if (!ViewCellsTreeConstructed()) CLEAR_CONTAINER(mViewCells); else DEL_PTR(mViewCellsTree); CLEAR_CONTAINER(mMeshContainer); } AxisAlignedBox3 ViewCellsManager::GetViewCellBox(ViewCell *vc) { Mesh *m = vc->GetMesh(); if (m) { m->ComputeBoundingBox(); return m->mBox; } AxisAlignedBox3 box; box.Initialize(); if (!vc->IsLeaf()) { ViewCellInterior *vci = (ViewCellInterior *) vc; ViewCellContainer::iterator it = vci->mChildren.begin(); for (; it != vci->mChildren.end(); ++it) { box.Include(GetViewCellBox(*it)); } } return box; } void ViewCellsManager::CollectEmptyViewCells() { mEmptyViewCells.clear(); ViewCellContainer leaves; mViewCellsTree->CollectLeaves(mViewCellsTree->GetRoot(), leaves); ViewCellContainer::const_iterator it, it_end = leaves.end(); cout << "collecting empty view cells" << endl; for (it = leaves.begin(); it != it_end; ++ it) { if ((*it)->GetPvs().Empty()) { mEmptyViewCells.push_back(*it); } } Debug << "empty view cells found: " << (int)mEmptyViewCells.size() << endl; } void ViewCellsManager::TestEmptyViewCells(const ObjectContainer &obj) { ViewCellContainer::const_iterator it, it_end = mEmptyViewCells.end(); char buf[50]; int i = 0; for (it = mEmptyViewCells.begin(); it != it_end; ++ it) { if (!(*it)->GetPvs().Empty()) { sprintf(buf, "empty-viewcells-%09d.x3d", i/*(*it)->GetId()*/); Exporter *exporter = Exporter::GetExporter(buf); if (exporter && i < 20) { Ray *pray = (*it)->mPiercingRays[0]; Debug << "view cell " << (*it)->GetId() << " not empty, pvs: " << (*it)->GetPvs().GetSize() << " " << (int)pray->intersections.size() << endl; exporter->ExportRays((*it)->mPiercingRays); exporter->SetFilled(); exporter->SetForcedMaterial(RgbColor(0,0,1)); for (int j = 0; j < (int)pray->intersections.size(); ++ j) { if (pray->intersections[j].mObject) exporter->ExportIntersectable(pray->intersections[j].mObject); } //exporter->SetWireframe(); exporter->SetForcedMaterial(RgbColor(0,1,0)); exporter->ExportGeometry(obj); exporter->SetFilled(); exporter->SetForcedMaterial(RgbColor(1,0,0)); ExportViewCellGeometry(exporter, *it); delete exporter; } ++ i; } } Debug << "\nSampled " << i << " new view cells (" << " of " << (int)mEmptyViewCells.size() << ")" << endl << endl; } int ViewCellsManager::CastPassSamples(const int samplesPerPass, const int sampleType, VssRayContainer &passSamples) const { SimpleRayContainer simpleRays; preprocessor->GenerateRays(samplesPerPass, sampleType, simpleRays); // shoot simple ray and add it to importance samples preprocessor->CastRays(simpleRays, passSamples); return (int)passSamples.size(); } /// helper function which destroys rays or copies them into the output ray container inline void disposeRays(VssRayContainer &rays, VssRayContainer *outRays) { cout << "disposing samples ... "; long startTime = GetTime(); int n = (int)rays.size(); if (outRays) { VssRayContainer::const_iterator it, it_end = rays.end(); for (it = rays.begin(); it != it_end; ++ it) { outRays->push_back(*it); } } else { VssRayContainer::const_iterator it, it_end = rays.end(); for (it = rays.begin(); it != it_end; ++ it) { //(*it)->Unref(); if (!(*it)->IsActive()) delete (*it); } } cout << "finished" << endl; Debug << "disposed " << n << " samples in " << TimeDiff(startTime, GetTime()) * 1e-3 << " secs" << endl; } int ViewCellsManager::Construct(Preprocessor *preprocessor, VssRayContainer *outRays) { int numSamples = 0; SimpleRayContainer simpleRays; VssRayContainer initialSamples; cout << "view cell construction: casting " << mInitialSamples << " initial samples ... "; long startTime = GetTime(); //-- construction rays => we use uniform samples for this CastPassSamples(mInitialSamples, mSamplingType, initialSamples); cout << "finished" << endl; // construct view cells ConstructSubdivision(preprocessor->mObjects, initialSamples); // initial samples count for overall samples ... numSamples += mInitialSamples; // rays can be passed or deleted disposeRays(initialSamples, outRays); cout << "time needed for initial construction: " << TimeDiff(startTime, GetTime()) * 1e-3 << " secs" << endl; Debug << "time needed for initial construction: " << TimeDiff(startTime, GetTime()) * 1e-3 << " secs" << endl; // take post processing time startTime = GetTime(); // testing the view cell filter functionality if (0) TestFilter(preprocessor->mObjects); // -- stats after contruction ResetViewCells(); Debug << "\nView cells after initial sampling:\n" << mCurrentViewCellsStats << endl; if (1) // export initial view cells { const char filename[] = "view_cells.wrl"; Exporter *exporter = Exporter::GetExporter(filename); if (exporter) { cout << "exporting initial view cells (=leaves) to " << filename << " ... "; if (mExportGeometry) { exporter->ExportGeometry(preprocessor->mObjects); } exporter->SetWireframe(); ExportViewCellsForViz(exporter); delete exporter; cout << "finished" << endl; } } //-- guided rays are used for further sampling const int n = mConstructionSamples; //+initialSamples; // should we use directional samples? bool dirSamples = (mSamplingType == Preprocessor::DIRECTION_BASED_DISTRIBUTION); // -- the main loop while (numSamples < n) { cout << "casting " << mSamplesPerPass << " samples of " << n << " ... "; Debug << "casting " << mSamplesPerPass << " samples of " << n << " ... "; VssRayContainer constructionSamples; const int samplingType = mSamplingType; /*dirSamples ? Preprocessor::DIRECTION_BASED_DISTRIBUTION : Preprocessor::SPATIAL_BOX_BASED_DISTRIBUTION;*/ if (0) dirSamples = !dirSamples; // toggle sampling method // cast new samples numSamples += CastPassSamples(mSamplesPerPass, samplingType, constructionSamples); cout << "finished" << endl; cout << "computing sample contribution for " << (int)constructionSamples.size() << " samples ... "; // computes sample contribution of cast rays TODO: leak? if (SAMPLE_AFTER_SUBDIVISION) ComputeSampleContributions(constructionSamples, true, false); cout << "finished" << endl; disposeRays(constructionSamples, outRays); cout << "total samples: " << numSamples << endl; } //-- post processing VssRayContainer postProcessSamples; //-- construction rays CastPassSamples(mPostProcessSamples, mSamplingType, postProcessSamples); // stats before post processing (i.e., merge) EvaluateViewCellsStats(); Debug << "\noriginal view cell partition before post process:\n" << mCurrentViewCellsStats << endl; mRenderer->RenderScene(); SimulationStatistics ss; dynamic_cast(mRenderer)->GetStatistics(ss); Debug << ss << endl; cout << "starting post processing and visualization" << endl; // store view cells for postprocessing const bool storeViewCells = true; if (SAMPLE_AFTER_SUBDIVISION) ComputeSampleContributions(postProcessSamples, true, storeViewCells); //-- post processing (e.g.,merging) of the view cells PostProcess(preprocessor->mObjects, postProcessSamples); cout << "time needed for post processing (merge) step: " << TimeDiff(startTime, GetTime()) *1e-3 << " secs" << endl; Debug << "time needed for post processing (merge) step: " << TimeDiff(startTime, GetTime()) *1e-3 << " secs" << endl; // only for debugging purpose if (TEST_EMPTY_VIEW_CELLS) CollectEmptyViewCells(); // evaluation of the paritition, i.e., a number of new samples are cast if (mEvaluateViewCells) { EvalViewCellPartition(preprocessor); } //-- visualization if (mShowVisualization) { VssRayContainer visualizationSamples; //-- construction rays => we use uniform samples for this CastPassSamples(mVisualizationSamples, Preprocessor::DIRECTION_BASED_DISTRIBUTION, visualizationSamples); if (SAMPLE_AFTER_SUBDIVISION) ComputeSampleContributions(visualizationSamples, true, storeViewCells); // different visualizations Visualize(preprocessor->mObjects, visualizationSamples); disposeRays(visualizationSamples, outRays); } return numSamples; } void ViewCellsManager::EvalViewCellHistogram(const string filename, const int nViewCells) { std::ofstream outstream; outstream.open(filename.c_str()); ViewCellContainer viewCells; mViewCellsTree->CollectBestViewCellSet(viewCells, nViewCells); float maxRenderCost, minRenderCost; // sort by render cost sort(viewCells.begin(), viewCells.end(), ViewCell::SmallerRenderCost); minRenderCost = viewCells.front()->GetRenderCost(); maxRenderCost = viewCells.back()->GetRenderCost(); Debug << "histogram minrc: " << minRenderCost << " maxrc: " << maxRenderCost << endl; const int intervals = min(50, (int)viewCells.size()); const float range = maxRenderCost - minRenderCost; const float stepSize = range / (float)intervals; float currentRenderCost = minRenderCost;//(int)ceil(minRenderCost); const float totalRenderCost = mViewCellsTree->GetRoot()->GetRenderCost(); const float totalVol = GetViewSpaceBox().GetVolume(); //const float totalVol = mViewCellsTree->GetRoot()->GetVolume(); //float vol = 0; //int smallerCost = 0; int j = 0; int i = 0; ViewCellContainer::const_iterator it = viewCells.begin(), it_end = viewCells.end(); // count for integral float volSum = 0; int smallerCostSum = 0; // note can skip computations for view cells already evaluated and delete them from vector ... while (1) { // count for histogram value float volDif = 0; int smallerCostDif = 0; while ((i < (int)viewCells.size()) && (viewCells[i]->GetRenderCost() < currentRenderCost)) { volSum += viewCells[i]->GetVolume(); volDif += viewCells[i]->GetVolume(); ++ i; ++ smallerCostSum; ++ smallerCostDif; } if ((i >= (int)viewCells.size()) || (currentRenderCost >= maxRenderCost)) break; const float rcRatio = currentRenderCost / maxRenderCost; const float volRatioSum = volSum / totalVol; const float volRatioDif = volDif / totalVol; outstream << "#Pass\n" << j << endl; outstream << "#RenderCostRatio\n" << rcRatio << endl; outstream << "#WeightedCost\n" << currentRenderCost / totalVol << endl; outstream << "#ViewCellsDif\n" << smallerCostDif << endl; outstream << "#ViewCellsSum\n" << smallerCostSum << endl; outstream << "#VolumeDif\n" << volRatioDif << endl << endl; outstream << "#VolumeSum\n" << volRatioSum << endl << endl; // increase current render cost currentRenderCost += stepSize; ++ j; } outstream.close(); } void ViewCellsManager::EvalViewCellHistogramForPvsSize(const string filename, const int nViewCells) { std::ofstream outstream; outstream.open(filename.c_str()); ViewCellContainer viewCells; mViewCellsTree->CollectBestViewCellSet(viewCells, nViewCells); int maxPvsSize, minPvsSize; // sort by render cost sort(viewCells.begin(), viewCells.end(), ViewCell::SmallerPvs); minPvsSize = viewCells.front()->GetPvs().GetSize(); maxPvsSize = viewCells.back()->GetPvs().GetSize(); minPvsSize = 0; maxPvsSize = 1200; minPvsSize = 0; maxPvsSize = 1200; Debug << "histogram minpvssize: " << minPvsSize << " maxpvssize: " << maxPvsSize << endl; const int intervals = min(20, (int)viewCells.size()); const int range = maxPvsSize - minPvsSize; int stepSize = range / intervals; if (!stepSize) stepSize = 1; Debug << "stepsize: " << stepSize << endl; cout << "stepsize: " << stepSize << endl; const float totalRenderCost = mViewCellsTree->GetRoot()->GetRenderCost(); const float totalVol = GetViewSpaceBox().GetVolume(); int currentPvsSize = minPvsSize;//(int)ceil(minRenderCost); //float vol = 0; int i = 0; int j = 0; float volSum = 0; int smallerSum = 0; ViewCellContainer::const_iterator it = viewCells.begin(), it_end = viewCells.end(); while (1) { float volDif = 0; int smallerDif = 0; while ((i < (int)viewCells.size()) && (viewCells[i]->GetPvs().GetSize() < currentPvsSize)) { volDif += viewCells[i]->GetVolume(); volSum += viewCells[i]->GetVolume(); ++ i; ++ smallerDif; ++ smallerSum; } //if (i < (int)viewCells.size()) // Debug << "new pvs size increase: " << viewCells[i]->GetPvs().GetSize() << " " << currentPvsSize << endl; if ((i >= (int)viewCells.size()) || (currentPvsSize >= maxPvsSize)) break; const float volRatioDif = volDif / totalVol; const float volRatioSum = volSum / totalVol; outstream << "#Pass\n" << j ++ << endl; outstream << "#Pvs\n" << currentPvsSize << endl; outstream << "#ViewCellsDif\n" << smallerDif << endl; outstream << "#ViewCellsSum\n" << smallerSum << endl; outstream << "#VolumeDif\n" << volRatioDif << endl << endl; outstream << "#VolumeSum\n" << volRatioSum << endl << endl; // increase current pvs size currentPvsSize += stepSize; } outstream.close(); } void ViewCellsManager::EvalViewCellPartition(Preprocessor *preprocessor) { int samplesPerPass; int numSamples; int castSamples = 0; char s[64]; mEnvironment->GetIntValue("ViewCells.Evaluation.samplesPerPass", samplesPerPass); mEnvironment->GetIntValue("ViewCells.Evaluation.samples", numSamples); char statsPrefix[100]; mEnvironment->GetStringValue("ViewCells.Evaluation.statsPrefix", statsPrefix); Debug << "view cell evaluation samples per pass: " << samplesPerPass << endl; Debug << "view cell evaluation samples: " << numSamples << endl; Debug << "view cell stats prefix: " << statsPrefix << endl; //VssRayContainer outRays; // should directional sampling be used? bool dirSamples = (mEvaluationSamplingType == Preprocessor::DIRECTION_BASED_DISTRIBUTION); /*ViewCellContainer leaves; mViewCellsTree->CollectLeaves(mViewCellsTree->GetRoot(), leaves); */ cout << "reseting pvs ... "; bool startFromZero = true; // reset pvs and start over from zero if (startFromZero) { mViewCellsTree->ResetPvs(); } else // statistics without addidtional samples { cout << "compute new statistics ... "; sprintf(s, "-%09d-eval.log", castSamples); string fName = string(statsPrefix) + string(s); mViewCellsTree->ExportStats(fName); cout << "finished" << endl; } cout << "finished" << endl; cout << "Evaluating view cell partition" << endl; while (castSamples < numSamples) { VssRayContainer evaluationSamples; const int samplingType = mEvaluationSamplingType; /* dirSamples ? Preprocessor::DIRECTION_BASED_DISTRIBUTION : Preprocessor::SPATIAL_BOX_BASED_DISTRIBUTION; */ //-- construction rays => we use uniform samples for this cout << "casting " << samplesPerPass << " samples " << endl; CastPassSamples(samplesPerPass, samplingType, evaluationSamples); castSamples += samplesPerPass; cout << "computing sample contributions of " << (int)evaluationSamples.size() << " samples " << endl; ComputeSampleContributions(evaluationSamples, true, false); cout << "compute new statistics ... "; /*Debug << "*******+" << endl; float overall = 0; stable_sort(leaves.begin(), leaves.end(), ViewCell::SmallerPvs); for (int i = 0; i < leaves.size(); ++ i) { overall += leaves[i]->GetPvs().GetSize(); Debug << "i " << i << " !size: " << leaves[i]->GetPvs().GetSize() << " vol: " << leaves[i]->GetVolume() << " overall " << overall << endl; } */ //-- propagate pvs or pvs size information ObjectPvs pvs; UpdatePvsForEvaluation(mViewCellsTree->GetRoot(), pvs); //-- output stats sprintf(s, "-%09d-eval.log", castSamples); string fileName = string(statsPrefix) + string(s); mViewCellsTree->ExportStats(fileName); cout << "finished" << endl; disposeRays(evaluationSamples, NULL); } bool useHisto; int histoPasses; mEnvironment->GetBoolValue("ViewCells.Evaluation.histogram", useHisto); mEnvironment->GetIntValue("ViewCells.Evaluation.histoPasses", histoPasses); const int numLeaves = mViewCellsTree->GetNumInitialViewCells(mViewCellsTree->GetRoot()); //Debug << "number of leaves: " << numLeaves << endl; //cout << "number of leaves: " << numLeaves << endl; if (useHisto) { // evaluate view cells in a histogram char s[64]; #if 0 for (int passes = 1; passes <= histoPasses; ++ passes) { int n = numLeaves * passes / histoPasses; cout << "computing histogram for " << n << " view cells" << endl; //-- evaluate histogram for render cost sprintf(s, "-%09d-histo.log", n); string filename = string(statsPrefix) + string(s); EvalViewCellHistogram(filename, n); ////////////////////////////////////////// // --evaluate histogram for pvs size cout << "computing pvs histogram for " << n << " view cells" << endl; sprintf(s, "-%09d-histo-pvs.log", n); filename = string(statsPrefix) + string(s); EvalViewCellHistogramForPvsSize(filename, n); } #else for (int pass = histoPasses; pass <= numLeaves; pass += histoPasses) { cout << "computing histogram for " << pass << " view cells" << endl; //-- evaluate histogram for render cost sprintf(s, "-%09d-histo.log", pass); string filename = string(statsPrefix) + string(s); EvalViewCellHistogram(filename, pass); ////////////////////////////////////////// //-- evaluate histogram for pvs size cout << "computing pvs histogram for " << pass << " view cells" << endl; sprintf(s, "-%09d-histo-pvs.log", pass); filename = string(statsPrefix) + string(s); EvalViewCellHistogramForPvsSize(filename, pass); } #endif } // find empty view cells bug if (TEST_EMPTY_VIEW_CELLS) { TestEmptyViewCells(preprocessor->mObjects); } } inline float EvalMergeCost(ViewCell *root, ViewCell *candidate) { return root->GetPvs().GetPvsHomogenity(candidate->GetPvs()); } // Returns index of the best view cells of the neighborhood int GetBestViewCellIdx(ViewCell *root, const ViewCellContainer &neighborhood) { int bestViewCellIdx = 0; float mergeCost = Limits::Infinity; int i = 0; ViewCellContainer::const_iterator vit, vit_end = neighborhood.end(); for (vit = neighborhood.begin(); vit != vit_end; ++ vit, ++ i) { const float mc = EvalMergeCost(root, *vit); if (mc < mergeCost) { mergeCost = mc; bestViewCellIdx = i; } } return bestViewCellIdx; } void ViewCellsManager::SetMaxFilterSize(const int size) { mMaxFilterSize = size; } float ViewCellsManager::EvalRenderCost(Intersectable *obj) const { switch (mRenderCostEvaluationType) { case PER_OBJECT: //cout << "perobject" << endl; return 1.0f; case PER_TRIANGLE: {cout << "pertriangle" << endl; // HACK MeshInstance *mi = dynamic_cast(obj); // HACK: assume meshes are triangles if (mi->GetMesh()) { return mi->GetMesh()->mFaces.size(); } } default: cout << "default" << endl; return 1.0f; } // should not come here return 0.0f; } ViewCell *ViewCellsManager::ConstructLocalMergeTree(ViewCell *currentViewCell, const ViewCellContainer &viewCells) { ViewCell *root = currentViewCell; ViewCellContainer neighborhood = viewCells; ViewCellContainer::const_iterator it, it_end = neighborhood.end(); const int n = min(mMaxFilterSize, (int)neighborhood.size()); //-- use priority queue to merge leaf pairs //cout << "neighborhood: " << neighborhood.size() << endl; //const float maxAvgCost = 350; for (int nMergedViewCells = 0; nMergedViewCells < n; ++ nMergedViewCells) { const int bestViewCellIdx = GetBestViewCellIdx(root, neighborhood); ViewCell *bestViewCell = neighborhood[bestViewCellIdx]; // remove from vector swap(neighborhood[bestViewCellIdx], neighborhood.back()); neighborhood.pop_back(); // cout << "vc idx: " << bestViewCellIdx << endl; if (!bestViewCell || !root) cout << "warning!!" << endl; // create new root of the hierarchy root = MergeViewCells(root, bestViewCell); } return root; } struct SortableViewCellEntry { SortableViewCellEntry() {} SortableViewCellEntry(const float v, ViewCell *cell):mValue(v), mViewCell(cell) {} float mValue; ViewCell *mViewCell; friend bool operator<(const SortableViewCellEntry &a, const SortableViewCellEntry &b) { return a.mValue < b.mValue; } }; ViewCell * ViewCellsManager::ConstructLocalMergeTree2(ViewCell *currentViewCell, const ViewCellContainer &viewCells) { vector neighborhood(viewCells.size()); int i, j; for (i = 0, j = 0; i < viewCells.size(); i++) { if (viewCells[i] != currentViewCell) neighborhood[j++] = SortableViewCellEntry( EvalMergeCost(currentViewCell, viewCells[i]), viewCells[i]); } neighborhood.resize(j); sort(neighborhood.begin(), neighborhood.end()); ViewCell *root = currentViewCell; vector::const_iterator it, it_end = neighborhood.end(); const int n = min(mMaxFilterSize, (int)neighborhood.size()); //-- use priority queue to merge leaf pairs //cout << "neighborhood: " << neighborhood.size() << endl; for (int nMergedViewCells = 0; nMergedViewCells < n; ++ nMergedViewCells) { ViewCell *bestViewCell = neighborhood[nMergedViewCells].mViewCell; //cout <SetMergeCost(-1.0f); } return root; } void ViewCellsManager::DeleteLocalMergeTree(ViewCell *vc ) const { if (!vc->IsLeaf() && vc->GetMergeCost() < 0.0f) { ViewCellInterior *vci = (ViewCellInterior *) vc; ViewCellContainer::const_iterator it, it_end = vci->mChildren.end(); for (it = vci->mChildren.begin(); it != it_end; ++ it) DeleteLocalMergeTree(*it); vci->mChildren.clear(); delete vci; } } bool ViewCellsManager::CheckValidity(ViewCell *vc, int minPvsSize, int maxPvsSize) const { if ((vc->GetPvs().GetSize() > maxPvsSize) || (vc->GetPvs().GetSize() < minPvsSize)) { return false; } return true; } bool ViewCellsManager::EqualToSpatialNode(ViewCell *viewCell) const { return false; } int ViewCellsManager::ComputeBoxIntersections(const AxisAlignedBox3 &box, ViewCellContainer &viewCells) const { return 0; }; AxisAlignedBox3 ViewCellsManager::GetFilterBBox(const Vector3 &viewPoint, const float width) const { float w = Magnitude(mViewSpaceBox.Size())*width; Vector3 min = viewPoint - w * 0.5f; Vector3 max = viewPoint + w * 0.5f; return AxisAlignedBox3(min, max); } void ViewCellsManager::GetPrVS(const Vector3 &viewPoint, PrVs &prvs, const float filterWidth) { const AxisAlignedBox3 box = GetFilterBBox(viewPoint, filterWidth); ViewCell *currentViewCell = GetViewCell(viewPoint); if (currentViewCell) { ViewCellContainer viewCells; ComputeBoxIntersections(box, viewCells); ViewCell *root = ConstructLocalMergeTree2(currentViewCell, viewCells); prvs.mViewCell = root; } else prvs.mViewCell = NULL; //prvs.mPvs = root->GetPvs(); } bool ViewCellsManager::ViewCellsTreeConstructed() const { return mViewCellsTree->GetRoot(); } void ViewCellsManager::SetValidity(ViewCell *vc, int minPvs, int maxPvs) const { vc->SetValid(CheckValidity(vc, minPvs, maxPvs)); } void ViewCellsManager::SetValidity( int minPvsSize, int maxPvsSize) const { ViewCellContainer::const_iterator it, it_end = mViewCells.end(); for (it = mViewCells.begin(); it != it_end; ++ it) { SetValidity(*it, minPvsSize, maxPvsSize); } } void ViewCellsManager::SetValidityPercentage( const float minValid, const float maxValid ) { sort(mViewCells.begin(), mViewCells.end(), ViewCell::SmallerPvs); int start = mViewCells.size()*minValid; int end = mViewCells.size()*maxValid; for (int i=0; i < mViewCells.size(); i++) mViewCells[i]->SetValid(i >= start && i <= end); } int ViewCellsManager::CountValidViewcells() const { ViewCellContainer::const_iterator it, it_end = mViewCells.end(); int valid = 0; for (it = mViewCells.begin(); it != it_end; ++ it) { if ((*it)->GetValid()) valid ++; } return valid; } bool ViewCellsManager::LoadViewCellsGeometry(const string filename) { X3dParser parser; mEnvironment->GetFloatValue("ViewCells.height", parser.mViewCellHeight); bool success = parser.ParseFile(filename, *this); Debug << (int)mViewCells.size() << " view cells loaded" << endl; return success; } bool ViewCellsManager::GetViewPoint(Vector3 &viewPoint) const { viewPoint = mViewSpaceBox.GetRandomPoint(); return true; } float ViewCellsManager::GetViewSpaceVolume() { return mViewSpaceBox.GetVolume() * (2.0f * sqr((float)M_PI)); } bool ViewCellsManager::ViewPointValid(const Vector3 &viewPoint) const { if (!ViewCellsConstructed()) return mViewSpaceBox.IsInside(viewPoint); else { if (!mViewSpaceBox.IsInside(viewPoint)) return false; ViewCell *viewcell = GetViewCell(viewPoint); if (!viewcell || !viewcell->GetValid()) return false; } return true; } float ViewCellsManager::ComputeSampleContributions(const VssRayContainer &rays, const bool addRays, const bool storeViewCells ) { // view cells not yet constructed if (!ViewCellsConstructed()) return 0.0f; VssRayContainer::const_iterator it, it_end = rays.end(); float sum = 0.0f; for (it = rays.begin(); it != it_end; ++ it) { sum += ComputeSampleContributions(*(*it), addRays, storeViewCells); //ComputeSampleContributions(*(*it), addRays); // sum += (*it)->mPvsContribution; } return sum; } void ViewCellsManager::EvaluateViewCellsStats() { mCurrentViewCellsStats.Reset(); ViewCellContainer::const_iterator it, it_end = mViewCells.end(); for (it = mViewCells.begin(); it != it_end; ++ it) { mViewCellsTree->UpdateViewCellsStats(*it, mCurrentViewCellsStats); } } void ViewCellsManager::EvaluateRenderStatistics(float &totalRenderCost, float &expectedRenderCost, float &deviation, float &variance, int &totalPvs, float &avgRenderCost) { ViewCellContainer::const_iterator it, it_end = mViewCells.end(); //-- compute expected value totalRenderCost = 0; totalPvs = 0; for (it = mViewCells.begin(); it != it_end; ++ it) { ViewCell *vc = *it; totalRenderCost += vc->GetPvs().GetSize() * vc->GetVolume(); totalPvs += (int)vc->GetPvs().GetSize(); } // normalize with view space box totalRenderCost /= mViewSpaceBox.GetVolume(); expectedRenderCost = totalRenderCost / (float)mViewCells.size(); avgRenderCost = totalPvs / (float)mViewCells.size(); //-- compute standard defiation variance = 0; deviation = 0; for (it = mViewCells.begin(); it != it_end; ++ it) { ViewCell *vc = *it; float renderCost = vc->GetPvs().GetSize() * vc->GetVolume(); float dev; if (1) dev = fabs(avgRenderCost - (float)vc->GetPvs().GetSize()); else dev = fabs(expectedRenderCost - renderCost); deviation += dev; variance += dev * dev; } variance /= (float)mViewCells.size(); deviation /= (float)mViewCells.size(); } void ViewCellsManager::AddViewCell(ViewCell *viewCell) { mViewCells.push_back(viewCell); } float ViewCellsManager::GetArea(ViewCell *viewCell) const { return viewCell->GetArea(); } float ViewCellsManager::GetVolume(ViewCell *viewCell) const { return viewCell->GetVolume(); } void ViewCellsManager::DeriveViewCells(const ObjectContainer &objects, ViewCellContainer &viewCells, const int maxViewCells) const { // maximal max viewcells int limit = maxViewCells > 0 ? Min((int)objects.size(), maxViewCells) : (int)objects.size(); for (int i = 0; i < limit; ++ i) { Intersectable *object = objects[i]; // extract the mesh instances if (object->Type() == Intersectable::MESH_INSTANCE) { MeshInstance *inst = dynamic_cast(object); ViewCell *viewCell = GenerateViewCell(inst->GetMesh()); viewCells.push_back(viewCell); } //TODO: transformed meshes } } ViewCell *ViewCellsManager::ExtrudeViewCell(const Triangle3 &baseTri, const float height) const { // one mesh per view cell Mesh *mesh = new Mesh(); //-- construct prism // bottom mesh->mFaces.push_back(new Face(2,1,0)); // top mesh->mFaces.push_back(new Face(3,4,5)); // sides mesh->mFaces.push_back(new Face(1, 4, 3, 0)); mesh->mFaces.push_back(new Face(2, 5, 4, 1)); mesh->mFaces.push_back(new Face(3, 5, 2, 0)); //--- extrude new vertices for top of prism Vector3 triNorm = baseTri.GetNormal(); Triangle3 topTri; // add base vertices and calculate top vertices for (int i = 0; i < 3; ++ i) mesh->mVertices.push_back(baseTri.mVertices[i]); // add top vertices for (int i = 0; i < 3; ++ i) mesh->mVertices.push_back(baseTri.mVertices[i] + height * triNorm); mesh->Preprocess(); return GenerateViewCell(mesh); } void ViewCellsManager::FinalizeViewCells(const bool createMesh) { ViewCellContainer::const_iterator it, it_end = mViewCells.end(); // volume and area of the view cells are recomputed and a view cell mesh is created for (it = mViewCells.begin(); it != it_end; ++ it) { Finalize(*it, createMesh); } mTotalAreaValid = false; } void ViewCellsManager::Finalize(ViewCell *viewCell, const bool createMesh) { // implemented in subclasses } // fast way of merging 2 view cells ViewCellInterior *ViewCellsManager::MergeViewCells(ViewCell *left, ViewCell *right) const { // generate parent view cell ViewCellInterior *vc = new ViewCellInterior(); vc->GetPvs().Clear(); vc->GetPvs() = left->GetPvs(); // merge pvs of right cell vc->GetPvs().Merge(right->GetPvs()); //-- merge ray sets if (0) { stable_sort(left->mPiercingRays.begin(), left->mPiercingRays.end()); stable_sort(right->mPiercingRays.begin(), right->mPiercingRays.end()); std::merge(left->mPiercingRays.begin(), left->mPiercingRays.end(), right->mPiercingRays.begin(), right->mPiercingRays.end(), vc->mPiercingRays.begin()); } // set only links to child (not from child to parent, maybe not wished!!) vc->mChildren.push_back(left); vc->mChildren.push_back(right); // update pvs size vc->mPvsSize = vc->GetPvs().GetSize(); vc->mPvsSizeValid = true; return vc; } ViewCellInterior *ViewCellsManager::MergeViewCells(ViewCellContainer &children) const { ViewCellInterior *vc = new ViewCellInterior(); ViewCellContainer::const_iterator it, it_end = children.end(); for (it = children.begin(); it != it_end; ++ it) { // merge pvs vc->GetPvs().Merge((*it)->GetPvs()); vc->mChildren.push_back(*it); } return vc; } void ViewCellsManager::SetRenderer(Renderer *renderer) { mRenderer = renderer; } ViewCellsTree *ViewCellsManager::GetViewCellsTree() { return mViewCellsTree; } void ViewCellsManager::SetVisualizationSamples(const int visSamples) { mVisualizationSamples = visSamples; } void ViewCellsManager::SetConstructionSamples(const int constructionSamples) { mConstructionSamples = constructionSamples; } void ViewCellsManager::SetInitialSamples(const int initialSamples) { mInitialSamples = initialSamples; } void ViewCellsManager::SetPostProcessSamples(const int postProcessSamples) { mPostProcessSamples = postProcessSamples; } int ViewCellsManager::GetVisualizationSamples() const { return mVisualizationSamples; } int ViewCellsManager::GetConstructionSamples() const { return mConstructionSamples; } int ViewCellsManager::GetPostProcessSamples() const { return mPostProcessSamples; } void ViewCellsManager::UpdatePvs() { if (mViewCellPvsIsUpdated || !ViewCellsTreeConstructed()) return; mViewCellPvsIsUpdated = true; ViewCellContainer leaves; mViewCellsTree->CollectLeaves(mViewCellsTree->GetRoot(), leaves); ViewCellContainer::const_iterator it, it_end = leaves.end(); for (it = leaves.begin(); it != it_end; ++ it) { mViewCellsTree->PropagatePvs(*it); } } void ViewCellsManager::GetPvsStatistics(PvsStatistics &stat) { // update pvs of view cells tree if necessary UpdatePvs(); ViewCellContainer::const_iterator it = mViewCells.begin(); stat.viewcells = 0; stat.minPvs = 100000000; stat.maxPvs = 0; stat.avgPvs = 0.0f; for (; it != mViewCells.end(); ++ it) { ViewCell *viewcell = *it; const int pvsSize = mViewCellsTree->GetPvsSize(viewcell); if (pvsSize < stat.minPvs) stat.minPvs = pvsSize; if (pvsSize > stat.maxPvs) stat.maxPvs = pvsSize; stat.avgPvs += pvsSize; ++ stat.viewcells; } if (stat.viewcells) stat.avgPvs/=stat.viewcells; } void ViewCellsManager::PrintPvsStatistics(ostream &s) { s<<"############# Viewcell PVS STAT ##################\n"; PvsStatistics pvsStat; GetPvsStatistics(pvsStat); s<<"#AVG_PVS\n"<GetFloatValue("ViewCells.Visualization.clipPlanePos", pos); Vector3 point = mViewSpaceBox.Min() + mViewSpaceBox.Size() * pos; if (mUseClipPlaneForViz) mEnvironment->GetIntValue("ViewCells.Visualization.clipPlaneAxis", axis); Vector3 normal(0,0,0); normal[axis] = 1; mClipPlane = Plane3(normal, point); } AxisAlignedBox3 ViewCellsManager::GetViewSpaceBox() const { return mViewSpaceBox; } void ViewCellsManager::ResetViewCells() { // recollect view cells mViewCells.clear(); CollectViewCells(); // stats are computed once more mCurrentViewCellsStats.Reset(); EvaluateViewCellsStats(); // has to be recomputed mTotalAreaValid = false; } int ViewCellsManager::GetMaxPvsSize() const { return mMaxPvsSize; } void ViewCellsManager::AddSampleContributions(const VssRayContainer &rays) { if (!ViewCellsConstructed()) return; VssRayContainer::const_iterator it, it_end = rays.end(); for (it = rays.begin(); it != it_end; ++ it) { AddSampleContributions(*(*it)); } } int ViewCellsManager::GetMinPvsSize() const { return mMinPvsSize; } float ViewCellsManager::GetMaxPvsRatio() const { return mMaxPvsRatio; } void ViewCellsManager::AddSampleContributions(VssRay &ray) { // assumes viewcells have been stored... ViewCellContainer *viewcells = &ray.mViewCells; ViewCellContainer::const_iterator it; for (it = viewcells->begin(); it != viewcells->end(); ++it) { ViewCell *viewcell = *it; if (viewcell->GetValid()) { // if ray not outside of view space viewcell->GetPvs().AddSample(ray.mTerminationObject, ray.mPdf); } } } float ViewCellsManager::ComputeSampleContributions(VssRay &ray, const bool addRays, const bool storeViewCells) { ViewCellContainer viewcells; ray.mPvsContribution = 0; ray.mRelativePvsContribution = 0.0f; static Ray hray; hray.Init(ray); //hray.mFlags |= Ray::CULL_BACKFACES; //Ray hray(ray); float tmin = 0, tmax = 1.0; if (!GetViewSpaceBox().GetRaySegment(hray, tmin, tmax) || (tmin > tmax)) return 0; Vector3 origin = hray.Extrap(tmin); Vector3 termination = hray.Extrap(tmax); CastLineSegment(origin, termination, viewcells); // copy viewcells memory efficiently //const bool storeViewcells = !addRays; if (storeViewCells) { ray.mViewCells.reserve(viewcells.size()); ray.mViewCells = viewcells; } ViewCellContainer::const_iterator it = viewcells.begin(); for (; it != viewcells.end(); ++ it) { ViewCell *viewcell = *it; if (viewcell->GetValid()) { // if ray not outside of view space float contribution; if (ray.mTerminationObject && viewcell->GetPvs().GetSampleContribution(ray.mTerminationObject, ray.mPdf, contribution)) { ++ ray.mPvsContribution; ray.mRelativePvsContribution += contribution; } // for directional sampling it is important to count only contributions // made in one direction!!! // the other contributions of this sample will be counted for the oposite ray! #if 0 if (ray.mOriginObject && viewcell->GetPvs().GetSampleContribution(ray.mOriginObject, ray.mPdf, contribution)) { ++ ray.mPvsContribution; ray.mRelativePvsContribution += contribution; } #endif } } if (addRays) { for (it = viewcells.begin(); it != viewcells.end(); ++ it) { ViewCell *viewcell = *it; if (viewcell->GetValid()) { // if ray not outside of view space if (ray.mTerminationObject) viewcell->GetPvs().AddSample(ray.mTerminationObject, ray.mPdf); #if 0 if (ray.mOriginObject) viewcell->GetPvs().AddSample(ray.mOriginObject, ray.mPdf); #endif } } } return ray.mRelativePvsContribution; } void ViewCellsManager::GetRaySets(const VssRayContainer &sourceRays, const int maxSize, VssRayContainer &usedRays, VssRayContainer *savedRays) const { const int limit = min(maxSize, (int)sourceRays.size()); const float prop = (float)limit / ((float)sourceRays.size() + Limits::Small); VssRayContainer::const_iterator it, it_end = sourceRays.end(); for (it = sourceRays.begin(); it != it_end; ++ it) { if (Random(1.0f) < prop) usedRays.push_back(*it); else if (savedRays) savedRays->push_back(*it); } } float ViewCellsManager::GetRendercost(ViewCell *viewCell) const { return mViewCellsTree->GetPvsSize(viewCell); } float ViewCellsManager::GetAccVcArea() { // if already computed if (mTotalAreaValid) { return mTotalArea; } mTotalArea = 0; ViewCellContainer::const_iterator it, it_end = mViewCells.end(); for (it = mViewCells.begin(); it != it_end; ++ it) { //Debug << "area: " << GetArea(*it); mTotalArea += GetArea(*it); } mTotalAreaValid = true; return mTotalArea; } void ViewCellsManager::PrintStatistics(ostream &s) const { s << mCurrentViewCellsStats << endl; } void ViewCellsManager::CreateUniqueViewCellIds() { if (ViewCellsTreeConstructed()) mViewCellsTree->CreateUniqueViewCellsIds(); else for (int i = 0; i < (int)mViewCells.size(); ++ i) mViewCells[i]->SetId(i); } void ViewCellsManager::ExportViewCellsForViz(Exporter *exporter) const { ViewCellContainer::const_iterator it, it_end = mViewCells.end(); for (it = mViewCells.begin(); it != it_end; ++ it) { if (!mOnlyValidViewCells || (*it)->GetValid()) { ExportColor(exporter, *it); ExportViewCellGeometry(exporter, *it, mUseClipPlaneForViz ? &mClipPlane : NULL); } } } void ViewCellsManager::CreateViewCellMeshes() { // convert to meshes ViewCellContainer::const_iterator it, it_end = mViewCells.end(); for (it = mViewCells.begin(); it != it_end; ++ it) { if (!(*it)->GetMesh()) CreateMesh(*it); } } bool ViewCellsManager::ExportViewCells(const string filename, const bool exportPvs, const ObjectContainer &objects) { return false; } void ViewCellsManager::CollectViewCells(const int n) { mNumActiveViewCells = n; mViewCells.clear(); CollectViewCells(); } void ViewCellsManager::SetViewCellsActive() { // collect leaf view cells and set the pointers to the currently // active view cells ViewCellContainer::const_iterator it, it_end = mViewCells.end(); for (it = mViewCells.begin(); it != it_end; ++ it) { ViewCellContainer leaves; mViewCellsTree->CollectLeaves(*it, leaves); ViewCellContainer::const_iterator lit, lit_end = leaves.end(); for (lit = mViewCells.begin(); lit != lit_end; ++ lit) { dynamic_cast(*lit)->SetActiveViewCell(*it); } } } int ViewCellsManager::GetMaxFilterSize() const { return mMaxFilterSize; } static const bool USE_ASCII = true; bool ViewCellsManager::ExportBoundingBoxes(const string filename, const ObjectContainer &objects) const { ObjectContainer::const_iterator it, it_end = objects.end(); if (USE_ASCII) { ofstream boxesOut(filename.c_str()); if (!boxesOut.is_open()) return false; for (it = objects.begin(); it != it_end; ++ it) { MeshInstance *mi = dynamic_cast(*it); const AxisAlignedBox3 box = mi->GetBox(); boxesOut << mi->GetId() << " " << box.Min().x << " " << box.Min().y << " " << box.Min().z << " " << box.Max().x << " " << box.Max().y << " " << box.Max().z << endl; } boxesOut.close(); } else { ofstream boxesOut(filename.c_str(), ios::binary); if (!boxesOut.is_open()) return false; for (it = objects.begin(); it != it_end; ++ it) { MeshInstance *mi = dynamic_cast(*it); const AxisAlignedBox3 box = mi->GetBox(); Vector3 bmin = box.Min(); Vector3 bmax = box.Max(); int id = mi->GetId(); boxesOut.write(reinterpret_cast(&id), sizeof(int)); boxesOut.write(reinterpret_cast(&bmin), sizeof(Vector3)); boxesOut.write(reinterpret_cast(&bmax), sizeof(Vector3)); } boxesOut.close(); } return true; } bool ViewCellsManager::LoadBoundingBoxes(const string filename, IndexedBoundingBoxContainer &boxes) const { Vector3 bmin, bmax; int id; if (USE_ASCII) { ifstream boxesIn(filename.c_str()); if (!boxesIn.is_open()) { cout << "failed to open file " << filename << endl; return false; } string buf; while (!(getline(boxesIn, buf)).eof()) { sscanf(buf.c_str(), "%d %f %f %f %f %f %f", &id, &bmin.x, &bmin.y, &bmin.z, &bmax.x, &bmax.y, &bmax.z); AxisAlignedBox3 box(bmin, bmax); // MeshInstance *mi = new MeshInstance(); // HACK: set bounding box to new box //mi->mBox = box; boxes.push_back(IndexedBoundingBox(id, box)); } boxesIn.close(); } else { ifstream boxesIn(filename.c_str(), ios::binary); if (!boxesIn.is_open()) return false; while (1) { boxesIn.read(reinterpret_cast(&id), sizeof(Vector3)); boxesIn.read(reinterpret_cast(&bmin), sizeof(Vector3)); boxesIn.read(reinterpret_cast(&bmax), sizeof(Vector3)); if (boxesIn.eof()) break; AxisAlignedBox3 box(bmin, bmax); MeshInstance *mi = new MeshInstance(NULL); // HACK: set bounding box to new box //mi->mBox = box; //boxes.push_back(mi); boxes.push_back(IndexedBoundingBox(id, box)); } boxesIn.close(); } return true; } float ViewCellsManager::GetFilterWidth() { return mFilterWidth; } float ViewCellsManager::GetAbsFilterWidth() { return Magnitude(mViewSpaceBox.Size()) * mFilterWidth; } bool ViewCellsManager::ExportBoundingBoxes(ofstream &xmlstream, const ObjectContainer &objects) const { //-- export the view cells and the pvs xmlstream << "" << endl; ObjectContainer::const_iterator oit, oit_end = objects.end(); for (oit = objects.begin(); oit != oit_end; ++ oit) { MeshInstance *mi = dynamic_cast(*oit); const AxisAlignedBox3 box = mi->GetBox(); //-- the bounding boxes xmlstream << "GetId() << "\"" << " min=\"" << box.Min().x << " " << box.Min().y << " " << box.Min().z << "\"" << " max=\"" << box.Max().x << " " << box.Max().y << " " << box.Max().z << "\" />" << endl; } xmlstream << "" << endl; return true; } /**********************************************************************/ /* BspViewCellsManager implementation */ /**********************************************************************/ BspViewCellsManager::BspViewCellsManager(BspTree *bspTree, Environment *env): ViewCellsManager(env), mBspTree(bspTree) { mEnvironment->GetIntValue("BspTree.Construction.samples", mInitialSamples); mBspTree->SetViewCellsManager(this); mBspTree->mViewCellsTree = mViewCellsTree; } bool BspViewCellsManager::ViewCellsConstructed() const { return mBspTree->GetRoot() != NULL; } ViewCell *BspViewCellsManager::GenerateViewCell(Mesh *mesh) const { return new BspViewCell(mesh); } int BspViewCellsManager::ConstructSubdivision(const ObjectContainer &objects, const VssRayContainer &rays) { // if view cells were already constructed if (ViewCellsConstructed()) return 0; int sampleContributions = 0; // construct view cells using the collected samples RayContainer constructionRays; VssRayContainer savedRays; const int limit = min(mInitialSamples, (int)rays.size()); VssRayContainer::const_iterator it, it_end = rays.end(); const float prop = (float)limit / ((float)rays.size() + Limits::Small); for (it = rays.begin(); it != it_end; ++ it) { if (Random(1.0f) < prop) constructionRays.push_back(new Ray(*(*it))); else savedRays.push_back(*it); } if (mViewCells.empty()) { // no view cells loaded mBspTree->Construct(objects, constructionRays, &mViewSpaceBox); // collect final view cells mBspTree->CollectViewCells(mViewCells); } else { mBspTree->Construct(mViewCells); } // destroy rays created only for construction CLEAR_CONTAINER(constructionRays); Debug << mBspTree->GetStatistics() << endl; //EvaluateViewCellsStats(); Debug << "\nView cells after construction:\n" << mCurrentViewCellsStats << endl; // recast rest of the rays if (SAMPLE_AFTER_SUBDIVISION) ComputeSampleContributions(savedRays, true, false); // real meshes are contructed at this stage if (0) { cout << "finalizing view cells ... "; FinalizeViewCells(true); cout << "finished" << endl; } return sampleContributions; } void BspViewCellsManager::CollectViewCells() { // view cells tree constructed if (!ViewCellsTreeConstructed()) { mBspTree->CollectViewCells(mViewCells); } else { // we can use the view cells tree hierarchy to get the right set mViewCellsTree->CollectBestViewCellSet(mViewCells, mNumActiveViewCells); } } float BspViewCellsManager::GetProbability(ViewCell *viewCell) { // compute view cell area as subsititute for probability if (1) return GetVolume(viewCell) / GetViewSpaceBox().GetVolume(); else return GetArea(viewCell) / GetAccVcArea(); } int BspViewCellsManager::CastLineSegment(const Vector3 &origin, const Vector3 &termination, ViewCellContainer &viewcells) { return mBspTree->CastLineSegment(origin, termination, viewcells); } int BspViewCellsManager::PostProcess(const ObjectContainer &objects, const VssRayContainer &rays) { if (!ViewCellsConstructed()) { Debug << "view cells not constructed" << endl; return 0; } // view cells already finished before post processing step (i.e. because they were loaded) if (mViewCellsFinished) { FinalizeViewCells(true); EvaluateViewCellsStats(); return 0; } //-- post processing of bsp view cells int vcSize = 0; int pvsSize = 0; //-- merge view cells cout << "starting post processing using " << mPostProcessSamples << " samples ... "; long startTime = GetTime(); VssRayContainer postProcessRays; GetRaySets(rays, mPostProcessSamples, postProcessRays); if (mMergeViewCells) { cout << "constructing visibility based merge tree" << endl; mViewCellsTree->ConstructMergeTree(rays, objects); } else { cout << "constructing spatial merge tree" << endl; // create spatial merge hierarchy ViewCell *root = ConstructSpatialMergeTree(mBspTree->GetRoot()); mViewCellsTree->SetRoot(root); // compute pvs ObjectPvs pvs; UpdatePvsForEvaluation(root, pvs); } // export statistics after merge if (1) { char mstats[100]; mEnvironment->GetStringValue("ViewCells.mergeStats", mstats); mViewCellsTree->ExportStats(mstats); } //-- stats and visualizations cout << "finished" << endl; cout << "merged view cells in " << TimeDiff(startTime, GetTime()) * 1e-3 << " secs" << endl; Debug << "Postprocessing: Merged view cells in " << TimeDiff(startTime, GetTime()) * 1e-3 << " secs" << endl << endl; //-- visualization and statistics // reset view cells and stats ResetViewCells(); Debug << "\nView cells after merge:\n" << mCurrentViewCellsStats << endl; int savedColorCode = mColorCode; //BspLeaf::NewMail(); if (1) // export merged view cells { mColorCode = 0; Exporter *exporter = Exporter::GetExporter("merged_view_cells.wrl"); cout << "exporting view cells after merge ... "; if (exporter) { if (mExportGeometry) exporter->ExportGeometry(objects); //exporter->SetWireframe(); exporter->SetFilled(); ExportViewCellsForViz(exporter); delete exporter; } cout << "finished" << endl; } if (1) // export merged view cells using pvs color coding { mColorCode = 1; Exporter *exporter = Exporter::GetExporter("merged_view_cells_pvs.wrl"); cout << "exporting view cells after merge (pvs size) ... "; if (exporter) { //exporter->SetWireframe(); //exporter->SetForcedMaterial(RandomMaterial()); if (mExportGeometry) exporter->ExportGeometry(objects); //exporter->SetWireframe(); exporter->SetFilled(); ExportViewCellsForViz(exporter); delete exporter; } cout << "finished" << endl; } // only for testing TestSubdivision(); mColorCode = savedColorCode; // compute final meshes and volume / area if (1) FinalizeViewCells(true); // write view cells to disc if (mExportViewCells) { char filename[100]; mEnvironment->GetStringValue("ViewCells.filename", filename); ExportViewCells(filename, mExportPvs, objects); } // export bounding boxes if (0 && mExportBboxesForPvs) { char filename[100]; mEnvironment->GetStringValue("ViewCells.boxesFilename", filename); ExportBoundingBoxes(filename, objects); } return 0; } BspViewCellsManager::~BspViewCellsManager() { } int BspViewCellsManager::GetType() const { return BSP; } void BspViewCellsManager::Visualize(const ObjectContainer &objects, const VssRayContainer &sampleRays) { if (!ViewCellsConstructed()) return; int savedColorCode = mColorCode; if (1) // export final view cells { mColorCode = 1; Exporter *exporter = Exporter::GetExporter("final_view_cells.x3d"); cout << "exporting view cells after merge (pvs size) ... "; if (exporter) { //exporter->SetWireframe(); if (mExportGeometry) exporter->ExportGeometry(objects); //exporter->SetWireframe(); //exporter->SetFilled(); bool b = mUseClipPlaneForViz; mUseClipPlaneForViz = false; ExportViewCellsForViz(exporter); mUseClipPlaneForViz = b; delete exporter; } cout << "finished" << endl; } mColorCode = savedColorCode; //-- visualization of the BSP splits bool exportSplits = false; mEnvironment->GetBoolValue("BspTree.Visualization.exportSplits", exportSplits); if (exportSplits) { cout << "exporting splits ... "; ExportSplits(objects); cout << "finished" << endl; } // export single view cells ExportBspPvs(objects); } void BspViewCellsManager::ExportSplits(const ObjectContainer &objects) { Exporter *exporter = Exporter::GetExporter("bsp_splits.x3d"); if (exporter) { //exporter->SetFilled(); if (mExportGeometry) exporter->ExportGeometry(objects); Material m; m.mDiffuseColor = RgbColor(1, 0, 0); exporter->SetForcedMaterial(m); exporter->SetWireframe(); exporter->ExportBspSplits(*mBspTree, true); //NOTE: take forced material, else big scenes cannot be viewed m.mDiffuseColor = RgbColor(0, 1, 0); exporter->SetForcedMaterial(m); //exporter->ResetForcedMaterial(); delete exporter; } } void BspViewCellsManager::ExportBspPvs(const ObjectContainer &objects) { const int leafOut = 10; ViewCell::NewMail(); //-- some rays for output const int raysOut = min((int)mBspRays.size(), mVisualizationSamples); cout << "visualization using " << mVisualizationSamples << " samples" << endl; Debug << "\nOutput view cells: " << endl; // sort view cells to get largest view cells if (0) stable_sort(mViewCells.begin(), mViewCells.end(), ViewCell::SmallerPvs); int limit = min(leafOut, (int)mViewCells.size()); for (int i = 0; i < limit; ++ i) { cout << "creating output for view cell " << i << " ... "; VssRayContainer vcRays; Intersectable::NewMail(); ViewCell *vc; if (0) vc = mViewCells[i]; else vc = mViewCells[Random((int)mViewCells.size())]; cout << "creating output for view cell " << i << " ... "; if(0) { // check whether we can add the current ray to the output rays for (int k = 0; k < raysOut; ++ k) { BspRay *ray = mBspRays[k]; for (int j = 0; j < (int)ray->intersections.size(); ++ j) { BspLeaf *leaf = ray->intersections[j].mLeaf; if (vc == leaf->GetViewCell()) vcRays.push_back(ray->vssRay); } } } //bspLeaves[j]->Mail(); char s[64]; sprintf(s, "bsp-pvs%04d.x3d", i); Exporter *exporter = Exporter::GetExporter(s); exporter->SetWireframe(); Material m;//= RandomMaterial(); m.mDiffuseColor = RgbColor(0, 1, 0); exporter->SetForcedMaterial(m); ExportViewCellGeometry(exporter, vc); // export rays piercing this view cell exporter->ExportRays(vcRays, RgbColor(0, 1, 0)); m.mDiffuseColor = RgbColor(1, 0, 0); exporter->SetForcedMaterial(m); ObjectPvsMap::const_iterator it, it_end = vc->GetPvs().mEntries.end(); exporter->SetFilled(); // output PVS of view cell for (it = vc->GetPvs().mEntries.begin(); it != it_end; ++ it) { Intersectable *intersect = (*it).first; if (!intersect->Mailed()) { Material m = RandomMaterial(); exporter->SetForcedMaterial(m); exporter->ExportIntersectable(intersect); intersect->Mail(); } } DEL_PTR(exporter); cout << "finished" << endl; } Debug << endl; } void BspViewCellsManager::ExportColor(Exporter *exporter, ViewCell *vc) const { const bool vcValid = CheckValidity(vc, mMinPvsSize, mMaxPvsSize); float importance = 0; static Material m; switch (mColorCode) { case 0: // Random { if (vcValid) { m.mDiffuseColor.r = 0.5f + RandomValue(0.0f, 0.5f); m.mDiffuseColor.g = 0.5f + RandomValue(0.0f, 0.5f); m.mDiffuseColor.b = 0.5f + RandomValue(0.0f, 0.5f); } else { m.mDiffuseColor.r = 0.0f; m.mDiffuseColor.g = 1.0f; m.mDiffuseColor.b = 0.0f; } exporter->SetForcedMaterial(m); return; } case 1: // pvs { importance = (float)vc->GetPvs().GetSize() / (float)mCurrentViewCellsStats.maxPvs; } break; case 2: // merges { int lSize = mViewCellsTree->GetNumInitialViewCells(vc); importance = (float)lSize / (float)mCurrentViewCellsStats.maxLeaves; } //break; case 3: // merge tree differene { // TODO //importance = (float)GetMaxTreeDiff(vc) / // (float)(mVspBspTree->GetStatistics().maxDepth * 2); } break; default: break; } // special color code for invalid view cells m.mDiffuseColor.r = importance; m.mDiffuseColor.g = 1.0f - m.mDiffuseColor.r; m.mDiffuseColor.b = vcValid ? 1.0f : 0.0f; //Debug << "importance: " << importance << endl; exporter->SetForcedMaterial(m); } void BspViewCellsManager::TestSubdivision() { ViewCellContainer leaves; mViewCellsTree->CollectLeaves(mViewCellsTree->GetRoot(), leaves); ViewCellContainer::const_iterator it, it_end = leaves.end(); const float vol = mViewSpaceBox.GetVolume(); float subdivVol = 0; float newVol = 0; for (it = leaves.begin(); it != it_end; ++ it) { BspNodeGeometry geom; BspLeaf *leaf = dynamic_cast(*it)->mLeaf; mBspTree->ConstructGeometry(leaf, geom); const float lVol = geom.GetVolume(); newVol += lVol; subdivVol += (*it)->GetVolume(); float thres = 0.9f; if ((lVol < ((*it)->GetVolume() * thres)) || (lVol * thres > ((*it)->GetVolume()))) Debug << "warning: " << lVol << " " << (*it)->GetVolume() << endl; } Debug << "exact volume: " << vol << endl; Debug << "subdivision volume: " << subdivVol << endl; Debug << "new volume: " << newVol << endl; } void BspViewCellsManager::ExportViewCellGeometry(Exporter *exporter, ViewCell *vc, const Plane3 *clipPlane) const { if (vc->GetMesh()) { exporter->ExportMesh(vc->GetMesh()); return; } if (clipPlane) { ViewCellContainer leaves; mViewCellsTree->CollectLeaves(vc, leaves); ViewCellContainer::const_iterator it, it_end = leaves.end(); for (it = leaves.begin(); it != it_end; ++ it) { BspNodeGeometry geom; BspNodeGeometry front; BspNodeGeometry back; BspLeaf *leaf = dynamic_cast(*it)->mLeaf; mBspTree->ConstructGeometry(leaf, geom); const float eps = 0.00000001f; const int cf = geom.Side(*clipPlane, eps); if (cf == -1) { exporter->ExportPolygons(geom.GetPolys()); } else if (cf == 0) { geom.SplitGeometry(front, back, *clipPlane, mViewSpaceBox, eps); //Debug << "geo size: " << geom.Size() << endl; //Debug << "size b: " << back.Size() << " f: " << front.Size() << endl; if (back.Valid()) { exporter->ExportPolygons(back.GetPolys()); } } } } else { BspNodeGeometry geom; mBspTree->ConstructGeometry(vc, geom); exporter->ExportPolygons(geom.GetPolys()); } } void BspViewCellsManager::CreateMesh(ViewCell *vc) { // delete previous mesh ///DEL_PTR(vc->GetMesh()); BspNodeGeometry geom; mBspTree->ConstructGeometry(vc, geom); Mesh *mesh = new Mesh(); IncludeNodeGeomInMesh(geom, *mesh); vc->SetMesh(mesh); // put mesh into mesh container so we can savely delete it mMeshContainer.push_back(mesh); } void BspViewCellsManager::Finalize(ViewCell *viewCell, const bool createMesh) { float area = 0; float volume = 0; ViewCellContainer leaves; mViewCellsTree->CollectLeaves(viewCell, leaves); ViewCellContainer::const_iterator it, it_end = leaves.end(); for (it = leaves.begin(); it != it_end; ++ it) { BspNodeGeometry geom; BspLeaf *leaf = dynamic_cast(*it)->mLeaf; mBspTree->ConstructGeometry(leaf, geom); const float lVol = geom.GetVolume(); const float lArea = geom.GetArea(); //(*it)->SetVolume(vol); //(*it)->SetArea(area); area += lArea; volume += lVol; CreateMesh(*it); } viewCell->SetVolume(volume); viewCell->SetArea(area); } ViewCell *BspViewCellsManager::GetViewCell(const Vector3 &point, const bool active) const { if (!mBspTree) return NULL; if (!mViewSpaceBox.IsInside(point)) return NULL; return mBspTree->GetViewCell(point); } void BspViewCellsManager::CollectMergeCandidates(const VssRayContainer &rays, vector &candidates) { cout << "collecting merge candidates ... " << endl; if (mUseRaysForMerge) { mBspTree->CollectMergeCandidates(rays, candidates); } else { vector leaves; mBspTree->CollectLeaves(leaves); mBspTree->CollectMergeCandidates(leaves, candidates); } cout << "fininshed collecting candidates" << endl; } bool BspViewCellsManager::ExportViewCells(const string filename, const bool exportPvs, const ObjectContainer &objects) { cout << "exporting view cells to xml ... "; std::ofstream stream; // for output we need unique ids for each view cell CreateUniqueViewCellIds(); stream.open(filename.c_str()); stream << ""<" << endl; //-- the view space bounding box stream << "" << endl; //-- the type of the view cells hierarchy //stream << "" << endl; // NOTE: load in vsp bsp here because bsp and vsp bsp can use same tree and vsp bsp is bug free stream << "" << endl; //-- load the view cells itself, i.e., the ids and the pvs stream << "" << endl; mViewCellsTree->Export(stream, exportPvs); stream << "" << endl; //-- load the hierarchy stream << "" << endl; mBspTree->Export(stream); stream << endl << "" << endl; stream << "" << endl; stream.close(); cout << "finished" << endl; return true; } ViewCell *BspViewCellsManager::ConstructSpatialMergeTree(BspNode *root) { // terminate recursion if (root->IsLeaf()) { BspLeaf *leaf = dynamic_cast(root); leaf->GetViewCell()->SetMergeCost(0.0f); return leaf->GetViewCell(); } BspInterior *interior = dynamic_cast(root); ViewCellInterior *viewCellInterior = new ViewCellInterior(); // evaluate merge cost for priority traversal float mergeCost = 1.0f / (float)root->mTimeStamp; viewCellInterior->SetMergeCost(mergeCost); float volume = 0; BspNode *front = interior->GetFront(); BspNode *back = interior->GetBack(); //-- recursivly compute child hierarchies ViewCell *backVc = ConstructSpatialMergeTree(back); ViewCell *frontVc = ConstructSpatialMergeTree(front); viewCellInterior->SetupChildLink(backVc); viewCellInterior->SetupChildLink(frontVc); volume += backVc->GetVolume(); volume += frontVc->GetVolume(); viewCellInterior->SetVolume(volume); return viewCellInterior; } void BspViewCellsManager::UpdatePvsForEvaluation(ViewCell *root, ObjectPvs &pvs) { // terminate traversal if (root->IsLeaf()) { pvs = root->GetPvs(); root->mPvsSize = pvs.GetSize(); root->mPvsSizeValid = true; return; } ViewCellInterior *interior = dynamic_cast(root); ViewCellContainer::const_iterator vit, vit_end = interior->mChildren.end(); vector pvsList; for (vit = interior->mChildren.begin(); vit != vit_end; ++ vit) { ObjectPvs objPvs; //-- recursivly compute child pvss UpdatePvsForEvaluation(*vit, objPvs); // store pvs in vector pvsList.push_back(objPvs); } #if 1 Intersectable::NewMail(); //-- faster way of computing pvs: // construct merged pvs by adding // and only those of the next pvs which were not mailed. // note: sumpdf is not correct!! vector::iterator oit = pvsList.begin(); for (vit = interior->mChildren.begin(); vit != vit_end; ++ vit, ++ oit) { ObjectPvsMap::iterator pit, pit_end = (*oit).mEntries.end(); for (pit = (*oit).mEntries.begin(); pit != pit_end; ++ pit) { Intersectable *intersect = (*pit).first; if (!intersect->Mailed()) { pvs.AddSample(intersect, (*pit).second.mSumPdf); intersect->Mail(); } } } // store pvs in this node if (mViewCellsTree->ViewCellsStorage() == ViewCellsTree::PVS_IN_INTERIORS) { interior->mPvs = pvs; } // set new pvs size interior->mPvsSize = pvs.GetSize(); interior->mPvsSizeValid = true; #else // really merge cells: slow put sumpdf is correct ViewCellInterior *viewCellInterior = new ViewCellInterior(); viewCellInterior->GetPvs().Merge(backVc->GetPvs()); viewCellInterior->GetPvs().Merge(frontVc->GetPvs()); #endif } /************************************************************************/ /* KdViewCellsManager implementation */ /************************************************************************/ KdViewCellsManager::KdViewCellsManager(KdTree *kdTree, Environment *env): ViewCellsManager(env), mKdTree(kdTree), mKdPvsDepth(100) { } float KdViewCellsManager::GetProbability(ViewCell *viewCell) { // compute view cell area / volume as subsititute for probability if (0) return GetArea(viewCell) / GetViewSpaceBox().SurfaceArea(); else return GetVolume(viewCell) / GetViewSpaceBox().GetVolume(); } void KdViewCellsManager::CollectViewCells() { //mKdTree->CollectViewCells(mViewCells); TODO } int KdViewCellsManager::ConstructSubdivision(const ObjectContainer &objects, const VssRayContainer &rays) { // if view cells already constructed if (ViewCellsConstructed()) return 0; mKdTree->Construct(); mTotalAreaValid = false; // create the view cells mKdTree->CreateAndCollectViewCells(mViewCells); // cast rays ComputeSampleContributions(rays, true, false); EvaluateViewCellsStats(); Debug << "\nView cells after construction:\n" << mCurrentViewCellsStats << endl; return 0; } bool KdViewCellsManager::ViewCellsConstructed() const { return mKdTree->GetRoot() != NULL; } int KdViewCellsManager::PostProcess(const ObjectContainer &objects, const VssRayContainer &rays) { return 0; } void KdViewCellsManager::Visualize(const ObjectContainer &objects, const VssRayContainer &sampleRays) { if (!ViewCellsConstructed()) return; // using view cells instead of the kd PVS of objects const bool useViewCells = true; bool exportRays = false; int limit = min(mVisualizationSamples, (int)sampleRays.size()); const int pvsOut = min((int)objects.size(), 10); VssRayContainer *rays = new VssRayContainer[pvsOut]; if (useViewCells) { const int leafOut = 10; ViewCell::NewMail(); //-- some rays for output const int raysOut = min((int)sampleRays.size(), mVisualizationSamples); Debug << "visualization using " << raysOut << " samples" << endl; //-- some random view cells and rays for output vector kdLeaves; for (int i = 0; i < leafOut; ++ i) kdLeaves.push_back(dynamic_cast(mKdTree->GetRandomLeaf())); for (int i = 0; i < kdLeaves.size(); ++ i) { KdLeaf *leaf = kdLeaves[i]; RayContainer vcRays; cout << "creating output for view cell " << i << " ... "; #if 0 // check whether we can add the current ray to the output rays for (int k = 0; k < raysOut; ++ k) { Ray *ray = sampleRays[k]; for (int j = 0; j < (int)ray->bspIntersections.size(); ++ j) { BspLeaf *leaf2 = ray->bspIntersections[j].mLeaf; if (leaf->GetViewCell() == leaf2->GetViewCell()) { vcRays.push_back(ray); } } } #endif Intersectable::NewMail(); ViewCell *vc = leaf->mViewCell; //bspLeaves[j]->Mail(); char s[64]; sprintf(s, "kd-pvs%04d.x3d", i); Exporter *exporter = Exporter::GetExporter(s); exporter->SetFilled(); exporter->SetWireframe(); //exporter->SetFilled(); Material m;//= RandomMaterial(); m.mDiffuseColor = RgbColor(1, 1, 0); exporter->SetForcedMaterial(m); AxisAlignedBox3 box = mKdTree->GetBox(leaf); exporter->ExportBox(box); // export rays piercing this view cell exporter->ExportRays(vcRays, 1000, RgbColor(0, 1, 0)); m.mDiffuseColor = RgbColor(1, 0, 0); exporter->SetForcedMaterial(m); // exporter->SetWireframe(); exporter->SetFilled(); ObjectPvsMap::iterator it, it_end = vc->GetPvs().mEntries.end(); // -- output PVS of view cell for (it = vc->GetPvs().mEntries.begin(); it != it_end; ++ it) { Intersectable *intersect = (*it).first; if (!intersect->Mailed()) { exporter->ExportIntersectable(intersect); intersect->Mail(); } } DEL_PTR(exporter); cout << "finished" << endl; } DEL_PTR(rays); } else // using kd PVS of objects { for (int i = 0; i < limit; ++ i) { VssRay *ray = sampleRays[i]; // check whether we can add this to the rays for (int j = 0; j < pvsOut; j++) { if (objects[j] == ray->mTerminationObject) { rays[j].push_back(ray); } } } if (exportRays) { Exporter *exporter = NULL; exporter = Exporter::GetExporter("sample-rays.x3d"); exporter->SetWireframe(); exporter->ExportKdTree(*mKdTree); for (i = 0; i < pvsOut; i++) exporter->ExportRays(rays[i], RgbColor(1, 0, 0)); exporter->SetFilled(); delete exporter; } for (int k=0; k < pvsOut; k++) { Intersectable *object = objects[k]; char s[64]; sprintf(s, "sample-pvs%04d.x3d", k); Exporter *exporter = Exporter::GetExporter(s); exporter->SetWireframe(); KdPvsMap::iterator i = object->mKdPvs.mEntries.begin(); Intersectable::NewMail(); // avoid adding the object to the list object->Mail(); ObjectContainer visibleObjects; for (; i != object->mKdPvs.mEntries.end(); i++) { KdNode *node = (*i).first; exporter->ExportBox(mKdTree->GetBox(node)); mKdTree->CollectObjects(node, visibleObjects); } exporter->ExportRays(rays[k], RgbColor(0, 1, 0)); exporter->SetFilled(); for (int j = 0; j < visibleObjects.size(); j++) exporter->ExportIntersectable(visibleObjects[j]); Material m; m.mDiffuseColor = RgbColor(1, 0, 0); exporter->SetForcedMaterial(m); exporter->ExportIntersectable(object); delete exporter; } } } void KdViewCellsManager::ExportColor(Exporter *exporter, ViewCell *vc) const { // TODO } ViewCell *KdViewCellsManager::GenerateViewCell(Mesh *mesh) const { return new KdViewCell(mesh); } void KdViewCellsManager::ExportViewCellGeometry(Exporter *exporter, ViewCell *vc, const Plane3 *clipPlane) const { ViewCellContainer leaves; mViewCellsTree->CollectLeaves(vc, leaves); ViewCellContainer::const_iterator it, it_end = leaves.end(); for (it = leaves.begin(); it != it_end; ++ it) { KdViewCell *kdVc = dynamic_cast(*it); exporter->ExportBox(mKdTree->GetBox(kdVc->mLeaf)); } } int KdViewCellsManager::GetType() const { return ViewCellsManager::KD; } KdNode *KdViewCellsManager::GetNodeForPvs(KdLeaf *leaf) { KdNode *node = leaf; while (node->mParent && node->mDepth > mKdPvsDepth) node = node->mParent; return node; } int KdViewCellsManager::CastLineSegment(const Vector3 &origin, const Vector3 &termination, ViewCellContainer &viewcells) { return mKdTree->CastLineSegment(origin, termination, viewcells); } void KdViewCellsManager::CreateMesh(ViewCell *vc) { // TODO } void KdViewCellsManager::CollectMergeCandidates(const VssRayContainer &rays, vector &candidates) { // TODO } /**********************************************************************/ /* VspKdViewCellsManager implementation */ /**********************************************************************/ VspKdViewCellsManager::VspKdViewCellsManager(VspKdTree *vspKdTree, Environment *env): ViewCellsManager(env), mVspKdTree(vspKdTree) { mEnvironment->GetIntValue("VspKdTree.Construction.samples", mInitialSamples); mVspKdTree->SetViewCellsManager(this); } float VspKdViewCellsManager::GetProbability(ViewCell *viewCell) { // compute view cell area / volume as subsititute for probability if (0) return GetArea(viewCell) / GetViewSpaceBox().SurfaceArea(); else return GetVolume(viewCell) / GetViewSpaceBox().GetVolume(); } void VspKdViewCellsManager::CollectViewCells() { mVspKdTree->CollectViewCells(mViewCells); } int VspKdViewCellsManager::ConstructSubdivision(const ObjectContainer &objects, const VssRayContainer &rays) { // if view cells already constructed if (ViewCellsConstructed()) return 0; VssRayContainer constructionRays; VssRayContainer savedRays; GetRaySets(rays, mInitialSamples, constructionRays, &savedRays); Debug << "constructing vsp kd tree using " << (int)constructionRays.size() << " samples" << endl; mVspKdTree->Construct(constructionRays, &mViewSpaceBox); Debug << mVspKdTree->GetStatistics() << endl; // export leaf building blocks ExportLeaves(objects, rays); // finally merge kd leaf building blocks to view cells const int merged = mVspKdTree->MergeViewCells(rays); // collapse siblings belonging to the same view cell mVspKdTree->RefineViewCells(rays); // collapse siblings belonging to the same view cell mVspKdTree->CollapseTree(); // evaluale view cell stats ResetViewCells(); Debug << "\nView cells after construction:\n" << mCurrentViewCellsStats << endl; long startTime = GetTime(); // recast rest of rays ComputeSampleContributions(savedRays, true, false); Debug << "Computed remaining ray contribution in " << TimeDiff(startTime, GetTime()) * 1e-3 << " secs" << endl; return merged; } bool VspKdViewCellsManager::ViewCellsConstructed() const { return mVspKdTree->GetRoot() != NULL; } ViewCell *VspKdViewCellsManager::GenerateViewCell(Mesh *mesh) const { return new VspKdViewCell(mesh); } int VspKdViewCellsManager::PostProcess(const ObjectContainer &objects, const VssRayContainer &rays) { if (!ViewCellsConstructed()) return 0; // recalculate stats EvaluateViewCellsStats(); return 0; } void VspKdViewCellsManager::ExportLeaves(const ObjectContainer &objects, const VssRayContainer &sampleRays) { if (!ViewCellsConstructed()) return; //-- export leaf building blocks Exporter *exporter = Exporter::GetExporter("vspkdtree.x3d"); if (!exporter) return; if (mExportGeometry) exporter->ExportGeometry(objects); //exporter->SetWireframe(); //exporter->ExportVspKdTree(*mVspKdTree, mVspKdTree->GetStatistics().maxPvsSize); exporter->ExportVspKdTree(*mVspKdTree); if (mExportRays) { const float prob = (float)mVisualizationSamples / ((float)sampleRays.size() + Limits::Small); exporter->SetWireframe(); //-- collect uniformly distributed rays VssRayContainer rays; for (int i = 0; i < sampleRays.size(); ++ i) { if (RandomValue(0,1) < prob) rays.push_back(sampleRays[i]); } exporter->ExportRays(rays, RgbColor(1, 0, 0)); } delete exporter; } void VspKdViewCellsManager::Visualize(const ObjectContainer &objects, const VssRayContainer &sampleRays) { if (!ViewCellsConstructed()) return; //-- export single view cells for (int i = 0; i < 10; ++ i) { char s[64]; sprintf(s, "vsp_viewcell%04d.x3d", i); Exporter *exporter = Exporter::GetExporter(s); const int idx = (int)RandomValue(0.0, (Real)((int)mViewCells.size() - 1)); VspKdViewCell *vc = dynamic_cast(mViewCells[idx]); //-- export geometry Material m; m.mDiffuseColor = RgbColor(0, 1, 1); exporter->SetForcedMaterial(m); exporter->SetWireframe(); ExportViewCellGeometry(exporter, vc); //-- export stored rays if (mExportRays) { ViewCellContainer leaves; mViewCellsTree->CollectLeaves(vc, leaves); ViewCellContainer::const_iterator it, it_end = leaves.end(); for (it = leaves.begin(); it != it_end; ++ it) { VspKdViewCell *vspKdVc = dynamic_cast(*it); VspKdLeaf *leaf = vspKdVc->mLeaf; AxisAlignedBox3 box = mVspKdTree->GetBBox(leaf); VssRayContainer vssRays; VssRayContainer castRays; VssRayContainer initRays; leaf->GetRays(vssRays); VssRayContainer::const_iterator it, it_end = vssRays.end(); const float prop = 200.0f / (float)vssRays.size(); for (it = vssRays.begin(); it != it_end; ++ it) { if (Random(1) < prop) if ((*it)->mTerminationObject == NULL) castRays.push_back(*it); else initRays.push_back(*it); } exporter->ExportRays(castRays, RgbColor(1, 0, 0)); exporter->ExportRays(initRays, RgbColor(0, 1, 0)); } } //-- output PVS of view cell m.mDiffuseColor = RgbColor(1, 0, 0); exporter->SetForcedMaterial(m); Intersectable::NewMail(); ObjectPvsMap::const_iterator it, it_end = vc->GetPvs().mEntries.end(); exporter->SetFilled(); for (it = vc->GetPvs().mEntries.begin(); it != it_end; ++ it) { Intersectable *intersect = (*it).first; if (!intersect->Mailed()) { Material m = RandomMaterial(); exporter->SetForcedMaterial(m); exporter->ExportIntersectable(intersect); intersect->Mail(); } } delete exporter; } //-- export final view cells Exporter *exporter = Exporter::GetExporter("vspkdtree_merged.x3d"); ExportViewCellsForViz(exporter); if (mExportGeometry) { exporter->SetFilled(); exporter->ExportGeometry(objects); } if (mExportRays) { const float prob = (float)mVisualizationSamples / ((float)sampleRays.size() + Limits::Small); exporter->SetWireframe(); VssRayContainer rays; for (int i = 0; i < sampleRays.size(); ++ i) { if (RandomValue(0,1) < prob) rays.push_back(sampleRays[i]); } exporter->ExportRays(rays, RgbColor(1, 0, 0)); } delete exporter; } int VspKdViewCellsManager::GetType() const { return VSP_KD; } int VspKdViewCellsManager::CastLineSegment(const Vector3 &origin, const Vector3 &termination, ViewCellContainer &viewcells) { return mVspKdTree->CastLineSegment(origin, termination, viewcells); } void VspKdViewCellsManager::ExportColor(Exporter *exporter, ViewCell *vc) const { if (mColorCode == 0) // Random color return; float importance = 0; switch (mColorCode) { case 1: // pvs { importance = (float)mViewCellsTree->GetPvsSize(vc) / (float)mCurrentViewCellsStats.maxPvs; } break; case 2: // merged leaves { const int lSize = mViewCellsTree->GetNumInitialViewCells(vc); importance = (float)lSize / (float)mCurrentViewCellsStats.maxLeaves; } break; case 3: // merged tree depth difference { //importance = (float)GetMaxTreeDiff(vc) / // (float)(mVspBspTree->GetStatistics().maxDepth * 2); } break; default: break; } Material m; m.mDiffuseColor.b = 1.0f; m.mDiffuseColor.r = importance; m.mDiffuseColor.g = 1.0f - m.mDiffuseColor.r; //Debug << "importance: " << importance << endl; exporter->SetForcedMaterial(m); } void VspKdViewCellsManager::ExportViewCellGeometry(Exporter *exporter, ViewCell *vc, const Plane3 *clipPlane) const { VspKdViewCell *kdVc = dynamic_cast(vc); Mesh m; ViewCellContainer leaves; mViewCellsTree->CollectLeaves(vc, leaves); ViewCellContainer::const_iterator it, it_end = leaves.end(); for (it = leaves.begin(); it != it_end; ++ it) { VspKdLeaf *l = dynamic_cast(*it)->mLeaf; IncludeBoxInMesh(mVspKdTree->GetBBox(l), m); } exporter->ExportMesh(&m); } void VspKdViewCellsManager::CreateMesh(ViewCell *vc) { //TODO } void VspKdViewCellsManager::CollectMergeCandidates(const VssRayContainer &rays, vector &candidates) { // TODO } /**************************************************************************/ /* VspBspViewCellsManager implementation */ /**************************************************************************/ VspBspViewCellsManager::VspBspViewCellsManager(VspBspTree *vspBspTree, Environment *env): ViewCellsManager(env), mVspBspTree(vspBspTree) { mEnvironment->GetIntValue("VspBspTree.Construction.samples", mInitialSamples); mVspBspTree->SetViewCellsManager(this); mVspBspTree->mViewCellsTree = mViewCellsTree; } VspBspViewCellsManager::~VspBspViewCellsManager() { } float VspBspViewCellsManager::GetProbability(ViewCell *viewCell) { if (0 && mVspBspTree->mUseAreaForPvs) return GetArea(viewCell) / GetAccVcArea(); else return GetVolume(viewCell) / mViewSpaceBox.GetVolume(); } void VspBspViewCellsManager::CollectViewCells() { // view cells tree constructed if (!ViewCellsTreeConstructed()) { mVspBspTree->CollectViewCells(mViewCells, false); } else { // we can use the view cells tree hierarchy to get the right set mViewCellsTree->CollectBestViewCellSet(mViewCells, mNumActiveViewCells); } } bool VspBspViewCellsManager::ViewCellsConstructed() const { return mVspBspTree->GetRoot() != NULL; } ViewCell *VspBspViewCellsManager::GenerateViewCell(Mesh *mesh) const { return new BspViewCell(mesh); } int VspBspViewCellsManager::ConstructSubdivision(const ObjectContainer &objects, const VssRayContainer &rays) { mMaxPvsSize = (int)(mMaxPvsRatio * (float)objects.size()); // if view cells were already constructed if (ViewCellsConstructed()) return 0; int sampleContributions = 0; VssRayContainer sampleRays; int limit = min (mInitialSamples, (int)rays.size()); VssRayContainer constructionRays; VssRayContainer savedRays; Debug << "samples used for vsp bsp subdivision: " << mInitialSamples << ", actual rays: " << (int)rays.size() << endl; GetRaySets(rays, mInitialSamples, constructionRays, &savedRays); Debug << "initial rays: " << (int)constructionRays.size() << endl; Debug << "saved rays: " << (int)savedRays.size() << endl; //TODO: remove if (1) mVspBspTree->Construct(constructionRays, &mViewSpaceBox); else mVspBspTree->Construct(rays, &mViewSpaceBox); // collapse invalid regions cout << "collapsing invalid tree regions ... "; long startTime = GetTime(); int collapsedLeaves = mVspBspTree->CollapseTree(); Debug << "collapsed in " << TimeDiff(startTime, GetTime()) * 1e-3 << " seconds" << endl; cout << "finished" << endl; // -- stats Debug << mVspBspTree->GetStatistics() << endl; ResetViewCells(); Debug << "\nView cells after construction:\n" << mCurrentViewCellsStats << endl; startTime = GetTime(); cout << "Computing remaining ray contributions ... "; // recast rest of rays if (SAMPLE_AFTER_SUBDIVISION) ComputeSampleContributions(savedRays, true, false); cout << "finished" << endl; Debug << "Computed remaining ray contribution in " << TimeDiff(startTime, GetTime()) * 1e-3 << " secs" << endl; cout << "construction finished" << endl; // real meshes are contructed at this stage if (0) { cout << "finalizing view cells ... "; FinalizeViewCells(true); cout << "finished" << endl; } return sampleContributions; } void VspBspViewCellsManager::MergeViewCells(const VssRayContainer &rays, const ObjectContainer &objects) { int vcSize = 0; int pvsSize = 0; //-- merge view cells cout << "starting merge using " << mPostProcessSamples << " samples ... " << endl; long startTime = GetTime(); if (mMergeViewCells) { // TODO: should be done BEFORE the ray casting // compute tree by merging the nodes based on cost heuristics mViewCellsTree->ConstructMergeTree(rays, objects); } else { // compute tree by merging the nodes of the spatial hierarchy ViewCell *root = ConstructSpatialMergeTree(mVspBspTree->GetRoot()); mViewCellsTree->SetRoot(root); // compute pvs ObjectPvs pvs; UpdatePvsForEvaluation(root, pvs); } if (1) { char mstats[100]; ObjectPvs pvs; mEnvironment->GetStringValue("ViewCells.mergeStats", mstats); mViewCellsTree->ExportStats(mstats); } //-- stats and visualizations cout << "finished merging" << endl; cout << "merged view cells in " << TimeDiff(startTime, GetTime()) *1e-3 << " secs" << endl; Debug << "Postprocessing: Merged view cells in " << TimeDiff(startTime, GetTime()) *1e-3 << " secs" << endl << endl; int savedColorCode = mColorCode; // get currently active view cell set ResetViewCells(); Debug << "\nView cells after merge:\n" << mCurrentViewCellsStats << endl; //BspLeaf::NewMail(); if (1) // export merged view cells { mColorCode = 0; Exporter *exporter = Exporter::GetExporter("merged_view_cells.wrl"); cout << "exporting view cells after merge ... "; if (exporter) { if (0) exporter->SetWireframe(); else exporter->SetFilled(); ExportViewCellsForViz(exporter); if (mExportGeometry) { Material m; m.mDiffuseColor = RgbColor(0, 1, 0); exporter->SetForcedMaterial(m); exporter->SetFilled(); exporter->ExportGeometry(objects); } delete exporter; } cout << "finished" << endl; } if (1) // export merged view cells using pvs coding { mColorCode = 1; Exporter *exporter = Exporter::GetExporter("merged_view_cells_pvs.wrl"); cout << "exporting view cells after merge (pvs size) ... "; if (exporter) { if (0) exporter->SetWireframe(); else exporter->SetFilled(); ExportViewCellsForViz(exporter); if (mExportGeometry) { Material m; m.mDiffuseColor = RgbColor(0, 1, 0); exporter->SetForcedMaterial(m); exporter->SetFilled(); exporter->ExportGeometry(objects); } delete exporter; } cout << "finished" << endl; } mColorCode = savedColorCode; } bool VspBspViewCellsManager::EqualToSpatialNode(ViewCell *viewCell) const { return GetSpatialNode(viewCell) != NULL; } BspNode *VspBspViewCellsManager::GetSpatialNode(ViewCell *viewCell) const { if (!viewCell->IsLeaf()) { BspViewCell *bspVc = dynamic_cast(viewCell); return bspVc->mLeaf; } else { ViewCellInterior *interior = dynamic_cast(viewCell); // cannot be node of binary tree if (interior->mChildren.size() != 2) return NULL; ViewCell *left = interior->mChildren[0]; ViewCell *right = interior->mChildren[1]; BspNode *leftNode = GetSpatialNode(left); BspNode *rightNode = GetSpatialNode(right); if (leftNode && rightNode && leftNode->IsSibling(rightNode)) { return leftNode->GetParent(); } } return NULL; } void VspBspViewCellsManager::RefineViewCells(const VssRayContainer &rays, const ObjectContainer &objects) { Debug << "render time before refine:" << endl; mRenderer->RenderScene(); SimulationStatistics ss; dynamic_cast(mRenderer)->GetStatistics(ss); Debug << ss << endl; cout << "Refining the merged view cells ... "; long startTime = GetTime(); // refining the merged view cells const int refined = mViewCellsTree->RefineViewCells(rays, objects); //-- stats and visualizations cout << "finished" << endl; cout << "refined " << refined << " view cells in " << TimeDiff(startTime, GetTime()) *1e-3 << " secs" << endl; Debug << "Postprocessing: refined " << refined << " view cells in " << TimeDiff(startTime, GetTime()) *1e-3 << " secs" << endl << endl; } int VspBspViewCellsManager::PostProcess(const ObjectContainer &objects, const VssRayContainer &rays) { if (!ViewCellsConstructed()) { Debug << "postprocess error: no view cells constructed" << endl; return 0; } // view cells already finished before post processing step // (i.e. because they were loaded) if (mViewCellsFinished) { FinalizeViewCells(true); EvaluateViewCellsStats(); return 0; } // check if new view cells turned invalid int minPvs, maxPvs; if (0) { minPvs = mMinPvsSize; maxPvs = mMaxPvsSize; } else { minPvs = mPruneEmptyViewCells ? 1 : 0; maxPvs = mMaxPvsSize; } Debug << "setting validity, min: " << minPvs << " max: " << maxPvs << endl; cout << "setting validity, min: " << minPvs << " max: " << maxPvs << endl; SetValidity(minPvs, maxPvs); // update valid view space according to valid view cells if (0) mVspBspTree->ValidateTree(); // area has to be recomputed mTotalAreaValid = false; VssRayContainer postProcessRays; GetRaySets(rays, mPostProcessSamples, postProcessRays); Debug << "post processing using " << (int)postProcessRays.size() << " samples" << endl; // should maybe be done here to allow merge working with area or volume // and to correct the rendering statistics if (0) FinalizeViewCells(false); //-- merge the individual view cells MergeViewCells(postProcessRays, objects); // only for debugging purpose: test if the subdivision is valid TestSubdivision(); //-- refines the merged view cells if (0) RefineViewCells(postProcessRays, objects); //-- render simulation after merge + refine cout << "\nevaluating bsp view cells render time before compress ... "; dynamic_cast(mRenderer)->RenderScene(); SimulationStatistics ss; dynamic_cast(mRenderer)->GetStatistics(ss); cout << " finished" << endl; cout << ss << endl; Debug << ss << endl; //-- compression if (ViewCellsTreeConstructed() && mCompressViewCells) { int pvsEntries = mViewCellsTree->GetNumPvsEntries(mViewCellsTree->GetRoot()); Debug << "number of entries before compress: " << pvsEntries << endl; mViewCellsTree->SetViewCellsStorage(ViewCellsTree::COMPRESSED); pvsEntries = mViewCellsTree->GetNumPvsEntries(mViewCellsTree->GetRoot()); Debug << "number of entries after compress: " << pvsEntries << endl; } // collapse sibling leaves that share the same view cell if (0) mVspBspTree->CollapseTree(); // recompute view cell list and statistics ResetViewCells(); // compute final meshes and volume / area if (1) FinalizeViewCells(true); // write view cells to disc if (mExportViewCells) { char filename[100]; mEnvironment->GetStringValue("ViewCells.filename", filename); ExportViewCells(filename, mExportPvs, objects); } // export bounding boxes if (mExportBboxesForPvs) { char filename[100]; mEnvironment->GetStringValue("ViewCells.boxesFilename", filename); ExportBoundingBoxes(filename, objects); /* IndexedBoundingBoxContainer boxes; LoadBoundingBoxes(filename, boxes); IndexedBoundingBoxContainer::const_iterator it, it_end = boxes.end(); for (it = boxes.begin(); it != it_end; ++ it) { IndexedBoundingBox ibox = *it; AxisAlignedBox3 box = ibox.second; Debug << ibox.first << " " << box.Min().x << " " << box.Min().y << " " << box.Min().z << " " << box.Max().x << " " << box.Max().y << " " << box.Max().z << endl; }*/ } return 0; } int VspBspViewCellsManager::GetType() const { return VSP_BSP; } ViewCell *VspBspViewCellsManager::ConstructSpatialMergeTree(BspNode *root) { // terminate recursion if (root->IsLeaf()) { BspLeaf *leaf = dynamic_cast(root); leaf->GetViewCell()->SetMergeCost(0.0f); return leaf->GetViewCell(); } BspInterior *interior = dynamic_cast(root); ViewCellInterior *viewCellInterior = new ViewCellInterior(); // evaluate merge cost for priority traversal float mergeCost = 1.0f / (float)root->mTimeStamp; viewCellInterior->SetMergeCost(mergeCost); float volume = 0; BspNode *front = interior->GetFront(); BspNode *back = interior->GetBack(); ObjectPvs frontPvs, backPvs; //-- recursivly compute child hierarchies ViewCell *backVc = ConstructSpatialMergeTree(back); ViewCell *frontVc = ConstructSpatialMergeTree(front); viewCellInterior->SetupChildLink(backVc); viewCellInterior->SetupChildLink(frontVc); volume += backVc->GetVolume(); volume += frontVc->GetVolume(); viewCellInterior->SetVolume(volume); return viewCellInterior; } void VspBspViewCellsManager::UpdatePvsForEvaluation(ViewCell *root, ObjectPvs &pvs) { // terminate traversal if (root->IsLeaf()) { pvs = root->GetPvs(); root->mPvsSize = root->GetPvs().GetSize(); root->mPvsSizeValid = true; return; } //-- interior node => propagate pvs up ViewCellInterior *interior = dynamic_cast(root); interior->GetPvs().Clear(); pvs.Clear(); vector pvsList; ViewCellContainer::const_iterator vit, vit_end = interior->mChildren.end(); for (vit = interior->mChildren.begin(); vit != vit_end; ++ vit) { ObjectPvs objPvs; //-- recursivly compute child pvss UpdatePvsForEvaluation(*vit, objPvs); // store pvs in vector pvsList.push_back(objPvs); } #if 1 Intersectable::NewMail(); //-- faster way of computing pvs: // construct merged pvs by adding // and only those of the next pvs which were not mailed. // note: sumpdf is not correct!! vector::iterator oit = pvsList.begin(); for (vit = interior->mChildren.begin(); vit != vit_end; ++ vit, ++ oit) { ObjectPvsMap::iterator pit, pit_end = (*oit).mEntries.end(); for (pit = (*oit).mEntries.begin(); pit != pit_end; ++ pit) { Intersectable *intersect = (*pit).first; if (!intersect->Mailed()) { pvs.AddSample(intersect, (*pit).second.mSumPdf); intersect->Mail(); } } } // store pvs in this node if (mViewCellsTree->ViewCellsStorage() == ViewCellsTree::PVS_IN_INTERIORS) { interior->mPvs = pvs; } // set new pvs size interior->mPvsSize = pvs.GetSize(); interior->mPvsSizeValid = true; #else // really merge cells: slow put sumpdf is correct viewCellInterior->GetPvs().Merge(backVc->GetPvs()); viewCellInterior->GetPvs().Merge(frontVc->GetPvs()); #endif } bool VspBspViewCellsManager::GetViewPoint(Vector3 &viewPoint) const { if (!ViewCellsConstructed()) return ViewCellsManager::GetViewPoint(viewPoint); // TODO: set reasonable limit const int limit = 20; for (int i = 0; i < limit; ++ i) { viewPoint = mViewSpaceBox.GetRandomPoint(); if (mVspBspTree->ViewPointValid(viewPoint)) { return true; } } Debug << "failed to find valid view point, taking " << viewPoint << endl; return false; } bool VspBspViewCellsManager::ViewPointValid(const Vector3 &viewPoint) const { // $$JB -> implemented in viewcellsmanager (slower, but allows dynamic // validy update in preprocessor for all managers) return ViewCellsManager::ViewPointValid(viewPoint); // return mViewSpaceBox.IsInside(viewPoint) && // mVspBspTree->ViewPointValid(viewPoint); } void VspBspViewCellsManager::Visualize(const ObjectContainer &objects, const VssRayContainer &sampleRays) { if (!ViewCellsConstructed()) return; VssRayContainer visRays; GetRaySets(sampleRays, mVisualizationSamples, visRays); if (1) // export view cells { // hack pvs int savedColorCode = mColorCode; mColorCode = 1; Exporter *exporter = Exporter::GetExporter("final_view_cells.x3d"); if (exporter) { cout << "exporting view cells after post process ... "; if (0) { exporter->SetWireframe(); exporter->ExportBox(mViewSpaceBox); exporter->SetFilled(); } if (mExportGeometry) { exporter->ExportGeometry(objects); } // export rays if (mExportRays) { exporter->ExportRays(visRays, RgbColor(0, 1, 0)); } //exporter->SetFilled(); bool b = mUseClipPlaneForViz; mUseClipPlaneForViz = false; ExportViewCellsForViz(exporter); mUseClipPlaneForViz = b; delete exporter; cout << "finished" << endl; } mColorCode = savedColorCode; } if (0) { cout << "exporting depth map ... "; Exporter *exporter = Exporter::GetExporter("depth_map.x3d"); if (exporter) { if (1) { exporter->SetWireframe(); exporter->ExportBox(mViewSpaceBox); exporter->SetFilled(); } if (mExportGeometry) { exporter->ExportGeometry(objects); } const int maxDepth = mVspBspTree->mBspStats.maxDepth; ViewCellContainer::const_iterator vit, vit_end = mViewCells.end(); for (vit = mViewCells.begin(); vit != mViewCells.end(); ++ vit) { ViewCell *vc = *vit; ViewCellContainer leaves; mViewCellsTree->CollectLeaves(vc, leaves); ViewCellContainer::const_iterator lit, lit_end = leaves.end(); for (lit = leaves.begin(); lit != lit_end; ++ lit) { BspLeaf *leaf = dynamic_cast(*lit)->mLeaf; Material m; float relDepth = (float)leaf->GetDepth() / (float)maxDepth; m.mDiffuseColor.r = relDepth; m.mDiffuseColor.g = 0.0f; m.mDiffuseColor.b = 1.0f - relDepth; exporter->SetForcedMaterial(m); BspNodeGeometry geom; mVspBspTree->ConstructGeometry(leaf, geom); exporter->ExportPolygons(geom.GetPolys()); } } delete exporter; } cout << "finished" << endl; } //-- visualization of the BSP splits bool exportSplits = false; mEnvironment->GetBoolValue("VspBspTree.Visualization.exportSplits", exportSplits); if (exportSplits) { cout << "exporting splits ... "; ExportSplits(objects, visRays); cout << "finished" << endl; } //-- export single view cells ExportBspPvs(objects, visRays); } void VspBspViewCellsManager::ExportSplits(const ObjectContainer &objects, const VssRayContainer &rays) { Exporter *exporter = Exporter::GetExporter("bsp_splits.x3d"); if (exporter) { Material m; m.mDiffuseColor = RgbColor(1, 0, 0); exporter->SetForcedMaterial(m); exporter->SetWireframe(); exporter->ExportBspSplits(*mVspBspTree, true); // take forced material, else big scenes cannot be viewed m.mDiffuseColor = RgbColor(0, 1, 0); exporter->SetForcedMaterial(m); exporter->SetFilled(); exporter->ResetForcedMaterial(); // export rays if (mExportRays) exporter->ExportRays(rays, RgbColor(1, 1, 0)); if (mExportGeometry) exporter->ExportGeometry(objects); delete exporter; } } void VspBspViewCellsManager::ExportBspPvs(const ObjectContainer &objects, const VssRayContainer &rays) { const int leafOut = 20; ViewCell::NewMail(); cout << "visualization using " << (int)rays.size() << " samples" << endl; Debug << "visualization using " << (int)rays.size() << " samples" << endl; Debug << "\nOutput view cells: " << endl; const bool sortViewCells = true; // sort view cells to visualize the largest view cells if (sortViewCells) { //stable_sort(mViewCells.begin(), mViewCells.end(), ViewCell::SmallerPvs); stable_sort(mViewCells.begin(), mViewCells.end(), ViewCell::LargerRenderCost); } int limit = min(leafOut, (int)mViewCells.size()); int raysOut = 0; //-- some rays for output for (int i = 0; i < limit; ++ i) { cout << "creating output for view cell " << i << " ... "; ViewCell *vc; if (sortViewCells) // largest view cell pvs first vc = mViewCells[i]; else vc = mViewCells[(int)RandomValue(0, (float)mViewCells.size() - 1)]; ObjectPvs pvs; mViewCellsTree->GetPvs(vc, pvs); //bspLeaves[j]->Mail(); char s[64]; sprintf(s, "bsp-pvs%04d.x3d", i); Exporter *exporter = Exporter::GetExporter(s); Debug << i << ": pvs size=" << (int)mViewCellsTree->GetPvsSize(vc) << endl; //-- export the sample rays if (1 || mExportRays) { // output rays stored with the view cells during subdivision if (0) { VssRayContainer vcRays; VssRayContainer collectRays; raysOut = min((int)rays.size(), 100); // collect intial view cells ViewCellContainer leaves; mViewCellsTree->CollectLeaves(vc, leaves); ViewCellContainer::const_iterator vit, vit_end = leaves.end(); for (vit = leaves.begin(); vit != vit_end; ++ vit) { BspLeaf *vcLeaf = dynamic_cast(*vit)->mLeaf; VssRayContainer::const_iterator rit, rit_end = vcLeaf->mVssRays.end(); for (rit = vcLeaf->mVssRays.begin(); rit != rit_end; ++ rit) { collectRays.push_back(*rit); } } VssRayContainer::const_iterator rit, rit_end = collectRays.end(); for (rit = collectRays.begin(); rit != rit_end; ++ rit) { float p = RandomValue(0.0f, (float)collectRays.size()); if (p < raysOut) vcRays.push_back(*rit); } //-- export rays piercing this view cell exporter->ExportRays(vcRays, RgbColor(1, 1, 1)); } // associate new rays with output view cell if (1) { VssRayContainer vcRays; raysOut = min((int)rays.size(), mVisualizationSamples); // check whether we can add the current ray to the output rays for (int k = 0; k < raysOut; ++ k) { VssRay *ray = rays[k]; for (int j = 0; j < (int)ray->mViewCells.size(); ++ j) { ViewCell *rayvc = ray->mViewCells[j]; if (rayvc == vc) vcRays.push_back(ray); } } //-- export rays piercing this view cell exporter->ExportRays(vcRays, RgbColor(1, 1, 0)); } } exporter->SetWireframe(); Material m;//= RandomMaterial(); m.mDiffuseColor = RgbColor(0, 1, 0); exporter->SetForcedMaterial(m); ExportViewCellGeometry(exporter, vc); exporter->SetFilled(); //-- export pvs if (1) { ObjectPvsMap::const_iterator oit, oit_end = pvs.mEntries.end(); Intersectable::NewMail(); // output PVS of view cell for (oit = pvs.mEntries.begin(); oit != oit_end; ++ oit) { Intersectable *intersect = (*oit).first; if (!intersect->Mailed()) { m = RandomMaterial(); exporter->SetForcedMaterial(m); exporter->ExportIntersectable(intersect); intersect->Mail(); } } } if (0) { // export scene geometry m.mDiffuseColor = RgbColor(1, 0, 0); exporter->SetForcedMaterial(m); exporter->ExportGeometry(objects); } DEL_PTR(exporter); cout << "finished" << endl; } Debug << endl; } int VspBspViewCellsManager::ComputeBoxIntersections(const AxisAlignedBox3 &box, ViewCellContainer &viewCells) const { return mVspBspTree->ComputeBoxIntersections(box, viewCells); } int VspBspViewCellsManager::CastLineSegment(const Vector3 &origin, const Vector3 &termination, ViewCellContainer &viewcells) { return mVspBspTree->CastLineSegment(origin, termination, viewcells); } void VspBspViewCellsManager::ExportColor(Exporter *exporter, ViewCell *vc) const { const bool vcValid = CheckValidity(vc, mMinPvsSize, mMaxPvsSize); float importance = 0; static Material m; switch (mColorCode) { case 0: // Random { if (vcValid) { m.mDiffuseColor.r = 0.5f + RandomValue(0.0f, 0.5f); m.mDiffuseColor.g = 0.5f + RandomValue(0.0f, 0.5f); m.mDiffuseColor.b = 0.5f + RandomValue(0.f, 0.5f); } else { m.mDiffuseColor.r = 0.0f; m.mDiffuseColor.g = 1.0f; m.mDiffuseColor.b = 0.0f; } exporter->SetForcedMaterial(m); return; } case 1: // pvs { importance = (float)mViewCellsTree->GetPvsSize(vc) / (float)mCurrentViewCellsStats.maxPvs; } break; case 2: // merges { int lSize = mViewCellsTree->GetNumInitialViewCells(vc); importance = (float)lSize / (float)mCurrentViewCellsStats.maxLeaves; } break; case 3: // merge tree differene { importance = (float)GetMaxTreeDiff(vc) / (float)(mVspBspTree->GetStatistics().maxDepth * 2); } break; default: break; } // special color code for invalid view cells m.mDiffuseColor.r = importance; m.mDiffuseColor.g = 1.0f - m.mDiffuseColor.r; m.mDiffuseColor.b = vcValid ? 1.0f : 0.0f; //Debug << "importance: " << importance << endl; exporter->SetForcedMaterial(m); } void VspBspViewCellsManager::ExportViewCellGeometry(Exporter *exporter, ViewCell *vc, const Plane3 *clipPlane) const { if (clipPlane) { ViewCellContainer leaves; mViewCellsTree->CollectLeaves(vc, leaves); ViewCellContainer::const_iterator it, it_end = leaves.end(); for (it = leaves.begin(); it != it_end; ++ it) { BspNodeGeometry geom; BspNodeGeometry front; BspNodeGeometry back; BspLeaf *leaf = dynamic_cast(*it)->mLeaf; mVspBspTree->ConstructGeometry(leaf, geom); const float eps = 0.00000001f; const int cf = geom.Side(*clipPlane, eps); if (cf == -1) { exporter->ExportPolygons(geom.GetPolys()); } else if (cf == 0) { geom.SplitGeometry(front, back, *clipPlane, mViewSpaceBox, eps); //Debug << "geo size: " << geom.Size() << endl; //Debug << "size b: " << back.Size() << " f: " << front.Size() << endl; if (back.Valid()) { exporter->ExportPolygons(back.GetPolys()); } } } } else { // export mesh if available /* if (vc->GetMesh()) { exporter->ExportMesh(vc->GetMesh()); } else {*/ BspNodeGeometry geom; mVspBspTree->ConstructGeometry(vc, geom); exporter->ExportPolygons(geom.GetPolys()); //} } } int VspBspViewCellsManager::GetMaxTreeDiff(ViewCell *vc) const { ViewCellContainer leaves; mViewCellsTree->CollectLeaves(vc, leaves); int maxDist = 0; // compute max height difference for (int i = 0; i < (int)leaves.size(); ++ i) for (int j = 0; j < (int)leaves.size(); ++ j) { BspLeaf *leaf = dynamic_cast(leaves[i])->mLeaf; if (i != j) { BspLeaf *leaf2 =dynamic_cast(leaves[j])->mLeaf; int dist = mVspBspTree->TreeDistance(leaf, leaf2); if (dist > maxDist) maxDist = dist; } } return maxDist; } ViewCell *VspBspViewCellsManager::GetViewCell(const Vector3 &point, const bool active) const { if (!mVspBspTree) return NULL; if (!mViewSpaceBox.IsInside(point)) return NULL; return mVspBspTree->GetViewCell(point, active); } void VspBspViewCellsManager::CreateMesh(ViewCell *vc) { //if (vc->GetMesh()) delete vc->GetMesh(); BspNodeGeometry geom; mVspBspTree->ConstructGeometry(vc, geom); Mesh *mesh = new Mesh(); IncludeNodeGeomInMesh(geom, *mesh); vc->SetMesh(mesh); // put mesh into mesh container so we can savely delete it mMeshContainer.push_back(mesh); } ViewCellsManager *ViewCellsManager::LoadViewCells(const string &filename, ObjectContainer *objects, Environment *env, const bool finalizeViewCells, BoundingBoxConverter *bconverter) { ViewCellsParser parser; ViewCellsManager *vm = NULL; if (parser.ParseFile(filename, &vm, objects, bconverter, env)) { long startTime = GetTime(); //vm->PrepareLoadedViewCells(); vm->ResetViewCells(); vm->mViewCellsFinished = true; vm->mMaxPvsSize = (int)objects->size(); // create the meshes and compute volumes if (finalizeViewCells) { vm->FinalizeViewCells(true); vm->mViewCellsTree->AssignRandomColors(); } Debug << (int)vm->mViewCells.size() << " view cells loaded in " << TimeDiff(startTime, GetTime()) * 1e-3 << " secs" << endl; } else { Debug << "Error: loading view cells failed!" << endl; DEL_PTR(vm); } return vm; } bool VspBspViewCellsManager::ExportViewCells(const string filename, const bool exportPvs, const ObjectContainer &objects) { cout << "exporting view cells to xml ... "; std::ofstream stream; // for output we need unique ids for each view cell CreateUniqueViewCellIds(); stream.open(filename.c_str()); stream << ""<" << endl; //-- the view space bounding box stream << "" << endl; ExportBoundingBoxes(stream, objects); //-- the type of the view cells hierarchy stream << "" << endl; //-- export the view cells and the pvs const int numViewCells = mCurrentViewCellsStats.viewCells; stream << "" << endl; mViewCellsTree->Export(stream, exportPvs); stream << "" << endl; //-- export the spatial hierarchy stream << "" << endl; mVspBspTree->Export(stream); stream << endl << "" << endl; stream << "" << endl; stream.close(); cout << "finished" << endl; return true; } int VspBspViewCellsManager::CastBeam(Beam &beam) { return mVspBspTree->CastBeam(beam); } void VspBspViewCellsManager::Finalize(ViewCell *viewCell, const bool createMesh) { float area = 0; float volume = 0; ViewCellContainer leaves; mViewCellsTree->CollectLeaves(viewCell, leaves); ViewCellContainer::const_iterator it, it_end = leaves.end(); for (it = leaves.begin(); it != it_end; ++ it) { BspNodeGeometry geom; BspLeaf *leaf = dynamic_cast(*it)->mLeaf; mVspBspTree->ConstructGeometry(leaf, geom); const float lVol = geom.GetVolume(); const float lArea = geom.GetArea(); //(*it)->SetVolume(vol); //(*it)->SetArea(area); area += lArea; volume += lVol; CreateMesh(*it); } viewCell->SetVolume(volume); viewCell->SetArea(area); } void VspBspViewCellsManager::TestSubdivision() { ViewCellContainer leaves; mViewCellsTree->CollectLeaves(mViewCellsTree->GetRoot(), leaves); ViewCellContainer::const_iterator it, it_end = leaves.end(); const float vol = mViewSpaceBox.GetVolume(); float subdivVol = 0; float newVol = 0; for (it = leaves.begin(); it != it_end; ++ it) { BspNodeGeometry geom; BspLeaf *leaf = dynamic_cast(*it)->mLeaf; mVspBspTree->ConstructGeometry(leaf, geom); const float lVol = geom.GetVolume(); newVol += lVol; subdivVol += (*it)->GetVolume(); float thres = 0.9f; if ((lVol < ((*it)->GetVolume() * thres)) || (lVol * thres > ((*it)->GetVolume()))) Debug << "warning: " << lVol << " " << (*it)->GetVolume() << endl; } Debug << "exact volume: " << vol << endl; Debug << "subdivision volume: " << subdivVol << endl; Debug << "new volume: " << newVol << endl; } void VspBspViewCellsManager::PrepareLoadedViewCells() { // TODO: do I still need this here? if (0) mVspBspTree->RepairViewCellsLeafLists(); } void ViewCellsManager::ApplySpatialFilter( KdTree *kdTree, const float spatialFilterSize, ObjectPvs &pvs ) { // now compute a new Pvs by including also objects intersecting the extended boxes of // visible objects Intersectable::NewMail(); std::map, LtSample >::const_iterator oi; for (oi = pvs.mEntries.begin(); oi != pvs.mEntries.end(); ++oi) { Intersectable *object = (*oi).first; object->Mail(); } ObjectPvs nPvs; int nPvsSize=0; // now go through the pvs again for (oi = pvs.mEntries.begin(); oi != pvs.mEntries.end(); ++oi) { Intersectable *object = (*oi).first; // Vector3 center = object->GetBox().Center(); // AxisAlignedBox3 box(center - Vector3(spatialFilterSize/2), // center + Vector3(spatialFilterSize/2)); AxisAlignedBox3 box = object->GetBox(); box.Enlarge(Vector3(spatialFilterSize/2)); ObjectContainer objects; // $$ warning collect objects takes only unmailed ones! kdTree->CollectObjects(box, objects); // cout<<"collected objects="<SetWireframe(); exporter->SetForcedMaterial(RgbColor(1,1,1)); exporter->ExportBox(tbox); exporter->SetFilled(); exporter->SetForcedMaterial(RgbColor(0,1,0)); ExportViewCellGeometry(exporter, GetViewCell(viewPoint)); //exporter->ResetForcedMaterial(); exporter->SetForcedMaterial(RgbColor(0,0,1)); ExportViewCellGeometry(exporter, testPrVs.mViewCell); exporter->SetForcedMaterial(RgbColor(1,0,0)); exporter->ExportGeometry(objects); delete exporter; } } void VspBspViewCellsManager::CollectMergeCandidates(const VssRayContainer &rays, vector &candidates) { cout << "collecting merge candidates ... " << endl; if (mUseRaysForMerge) { mVspBspTree->CollectMergeCandidates(rays, candidates); } else { vector leaves; mVspBspTree->CollectLeaves(leaves); mVspBspTree->CollectMergeCandidates(leaves, candidates); } cout << "fininshed collecting candidates" << endl; } ////////////////////////////////// ViewCellsManager *ViewCellsManagerFactory::Create(const string mName) { //TODO return NULL;// new VspBspViewCellsManager(); } }